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PREFACE 

This book is intended to serve as a text for the course in analysis that is usually 
taken by advanced undergraduates or by first-year students who study mathe
matics. 

The present edition covers essentially the same topics as the second one, 
with some additions, a few minor omissions, and considerable rearrangement. I 
hope that these changes will make the material more accessible amd more attrac
tive to the students who take such a course. 

Experience has convinced me that it is pedagogically unsound (though 
logically correct) to start off with the construction of the real numbers from the 
rational ones. At the beginning, most students simply fail to appreciate the need 
for doing this. Accordingly, the real number system is introduced as an ordered 
field with the least-upper-bound property, and a few interesting applications of 
this property are quickly made. However, Dedekind's construction is not omit
ted. It is now in an Appendix to Chapter I, where it may be studied and enjoyed 
whenever the time seems ripe. 

The material on functions of several variables is almost completely re
written, with many details filled in, and with more examples and more motiva
tion. The proof of the inverse function theorem-the key item in Chapter 9-is 



simplified by means of the fixed point theorem about contraction mappings. 
Differential forms are discussed in much greater detail. Several applications of 
Stokes' theorem are included. 

As regards other changes, the chapter on the Riemann-Stieltjes integral 
has been trimmed a bit, a short do-it-yourself section on the gamma function 
has been added to Chapter 8, and there is a large number of new exercises, most 
of them with fairly detailed hints. 

I have also included several references to articles appearing in the Amerzcan 
Mathematical Monthly and in Mathematics Magazine, in the hope that students 
will develop the habit of looking into the journal literature. Most of these 
r~fimmc~s w~r~ kindly supplied by R. B. Burckel. 

Over the years, many people, students as well as teachers, have sent me 
correctwns, cnttctsms, and other comments concernmg the prevwus edtttons 
of this book. I have appreciated these, and I take this opportunity to express 
my sincere thanks to all who have written me. 

WALTER RUDIN 



I 
TilE REAL AND COMPLEX NUMBER SYSTEMS 

INTRODUCTION 

A satisfactory discussion of the main concepts of analysis (such as convergence, 
continuity, differentiation, and integration) must be based on an accurately 
defined number concept. We shall not, however, enter into any discussion of 
the axioms that govern the arithmetic of the integers, but assume familiarity 
with the rational numbers (i.e., the numbers of the form mfn, where m and n 
are integers and n =F 0). 

The rational number system is inadequate for many purposes, both as a 
field and as an ordered set. (These terms will be defined in Sees. 1.6 and 1.12.) 
For instance, there is no rational p such that p 2 = 2. (We shall prove this 
presently.) This leads to the introduction of so-called "irrational numbers" 
which are often written as infinite decimal expansions and are considered to be 
"approximated" by the corresponding finite decimals. Thus the sequence 

1, 1.4, 1.41, 1.414, 1.4142, ... 

"tends to J2." But unless the irrational number J2 has been clearly defined, 
the question must arise: Just what is it that this sequence "tends to"? 
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This sort of question can be answered as soon as the so-called "real 
number system" is constructed. 

1.1 Example We now show that the equation 

(1) p2 = 2 

is not satisfied by any rational p. If there were such a p, we could write p = mfn 
where m and n are integers that are not both even. Let us assume this is done. 
Then (1) implies 

(2) 

This shows that m2 is even. Hence m is even (if m were odd, m2 would be odd), 
and so m2 is di~isible by 4. It follows that the right side of (2) is di~isible by 4, 
so that n2 is even, which implies that n is even. 

The assumption that (1) holds thus leads to the conclusion that both m 
and n are even, contrary to our choice of m and n. Hence (1) is impossible for 
rational p. 

We now examine this situation a little more closely. Let A be the set of 
all positive rationals p such that p2 < 2 and let B consist of all positive rationals 
p such that p2 > 2. We shall show that A contains no largest number and B con
tains no smallest. 

More explicitly, for every pin A we can find a rational q in A such that 
p < q, and for every p in B we can find a rational q in B such that q < p. 

(3) 

Then 

(4) 

To do this, we associate with each rational p > 0 the number 

p2
- 2 2p + 2 

q=p-p+2-p+2 

2 2- 2(p2- 2) 
q - - (p + 2)2 . 

If p is in A then p 2
- 2 < 0, (3) shows that q > p, and (4) shows that 

q2 < 2. Thus q is in A. 
If pis in B then p2

- 2 > 0, (3) shows that 0 < q < p, and (4) shows that 
q2 > 2. Thus q is in B. 

1.2 Remark The purpose of the above discussion has been to show that the 
rational number system has certain gaps, in spite of the fact that between any 
two rationals there is another: If r < s then r < (r + s)/2 < s. The real number 
system fills these gaps. This is the principal reason for the fundamental role 
which it plays in analysis. 
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In order to elucidate its structure, as well as that of the complex numbers, 
we start with a brief discussion of the general eoneepts of ordered set and field. 

Here is some of the standard set-theoretic terminology that will be used 
throughout this book. 

1.3 Definitions If A is any set (whose elements may be numbers or any other 
objects), we write x e A to indicate that xis a member (or an element) of A. 

If xis not a member of A, we write: x ¢A. 
The set which contains no element will be called the empty set. If a set has 

at least nne element, it is called nonempty 
If A and B are sets, and if every element of A is an element of B, we say 

that A is a subset of IJ, and write A c B, or B ::::J A. If, in addition, there is an 
element of B which is not in A, then A is said to be a proper subset of B. Note 
that A c A for every set A. 

If A c Band B c A, we write A= B. Otherwise A#: B. 

1.4 Definition Throughout Chap. 1, the set of all rational numbers will be 
denoted by Q. 

ORDERED SETS 

1.5 Definition Let S be a set. An order on S is a relation, denoted by <, with 
the following two properties: 

(i) If x e S and y e S then one and only one of the statements 

x<y, x=y, y<x 
is true. 

(ii) If x, y, z e S, if x < y andy< z, then .x < z. 

The statement "x < y" may be read as "xis less than y" or "xis smaller 
than y" or "x precedes y". 

It is often convenient to write y > x in place of x < y. 
The notation x S y indicates that x < y or x = y, without specifying which 

of these two is to hold. In other words, x S y is the negation of x > y. 

1.6 Definition An ordered set is a setS in which an order is defined. 
For example, Q is an ordered set if r <sis defined to mean that s- r is a 

positive rational number. 

1.7 Definition Suppose S is an ordered set, and E c S. If there exists a 
{J e S such that x S fJ for every x e E, we say that E is bounded above, and call 
{J an upper bound of E. 

Lower bounds are defined in the same way (with ~ in place of s ). 
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1.8 Definition Suppose S is an ordered set, E c S, and E is bounded above. 
Suppose there extsts an ex e S wtth the followmg properties: 

(1) ex Is an upper bound of E. 
(ii) If y < ex then y is not an upper bound of E. 

Then ex is caJJed the least upper hound of E [that there is at most one such 
ex is clear from (ii)] or the supremum of E, and we write 

ex= sup E. 

The greatest lower bound, or infimum, of a set E which is bounded below 
is defined in the same manner: The statement 

means that ex is a lower bound of E and that no {J with {J > ex is a lower bound 
of E. 

1.9 Examples 

(a) Consider the sets A and B of Example 1.1 as subsets of the ordered 
set Q. The set A is bounded above. In fact, the upper bounds of A are 
exactly the members of B. Since B contains no smallest member, A has 
no least upper bound in Q. 

Similarly, B is bounded below: The set of all lower bounds of B 
consists of A and of all r e Q with r S 0. Since A has no lasgest member, 
B has no greatest lower bound in Q. 
(b) If ex= sup E exists, then ex may or may not be a member of E. For 
instance, let E1 be the set of all r e Q with r < 0. Let E2 be the set of all 
r e Q with r S 0. Then 

sup E1 = sup E2 = 0, 

and 0 ¢ Eh 0 e E2 • 

(c) Let E consist of all numbers 1/n, where n = 1, 2, 3, .... Then 
sup E = 1, which is in E, and inf E = 0, which is not in E. 

1.10 Definition An ordered set Sis said to have the least-upper-bound property 
if the following is true: 

If E c S, E is not empty, and E is bounded above, then sup E exists inS. 
Example 1.9(a) shows that Q does not have the least-upper-bound property. 
We shall now show that there is a close relation between greatest lower 

bounds and least upper bounds, and that every ordered set with the least-upper
bound property also has the greatest-lower-bound property. , 
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1.11 Theorem Suppose Sis an ordered set with the /east-upper-bound property, 
1J s 11' 'tJ' b , 'b, t:, t:,b h I" ... c, zs noz empty, ana zsounaeaeww.ete t e sez u) an tower 
bounds of B. Then 

ex= supL 
exists in S, and ~X inf B. 

In particular, inf B exists in S. 

Proof Since B is bounded below, L is not empty. Since L consists of 
exactly those y e S which satisfy the inequality y ~ x for every x e B, we 
see that every x e B is an upper bound of L. Thus L is bounded above. 
Our hypothesis about S implies therefore that L has a supremum in S; 

If y < ex then (see Definition 1.8) y is not an upper bound of L, 
hence y ¢ B. It follows that ex ~ x tor every x e B. Thus cx e £. 

If ex < {3 then {3 ¢ L, since ex is an upper bound of L. 
We have shown that ex e L but {3 ¢ L if {3 >ex. In other words, cx 

is a lower bound of B, but {3 is not if /3 >ex. This means that ex= inf B. 

FIELDS 

1.12 Definition A field is a set F with two operations, called addition and 
multiplication, which satisfy the following so-called "field axioms" (A), (M), 
and (D): 

(A) Axioms for addition 

(At) If x e F andy e F, then their sum x + y is in F. 
(A2) Addition is commutative: x + y = y + x for all x, y e F. 
(A3) Addition is associative: (x + y) + z = x + (y + z) for all x, y, z e F. 
(A4) F contains an element 0 such that 0 + x = x for every x e F. 
(AS) To every x e F corresponds an element -x e F such that 

x +( -x) = 0. 

(M) Axioms for multiplication 

(Ml) If x e F andy e F, then their product xy is in F. 
(M2) Multiplication is commutative: xy = yx for all x, y e F. 
(M3) Multiplication is associative: (xy)z = x(yz) for all x, y, z e F. 
(M4) F contains an element 1 :1: 0 such that lx = x for every x e F. 
(M5) If x e F and x :1: 0 then there exists an element 1/x e F such that 

x · (1/x) = 1. 
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(D) The distributive law 

x(y + z) = xy + xz 

holds for all x, y, z e F. 

1.13 Remarks 

(a) One usua11y writes (in any field) 

in place of 

x - y,-, x + y + z, xyz, x , x , 2x, 3x, ... 
y 

x + ( -y), x ·G), (x + y) + z, (xy)z, xx, xxx, x + x, x + x + x, .... 

(b) The field axioms clearly hold in Q, the set of all rational numbers, if 
addition and multiplication have their customary meaning. Thus Q is a 
field. 
(c) Although it is not our purpose to study fields (or any other algebraic 
structures) in detail, it is worthwhile to prove that some familiar properties 
of Q are consequences of the field axioms; once we do this, we will not 
need to do it again for the real numbers and for the complex numbers. 

1.14 Proposition The axioms for addition imply the following statements. 

(a) If x + y = x + z then y = z. 
(b) If x + y = x then y = 0. 
(c) If x + y = 0 then y = -x. 
(d) -( -x) = x. 

Statement (a) is a cancellation law. Note that (b) asserts the uniqueness 
of the element whose existence is assumed in (A4), and that (c) does the same 
for (AS). 

Proof If x + y = x + z, the axioms (A) give 

y = 0 + y = ( -x + x) + y = -x + (x + y) 
= -x + (x + z) = ( -x + x) + z = 0 + z = z. 

This proves (a). Take z = 0 in (a) to obtain (b). Take z = -x in (a) to 
obtain (c). 
Since -x + x = 0, (c) (with -x in pl~ce of x) gives (d). 
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1.15 Proposition The axioms for multiplication imply the following statements. 

(a) lfx =I= 0 and xy = xz then y = z. 
(b) If x =I= 0 and xy - x then y - 1 
(c) If x =I= 0 and xy = 1 then y = 1fx. 
(d) If x #= 0 then lf(lfx) - x. 

The proof is so similar to that of Pt oposition 1.14 that we omit it. 

1.16 Proposition The field axioms imply the following statements, for any x, y, 

(a) Ox- 0 
(b) If x =I= 0 andy =I= 0 then xy =I= 0. 
(c) ( x)y - (xy) x( y). 
(d) ( -x)(-y) = xy. 

Proof Ox+ Ox= (0 + O)x =Ox. Hence 1.14(b) implies that Ox= 0, and 
(a) holds. 

Next, assume x =I= 0, y =I= 0, but xy = 0. Then (a) gives 

1 = m G)xy =m(~)o = 0, 

a contradiction. Thus (b) holds. 
The first equality in (c) comes from 

(- x)y + xy = (- x + x)y = Oy = 0, 

combined with 1.14(c); the other half of (c) is proved in the same way. 
Finally, 

(-x)(-y)= -[x(-y)]= -[-(xy)]=xy 

by (c) and 1.14(d). 

1.17 Definition An ordered field is afield F which is also an ordered set, such 
that 

(i) X + y < X + Z if X, y, Z E F and y < Z, 

(ii) xy > 0 if X E F, y E F, X > 0, and y > 0. 

If x > 0, we call x positive; if x < 0, xis negative. 
For example, Q is an ordered field. 
All the familiar rules for working with inequalities apply in every ordered 

field: Multiplication by positive [negative] quantities preserves [reverses] in
equalities, no square is negative, etc. The following proposition lists some of 
these. 
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1.18 Proposition The following statements are true in every ordered field. 

(a) If x > 0 then - x < 0, and vice versa. 
(b) lfx > 0 andy< z then xy <xz. 
(c) If x < 0 andy< z then xy > xz. 
(d) If x :1: 0 then x 2 > 0. In particular, 1 > 0. 
(e) IfO < x < y then 0 < lfy < lfx. 

(a) If x > 0 then 0 = -x + x > -x + 0, so that -x < 0. If x < 0 then 
0 - x + x < x + 0, so that x > 0. Thts proves (a). 
(b) Since z > y, we have z- y > y- y = 0, hence x(z- y) > 0, and 
therefore 

xz = x(z- y) + xy > 0 + xy = xy. 

(c) By (a), (b), and Proposition 1.16(c), 

-[x(z- y)] = (-x)(z- y) > 0, 

so that x(z - y) < 0, hence xz < xy. 
(d) If x > 0, part (ii) of Definition 1.17 gives x 2 > 0. If x < 0, then 
-x > 0, hence ( -x)2 > 0. But x 2 = ( -x)2

, by Proposition 1.16(d). 
Since 1 = 12

, 1 > 0. 
(e) Ify > 0 and v ~ 0, thenyv ~ 0. Buty · (1/y) = 1 > 0. Hence 1/y > 0. 
Likewise, 1/x > 0. If we multiply both sides of the inequality x < y by 
the positive quantity (l/x)(1/y), we obtain 1/y < Ifx. 

THE REAL FIELD 

We now state the existence theorem which is the core of this chapter. 

1.19 Theorem There exists an ordered field R which has the /east-upper-bound 
property. 

Moreover, R contains Q as a subfield. 

The second statement means that Q c R and that the operations of 
addition and multiplication in R, when applied to members of Q, coincide with 
the usual operations on rational numbers; also, the positive rational numbers 
are positive elements of R. 

The members of R are called real numbers. 
The proof of Theorem 1.19 is rather long and a bit tedious and is therefore 

presented in an Appendix to Chap. 1. The proof actually constructs R from Q. 
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The next theorem could be extracted from this construction with very 
little extra effort. However, we prefer to derive it from Theorem 1.19 since this 
provides a good illustration of what one can do with the least-upper-bound 
property. 

1.20 Theorem 

(a) If x e R. v e R. and x > 0, then there is a positive integer n such that 

nx> . 

(b) Ifx e R, y e R, and x < y, then there exists ape Q such that x < p < y. 

Part (a) is usually referred to as the archimedean property of R. Part (b) 
may be stated by saymg that Q IS dense m R: Between any two real numbers 
there is a rational one. 

Proof 
(a) Let A be the set of all nx, where n runs through the positive integers. 
If (a) were false, then y would be an upper bound of A. But then A has a 
least upper bound in R. Put a= sup A. Since x > 0, a-x< a, and 
a-x is not an upper bound of A. Hence a-x< mx for some positive 
integer m. But then a< (m + 1)x e A, which is impossible, since a is an 
upper bound of A. 
(b) Since x < y, we have y - x > 0, and (a) furnishes a positive integer 
n such that 

n(y- x) > 1. 

Apply (a) again, to obtain positive integers m1 and m2 such that m1 > nx, 
m 2 > -nx. Then 

-m2 <nx<m1• 

Hence there is an integer m (with -m2 ~ m ~ m1) such that 

m -1 ~ nx < m. 

If we combine these inequalities, we obtain 

nx < m ~ 1 + nx < ny. 

Since n > 0, it follows that 

This proves (b), with p = mfn. 

m 
X<- <y. 

n 
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We shall now prove the existence of nth roots of positive reals. This 
proof will show how the difficulty pointed out in the Introduction (irration-

ality of j2) can be handled in R. 

1.21 Theorem For every real x > 0 and every integer n > 0 there is one 
and only one positive real y such that y" = x. 

This number y is written~-;_; or x1
'"· 

Proof That there is at most one such y is clear, since 0 < y1 < y2 implies 
1 < 2. 

Let E be the set consisting of all positive real numbers t such that 
t" <X. 

If t xf(l 1- x) then 0 !:it< 1. Hence t" !5 t < x. Thus t e £, and 
E is not empty. 

If t > 1 + x then t" ~ t > x, so that t ¢ E. Thus 1 + x is an upper 
bound of E. 

Hence Theorem 1.19 implies the existence of 

y =sup E. 

To prove that y" = x we will show that each of the inequalities y" < x 
and y" > x leads to a contradiction. 

The identity b"- a"= (b- a)(b"- 1 + b"- 2a + · · · + a"- 1) yields 
the inequality 

b"- a"< (b- a)nb"- 1 

when 0 <a< b. 
Assume y" < x. Choose h so that 0 < h < 1 and 

h< x-y" . 
n(y + 1)"-1 

Put a = y, b = y + h. Then 

(y +h)"- y" < hn(y + h)"- 1 < hn(y + 1)"- 1 < x- y". 

Thus (y +h)"< x, and y +he E. Since y + h > y, this contradicts the 
fact that y is an upper bound of E. 

Assume y" > x. Put 

y"- X 
k = ny"-1 . 

Then 0 < k < y. If t ~ y- k, we conclude that 

y"- t" ~ y"- (y- k)" < kny"- 1 = y"- x. 

Thus t" > x, and t ¢E. It follows that y- k is an upper bound of E. 
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But y- k < y, which contradicts the fact that y is the least upper bound 

Hence y" = x, and the proof is complete. 

Corollary If a and b are positive real numbers and n is a positive integer, then 

Proof Put oc - a11n, {1 - b1fn Then 

since multiplication is commutative. [Axiom (M2) in Definition 1.12.] 
The uniqueness assertion of Theorem 1.21 shows therefore that 

1.22 Decimals We conclude this section by pointing out the relation between 
real numbers and decimals. 

Let x > 0 be real. Let n0 be the largest integer such that n0 ~ x. (Note that 
the existence of n0 depends on the archimedean property of R.) Having chosen 
n0 , n1, ••• , nk_ 1, let nk be the largest integer such that 

nl nk 
no+ 10 + ... + 10k ~ x. 

Let E be the set of these numbers 

(5) (k = 0, 1' 2, ... ). 

Then x = sup E. The decimal expansion of x is 

(6) n0 • n1n2 n3 • • • • 

Conversely, for any infinite decimal (6) the set E of numbers (5) is bounded 
above, and (6) is the decimal expansion of sup E. 

Since we shall never use decimals, we do not enter into a detailed 
discussion. 

THE EXTENDED REAL NUMBER SYSTEM 

1.23 Definition The extended real number system consists of the real field R 
and two symbols, + oo and - oo. We preserve the original order in R, and 
define 

-oo<x<+oo 
for every x e R. 
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It is then clear that + oo is an upper bound of every subset of the extended 
real number system, and that every nonempty subset has a least upper bound. 
If, for example, E is a nonempty set of real numbers which is not bounded 
above in R, then sup E = + oo in the extended real number system. 

Exactly the same remarks apply to lo·Ner bounds. 

The extended real number system does not form a field, but it is customary 
to make the following conventions: 

(a) If x is real then 

x + oo- +oo, x- oo- -oo, ----0. 
+oo -oo 

X X 

(b) If X > 0 then X ' ( + 00) = + 00, X ' (- 00) = - 00. 
(c) Ifx < 0 then x · (+oo) oo, x · ( oo) +oo. 

When it is desired to make the distinction between real numbers on the 
one hand and the symbols + oo and - oo on the other quite explicit, the former 
are calledfinite. 

THE COMPLEX FIELD 

1.24 Definition A complex number is an ordered pair (a, b) of real numbers. 
"Ordered" means that (a, b) and (b, a) are regarded as distinct if a :1= b. 

Let x =(a, b), y = (c, d) be two complex numbers. We write x = y if and 
only if a= c and b =d. (Note that this definition is not entirely superfluous; 
think of equality of rational numbers, represented as quotients of integers.) We 
define 

x + y = (a + c, b + d), 

xy = (ac- bd, ad+ be). 

1.25 Theorem These definitions of addition and multiplication turn the set of 
all complex numbers into afield, with (0, 0) and (1, 0) in the role ofO and 1. 

Proof We simply verify the field axioms, as listed in Definition 1.12. 
(Of course, we use the field structure of R.) 

Let x =(a, b), y = (c, d), z = (e,f). 
(Al) is clear. 
(A2) x + y =(a+ c, b +d)= (c +a, d +b) = y + x. 
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(A3) (x + y) + z =(a + c, b +d)+ (e,f) 
= (a + c + e, b + d +f) 

(a, h) + (c + e, d +f) x t (y t z). 
(A4) X+ 0 =(a, b)+ (0, 0) =(a, b)= X. 
(AS) Put -x = (-a, -b). Then x + ( -x) = (0, 0) = 0. 
(M1) is clear. 
(M2) xy = (ac- bd, ad+ be) = (ca- db, da + cb) = yx. 
(M3) (xy)z (ac bd, ad+ bc)(e,f) 

=(ace- bde- adf- bcf, acf- bdf + ade +bee) 
=(a, b)(ce- df, cf +de)= x(yz). 

(M4) 1 x - (1 , O)(a, b) - (a, b) - x 
(M5) If x :1= 0 then (a, b) :1= (0, 0), which means that at least one of the 
real numbers a, b is different from 0. Hence a2 + b2 > 0, by Proposthon 
1.18(d), and we can define 

Then 

x. ~=(a, b)(a2: b2' a2 ~bb2) = (1, 0) = 1. 

(D) x(y + z) =(a, b)(c + e, d +f) 

= (ac + ae- bd- bf, ad+ af +be+ be) 

= (ac- bd, ad+ be) + (ae- bf, af + be) 

= xy + xz. 

1.26 Theorem For any real numbers a and b we have 

(a, 0) + (b, 0) = (a + b, 0), (a, O)(b, 0) = (ab, 0). 

The proof is trivial. 

Theorem 1.26 shows that the complex numbers of the form (a, 0) have the 
same arithmetic properties as the corresponding real numbers a. We can there
fore identify (a, 0) with a. This identification gives us the real field as a subfield 
of the complex field. 

The reader may have noticed that we have defined the complex numbers 
without any reference to the mysterious square root of - 1. We now show that 
the notation (a, b) is equivalent to the more customary a+ bi. 

1.27 Definition i = (0, 1). 
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1.28 Theorem i2 = -1. 

Proof i2 = (0, 1)(0, 1) = ( -1, 0) = -1. 

1.29 Theorem If a and b are real, then (a, b) = a + bi. 

a+ bi- (a, 0) + (b, 0)(0, 1) 

- (a, 0) + (0, b) - (a, b) 

1.30 Definition If a, b are real and z =a+ hi, then the complex number 
z- a- bz is called the conjugate of z. The numbers a and b are the real pwt 
and the imaginary part of z, respectively. 

We shall occasionally write 

a= Re(z), b = Im(z). 

1.31 Theorem If z and w are complex, then 

(a) z + w = z + w, 
(b) zw = z. w, 
(c) z + z = 2 Re(z), z- z = 2i lm(z), 
(d) zz is real and positive (except when z = 0). 

Proof (a), (b), and (c) are quite trivial. To prove (d), write z =a +hi, 
and note that zz = a2 + b2

• 

1.32 Definition If z is a complex number, its absolute value I z I is the non
negative square root of zz; that is, I z I = (zz) 112

• 

The existence (and uniqueness) of lzl follows from Theorem 1.21 and 
part (d) of Theorem 1.31. 

Note that when xis real, then x = x, hence lxl =Jx2
• Thus lxl = x 

if X ~ 0, I X I = -X if X < 0. 

1.33 Theorem Let z and w be complex numbers. Then 

(a) lzl > 0 unless z = 0, 101 = 0, 
(b) lzl = lzl, 
(c) lzwl = lzll wl, 
(d) IRe z I ~ I z I, 
(e) lz + wl ~ lzl + !wl. 
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Proof (a) and (b) are trivial. Put z =a+ bi, w = c + di, with a, b, c, d 
real. Then 

or I zw 12 = (I z II w I )2
• Now (c) follows from the umqueness assertion of 

Theorem 1.21. 
To prove (d), note that a2 < a2 + b2

, hence 

To prove (e), note that zw is the conjugate of zw, so that zw + zw = 
2 Re (zw). Hence 

I z + w 12 (z + w)(z + w) zz + zw + zw + ww 
= I z 1 2 + 2 Re (zw) + I w 12 

< I z 1 2 + 21 zw I + I w 12 

= I z 12 + 21 z II w I + I w 12 
= <I z I + I w I )2

• 

Now (e) follows by taking square roots. 

1.34 Notation If x1, ••• , x,. are complex numbers, we write 

II 

x1 + x2 + · · · + x,. = L x1 . 
j= 1 

We conclude this section with an important inequality, usually known as 
the Schwarz inequality. 

1.35 Theorem If a 1, ••• , a,. and b1, ••• , b,. are complex numbers, then 

Proof Put A= l:la1 1
2

, B = l:lb11
2

, C = l:a151 (in all sums in this proof, 
j runs over the values 1, ... , n). If B = 0, then b1 = · · · = b,. = 0, and the 
conclusion is trivial. Assume therefore that B > 0. By Theorem 1.31 we 
have 

L I Ba1 - Cb1 1
2 = L (Ba1 - Cb1)(Ba1 - Cb1) 

= B2 L I a1 1
2 

- BC 'L a1 51 - BC L a1 b1 + I Cl 2 L I b1 1
2 

= B2A- BICI 2 

= B(AB - I Cl 2
). 
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Since each term in the first sum is nonnegative, we see that 

Since B > 0, it follows that AB- I Cl 2 ~ 0. This is the desired inequality. 

EUCLIDEAN SPACES 

1.36 Definitions For each positive integer k, let Rk be the set of all ordered 
k-tuples 

where x1 , ••• , XJi are real numbers, called the coordinates of x. The elements of 
Rk are called points, or vectors, especially when k > 1. We shall denote vectors 
by boldfaced letters. If y = (y1, ... , Yk) and if et is a real number, put 

x + Y = (xl + Yt, · · · , xk + Yk), 

etx = (etx1 , ••• , etxk) 

so that x + y e Rk and etx e Rk. This defines addition of vectors, as well as 
multiplication of a vector by a real number (a scalar). These two operations 
satisfy the commutative, associative, and distributive laws (the proof is trivial, 
in view of the analogous laws for the real numbers) and make Rk into a vector 
space over the real field. The zero element of Rk (sometimes called the origin or 
the null vector) is the point 0, all of whose coordinates are 0. 

We also define the so-called "inner product" (or scalar product) of x and 
y by 

k 

X. y = L XiYi 
i= 1 

and the norm of x by 

I xl = (x. x)''2 = (t xf )"2. 

The structure now defined (the vector space Rk with the above inner 
product and norm) is called euclidean k-space. 

1.37 Theorem Suppose x, y, z e Rk, and et is real. Then 

(a) lxl ~ 0; 
(b) lxl = 0 if and only ifx = 0; 
(c) I (XX I = I (X II X I ; 
(d) I X • y I ~ I X II y I ; 
(e) lx+yl ~lxl + IYI; 
(f) lx-zl:::; lx-yl + ly-zl. 
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Proof (a), (b), and (c) are obvious, and (d) is an immediate consequence 
of the Schwarz inequality. By (d) we have 

I x + Y 12 = (x + y) · (x + y) 

=x·x+2x·y+y·y 

:S: lxl 2 +21xiiYI + IYI 2 

so that (e) is proved. Finally, (f) follows from (e) if we replace x by 
x - y and y by y - z. 

1.38 Remarks Theorem 1.37 (a), (b), and (/) will allow us (see Chap. 2) to 
regard Rk as a metnc space. 

R 1 (the set of all real numbers) is usually called the line, or the real line. 
Likewise, R 2 is called the plane, or the complex plane (compare Definitions 1.24 
and 1.36). In these two cases the norm is just the absolute value of the corre
sponding real or complex number. 

APPENDIX 

Theorem 1.19 will be proved in this appendix by constructing R from Q. We 
shall divide the construction into several steps. 

Step 1 The members of R will be certain subsets of Q, called cuts. A cut is, 
by definition, any set rx c Q with the following three properties. 

(I) rx is not empty, and rx #:. Q. 
(II) If p e rx, q e Q, and q < p, then q e rx. 

(III) If p e rx, then p < r for some r e rx. 

The letters p, q, r, ... will always denote rational numbers, and rx, p, y, ... 
will denote cuts. 

Note that (III) simply says that rx has no largest member; (II) implies two 
facts which will be used freely: 

If p e rx and q ¢ rx then p < q. 
If r ¢ rx and r < s then s ¢ rx. 

Step 2 Define "rx < P" to mean: rx is a proper subset of p. 
Let us check that this meets the requirements of Definition 1.5. 
If rx < P and P < y it is clear that rx < y. (A proper subset of a proper sub

set is a proper subset.) It is also clear that at most one of the three relations 

(% < p, (% = p, P<rx 



18 PRINCIPLES OF MATHEMATICAL ANAL"tSIS 

can hold for any pair rx, p. To show that at least one holds. assume that the 
first two fail. Then rx is not a subset of p. Hence there is ape rx with p ¢ p. 
If q e {J, it follows that q < p (since p fi {3), hence q e rx, by (II). Thus f3 c rx. 
Since P =I= rx, we conclude; p < rx. 

Thus R is now an ordered set. 

Step 3 The ordered set R has the least-upper-bound property. 
To prove this, let A be a nonempty subset of R, and assume that P e R 

is an upper bound of A. Define y to be the union of all rx eA. In other words, 
p e y if and only if p e ex for some rx eA. We shall prove that y e R and that 

Since A is not empty, there exists an rx0 eA. This rx0 is not empty. Since 
rx0 c y, '}'IS not empty. Next, y c fJ (smce rx c P for every rx e A), and therefore 
y =1= Q. Thus y satisfies property (I). To prove (II) and (III), pick p e y. Then 
p e rx1 for some rx1 e A. If q < p, then q e rx1 , hence q e y; this proves (II). If 
r e rx1 is so chosen that r > p, we see that r e y (since rx1 c y), and therefore y 
satisfies (III). 

Thus y e R. 
It is clear that rx ~ y for every rx eA. 
Suppose o < y. Then there is an s e y and that s ¢ o. Since s e y, s e rx 

for some rx eA. Hence o < rx, and o is not an upper bound of A. 
This gives the desired result: y = sup A. 

Step 4 If rx e R and P e R we define rx + p to be the set of all sums r + s, where 
r e rx and s e p. 

We define 0* to be the set of all negative rational numbers. It is clear that 
0* is a cut. We verify that the axioms for addition (see Definition 1.12) hold in 
R, with 0* playing the role ofO. 

(A 1) We have to show that rx + p is a cut. It is clear that rx + p is a 
nonempty subset of Q. Take r' ¢ rx, s' ¢ p. Then r' + s' > r + s for all 
choices of r e rx, s e p. Thus r' + s' ¢ rx + p. It follows that rx + p has 
property (I). 

Pick p e rx + p. Then p = r + s, with r e rx, s e p. If q < p, then 
q- s < r, so q- s e rx, and q = (q- s) + s e rx + p. Thus (II) holds. 
Choose t e rx so that t > r. Then p < t +sand t + s e rx +fl. Thus (III) 
holds. 
(A2) rx +pis the set of all r + s, with r e rx, s e p. By the same definition, 
p + rx is the set of all s + r. Since r + s = s + r for all r e Q, s e Q, we 
have rx + p = P + rx. 
(A3) As above, this follows from the associative law in Q. 
(A4) Ifr e rx and s e 0*, then r + s < r, hence r + s e rx. Thus rx + 0* c rx. 
To obtain the opposite inclusion, pick p e rx, and pick r e rx, r > p. Then 
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p 1 e 0*, and p 1 +(p 1) e IX+ 0*. Thus IX c IX+ 0*. VIe conclude 
that IX + 0* =IX. 

(AS) Fix IX e R. Let P be the set of all p with the following property: 

1'here exists r > 0 such that -p- r ¢IX. 

In other words, some rational number smaller than p fails to 
be in IX. 

We show that peR and that IX+ p = 0*. 
If s ¢ rt and p s 1, then p 1 ¢ rt, hence p e p. So P is not 

empty. If q e IX, then - q ¢ p. So p :1= Q. Hence {3 satisfies (I). 
Ptck pep, and pick r > 0, so that -p- r ¢ex. If q <p, then 

q r > p r, hence q r ¢ et: Thus q e p, and (II) holds Put 
t=p+(r/2). Then t>p, and -t-(r/2)= -p-r¢ex, so that tef3. 
Hence P satisfies (III). 

We have proved that P e R. 
If r e ex and s e {3, then --s ¢ex, hence r < -s, r + s < 0. Thus 

IX+ {3 C 0*. 
To prove the opposite inclusion, pick v e 0*, put w = -v/2. Then 

w > 0, and there is an integer n such that nw e ex but (n + 1)w ¢ex. (Note 
that this depends on the fact that Q has the archimedean property!) Put 
p = -(n + 2)w. Then pep, since -p- w ¢ex, and 

v = nw + p e IX + P. 
Thus 0* c ex+ p. 

We conclude that ex+ f3 = 0*. 
This f3 will of course be denoted by -ex. 

Step 5 Having proved that the addition defined in Step 4 satisfies Axioms (A) 
of Definition 1.12, it follows that Proposition 1.14 is valid in R, and we can 
prove one of the requirements of Definition 1.17: 

If ex, {3, y e R and f3 < y, then ex + f3 <ex + y. 

Indeed, it is obvious from the definition of + in R that ex + p c ex + y; if 
we had ex+ P =ex+ y, the cancellation law (Proposition 1.14) would imply 
f3 = y. 

It also follows that ex > 0* if and only if -ex < 0*. 

Step 6 Multiplication is a little more bothersome than addition in the present 
context, since products of negative rationals are positive. For this reason we 
confine ourselves first toR+, the set of all ex e R with ex> 0*. 

If ex e R+ and PeR+, we define exf3 to be the set of all p such that p::::;; rs 
for some choice of r e ex, s e p, r > 0, s > 0. 

We define 1 * to be the set of all q < 1. 
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Then the axioms (M) and(D) (}!Definition 1.12 hold, with R+ in place ~fP, 
and with 1 * in the role of 1. 

The proofs are so stmllar to the ones gtven m detail m Step 4 that we omtt 
them. 

Note, in particular, that the second requirement of Definition 1.17 holds: 
If~> 0* and p > 0* then ~P > 0*. 

Step 7 We complete the definition of multiplication by setting ~0* = 0*~ = 0*, 
and by setting 

~n = - [(- rilBJ if ~ < o*. p > o•. 
{

( a.)(~{J) if a. < 0*, fJ < 0*' 

-[e< · (-fJ)] if ex> 0*, fJ < 0*. 

The products on the right were defined in Step 6. 
Having proved (in Step 6) that the axioms (M) hold in R+, it is now 

perfectly simple to prove them in R, by repeated application of the identity 
y = -(- y) which is part of Proposition 1.14. (See Step 5.) 

The proof of the distributive law 

~(/3 + y) = ~P + ~y 
breaks into cases. For instance, suppose ~ > 0*, {3 < 0*, {3 + y > 0*. Then 
y = (/3 + y) + (- fJ), and (since we already know that the distributive law holds 
in R+) 

~'}' = ~(/3 + y) + ~ 0 (- fJ). 

But~· ( -fJ) = -(~fJ). Thus 

~P + ~y = ~<P + Y ). 

The other cases are handled in the same way. 
We have now completed the proof that R is an ordered field with the least

upper-bound property. 

Step 8 We associate with each r e Q the set r* which consists of all p e Q 
such that p < r. It is clear that each r* is a cut; that is, r* e R. Thec;e cuts satisfy 
the following relations: 

(a) r* + s* = (r + s)*, 
(b) r*s* = (rs)*, 
(c) r* < s* if and only if r < s. 

To prove (a), choose per* + s*. Then p = u + v, where u < r, v < s. 
Hence p < r + s, which says that p e (r + s)*. 
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Conversely, suppose p e (r + s)*. Then p < r + s. Choose t so that 
2t = r + s- p, put 

r' - r- t, s' - s- t. 

Then r' e r*, s· e s*, and p- r' + s', so that per* + s*. 
This proves (a). The proof of (b) is similar. 
If r < s then res*, but r ¢ r*; hence r* < s*. 
If r* < s*, then there is apes* such that p ¢ r*. Hence r ~ p < s, so 

that r < s. 
Thts proves (c). 

Step 9 We saw in Step 8 that the replacement of the rational numbers r by the 
conesponding "tational cuts" 1 * e R presenes sums, products, and order. This 
fact may be expressed by saying that the ordered field Q is isomorphic to the 
ordered field Q* whose elements are the rational cuts. Of course, r* is by no 
means the same as r, but the properties we are concerned with (arithmetic and 
order) are the same in the two fields. 

It is this identification of Q with Q* which allows us to regard Q as a 
subfield of R. 

The second part of Theorem 1.19 is to be understood in terms of this 
identification. Note that the same phenomenon occurs when the real numbers 
are regarded as a subfield of the complex field, and it also occurs at a much 
more elementary level, when the integers are identified with a certain subset of Q. 

It is a fact, which we will not prove here, that any two ordered fields with 
the least-upper-bound property are isomorphic. The first part of Theorem 1.19 
therefore characterizes the real field R completely. 

The books by Landau and Thurston cited in the Bibliography are entirely 
devoted to number systems. Chapter 1 of Knopp's book contains a more 
leisurely description of how R can be obtained from Q. Another construction, 
in which each real number is defined to be an equivalence class of Cauchy 
sequences of rational numbers (see Chap. 3), is carried out in Sec. 5 of the book 
by Hewitt and Stromberg. 

The cuts in Q which we used here were invented by Dedekind. The 
construction of R from Q by means of Cauchy sequences is due to Cantor. 
Both Cantor and Dedekind published their constructions in 1872. 

EXERCISES 

Unless the contrary is explicitly stated, all numbers that are mentioned in these exer
cises are understood to be real. 

1. If r is rational (r =I= 0) and x is irrational, prove that r + x and rx are irrational. 
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2. Prove that there is no rational number whose square is 12. 
3. Prove Proposition 1.15. 
4. Let E be a nonempty subset of an ordered set; suppose IX is a lower bound of E 

and f3 is an upper bound of E. Prove that IX ::::;: {3. 
5. Let A be a nonempty set of real numbers which is bounded below. Let -A be 

the set of aJJ numbers - r, where r E A Prove that 

inf A = -sup(-A). 

6. Fix b > 1. 
(a) If m, n, p, q are mtegers, n > 0, q > 0, and r - m/n - p/q, prove that 

(bm)1/ll (bP)1fq, 

Hence it makes sense to define b' = (bm)1
'

11
• 

(b) Prove that b' +s = b'bs if r and s are rational. 
(c) If xis real, define B(x) to be the set of all numbers b', where tis rational and 
t < x. Prove that 

b' =sup B(r) 

when r is rational. Hence it makes sense to define 

b" =sup B(x) 

for every real x. 
(d) Prove that bx+)l = b"b)l for all real x andy. 

7. Fix b > 1, y > 0, and prove that there is a unique real x such that b" = y, by 
completing the fo11owing outline. (This xis ca11ed the logarithm ofy to the base b.) 
(a) For any positive integer n, h11

- 1 > n(b- 1). 

(b) Hence b- 1 :?: n(b1111
- 1). 

(c) If t > 1 and n > (b- 1)/(t- 1), then b1111 < t. 
(d) If w is such that bw < y, then bw+<l/ll) < y for sufficiently large n; to see this, 
apply part (c) with t = y · b-w. 
(e) If bw > y, then bw-< 1111 ) > y for sufficiently large n. 
(/) Let A be the set of all w such that bw < y, and show that x =sup A satisfies 
b"=y. 
(g) Prove that this xis unique. 

8. Prove that no order can be defined in the complex field that turns it into an ordered 
field. Hint: -1 is a square. 

9. Suppose z = a + bi, w = c + di. Define z < w if a < c, and also if a = c but 
b < d. Prove that this turns the set of a11 complex numbers into an ordered set. 
(This type of order relation is called a dictionary order, or lexicographic order, for 
obvious reasons.) Does this ordered set have the least-upper-bound property? 

10. Suppose z = a + bi, w = u + iv, and 

_ ( l w l + u) 112 

a- 2 ' 
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Prove that z2 = w if v ~ 0 and that (z)2 = w if v ~ 0. Conclude that every complex 
numbet (with one exception!) has two complex square roots. 

11. If z is a complex number, prove that there exists an r ~ 0 and a complex number 
w with I wl = 1 such that z = rw. Are wand r always uniquely determined by z? 

12. If Zt, ••• , z" are complex, prove that 

13. If x, y are complex, prove that 

llxi-IYII ~ lx-yj. 

14. If z is a complex number such that lzl = 1, that is, such that zi= 1, compute 

ll+zl 2 +11 zj 2
• 

15 Under what conditions does equality bold in the Schwarz inequality? 

16. Suppose k ~ 3, x, y E R", lx- yj = d> 0, and r > 0. Prove: 
(a) If 2r > d, there are infinitely many z e R" such that 

lz-xl = jz-yj =r. 

(b) If 2r = d, there is exactly one such z. 
(c) If 2r < d, there is no such z. 
How must these statements be modified if k is 2 or 1 ? 

17. Prove that 

lx + Yl 2 + lx- Yl 2 = 2lxl 2 + 2jyj 2 

if xE R" and y e R". Interpret this geometrically, as a statement about parallel
ograms. 

18. If k ~ 2 and x E R", prove that there exists y E R" such that y =1:- 0 but x • y = 0. 
Is this also true if k = 1 ? 

19. Suppose a e R", bE R". Find c e R" and r > 0 such that 

lx-al =2lx-bl 

if and only if lx- cl = r. 
(Solution: 3c = 4b- a, 3r = 2jb- aj.) 

20. With reference to the Appendix, suppose that property (III) were omitted from the 
definition of a cut. Keep the same definitions of order and addition. Show that 
the resulting ordered set has the least-upper-bound property, that addition satisfies 
axioms (A1) to (A4) (with a slightly different zero-element!) but that (AS) fails. 



2 
BASIC TOPOLOGY 

FINITE, COUNTABLE, AND UNCOUNTABLE SETS 

We begin this section with a definition of the function concept. 

2.1 Definition Consider two sets A and B, whose elements may be any objects 
whatsoever, and suppose that with each element x of A there is associated, in 
some manner, an element of B, which we denote by f(x). Then/is said to be a 
function from A to B (or a mapping of A into B). The set A is called the domain 
off (we also say f is defined on A), and the elements f(x) are called the values 
off The set of all values off is called the range off 

2.2 Definition Let A and B be two sets and let f be a mapping of A into B. 
If E c A,f(E) is defined to be the set of all elements f(x), for x e E. We call 
f(E) the image of E under f. In this notation, f(A) is the range of f. It is clear 
thatf(A) c B. If/(A) = B, we say thatfmaps A onto B. (Note that, according 
to this usage, onto is more specific than into.) 

If E c B,f- 1(E) denotes the set of all x e A such thatf(x) e E. We call 
f- 1 (E) the inverse image of E under f If y e B,f- 1(y) is the set of all x e A 
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such that f(x) = y. If, for each y e B,f- 1(y) consists of at most one element 
of A, then f is said to be a 1-1 (one-to-one) mappmg of A mto B. This may 
also be expressed as follows: f is a 1-1 mapping of A into B provided that 
f(x1) :1: f(x2) whenever x1 :1: x2 , x1 e A, x2 eA. 

(The notation x1 :1: x2 means that x1 and x2 are distinct elements, other-
wise we write x1 = x2 .) 

2.3 Definition If there exists a 1- I mappmg of A onto B, we say that A and B 
can be put in 1-1 correspondence, or that A and B have the same cardinal number, 
or, briefly, that A and B are equivalent, and we write A,..., B. This relation 
clearly has the following properties. 

It is reflexive: A ,..., A. 
It is symmetric: If A,..., B, then B,..., A. 
It is transitive: If A ,..., B and B ,..., C, then A ,..., C. 

Any relation with these three properties is called an equivalence relation. 

2.4 Definition For any positive integer n, let Jn be the set whose elements are 
the integers 1, 2, ... , n; let J be the set consisting of all positive integers. For any 
set A, we say: 

(a) A is finite if A ,..., Jn for some n (the empty set is also considered to be 
finite). 

(b) A is infinite if A is not finite. 
(c) A is countable if A,..., J. 
(d) A is uncountable if A is neither finite nor countable. 
(e) A is at most countable if A is finite or countable. 

Countable sets are sometimes called enumerable, or denumerable. 
For two finite sets A and B, we evidently have A ,..., B if and only if A and 

B contain the same number of elements. For infinite sets, however, the idea of 
"having the same number of elements" becomes quite vague, whereas the notion 
of 1-1 correspondence retains its clarity. 

2.5 Example Let A be the set of all integers. Then A is countable. For, 
consider the following arrangement of the sets A and J: 

A: 0, 1, - 1, 2, -2, 3, - 3, ... 
J: I, 2, 3, 4, 5, 6, 7, ... 
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We can, in this example, even give an explicit formula for a function f 
from J to A whtch sets up a I- I correspondence: 

(~ 
2 

(n even), 

f(n) = ~ n-1 ---
2 

(n odd). 

2.6 Remark A finite set cannot be equivalent to one of its proper subsets 
That this is, however, possible for infinite sets, is shown by Example 2.5, in 
which J is a proper subset of A. 

In fact, we could replace Definition 2.4(b) by the statement: A is infinite if 
A is equivalent to one of its proper subsets. 

2. 7 Definition By a sequence, we mean a function f defined on the set J of all 
positive integers. If f(n) = Xn, for n e J, it is customary to denote the sequence 
fby the symbol {xn}, or sometimes by x1, x2 , x 3 , •••• The values off, that is, 
the elements Xn , are called the terms of the sequence. If A is a set and if Xn e A 
for all n e J, then {xn} is said to be a sequence in A, or a sequence of elements of A. 

Note that the terms x1, x2 , x 3 , ••• of a sequence need not be distinct. 
Since every countable set is the range of a 1-1 function defined on J, we 

may regard every countable set as the range of a sequence of distinct terms. 
Speaking more loosely, we may say that the elements of any countable set can 
be "arranged in a sequence." 

Sometimes it is convenient to replace J in this definition by the set of all 
nonnegative integers, i.e., to start with 0 rather than with 1. 

2.8 Theorem Every infinite subset of a countable set A is countable. 

Proof Suppose E c A, and E is infinite. Arrange the elements x of A in 
a sequence {xn} of distinct elements. Construct a sequence {nk} as follows: 

Let n1 be the smallest positive integer such that Xn, e E. Having 
chosen n1, •.• , nk-l (k = 2, 3, 4, ... ), let nk be the smallest integer greater 
than nk _ 1 such that x,.k e E. 

Puttingf(k) = Xnk (k = I, 2, 3, ... ), we obtain a 1-1 correspondence 
between E and J. 

The theorem shows that, roughly speaking, countable sets represent 
the "smallest'' infinity: No uncountable set can be a subset of a countable 
set. 

2.9 Definition Let A and n be sets, and suppose that with each element IX of 
A there is associated a subset of n which we denote by E,. 
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The set whose elements are the sets E, will be denoted by {E,}. Instead 
of speaking of sets of sets, we shall sometimes speak of a collection of sets, or 
a family of sets. 

The union of the sets E, is defined to be the set S such that x e S if and only 
if x e E, for at least one (X e A. We use the notation 

(1) s UE(I.. 
II&A 

If A consists of the integers 1, 2, ... , n, one usually writes 
n 

(2) S= U Em 

(3) 

If A is the set of all positive integers, the usual notation is 

(4) 

The symbol oo in ( 4) merely indicates that the union of a countable col
lection of sets is taken, and should not be confused with the symbols + oo, - oo, 
introduced in Definition 1.23. 

The intersection of the sets E, is defined to be the set P such that x e P if 
and only if x e E11 for every ex eA. We use the notation 

(5) p = n E,, 
«EA 

or 
n 

(6) P = n Em = E1 t1 E2 t1 · • • t1 E,., 
m=l 

or 

(7) 

as for unions. If A t1 B is not empty, we say that A and B intersect; otherwise 
they are disjoint. 

2.10 Examples 

(a) Suppose E1 consists of 1, 2, 3 and E2 consists of 2, 3, 4. Then 
E1 u E2 consists of 1, 2, 3, 4, whereas E1 t1 E2 consists of 2, 3. 



28 PRINCIPLES OF MATHEMATICAL ANALYSIS 

(b) Let A be the set of real numbers x such that 0 < x :S: 1. For every 
x e A, let E:J: be the set of real numbers y such that 0 < y < x. I hen 

(i) 
(ii) 

(iii) 

E:J: c Ez if and only if 0 < x :S: z :S: 1 ; u E:J:- ~; 
:J:EA 
0 E:J: is empty; 

(i) and (ii) are clear. To prove (iii), we note that for every y > 0, y ¢ E:J: 
if X< y. Hence y ¢0uA Ex. 

2.11 Remarks Many properties of unions and intersections are quite similar 
to those of sums and products; in fact, the words sum and product were some-
times used in this connection, and the symbols :t and TI were written in place 
of u and n. 

(8) 

(9) 

The commutative and· associative laws are trivial: 

AuB=BuA; An B=Bn A. 

(A u B) u C = A u (B u C); (A n B) n C =A n (B n C). 

Thus the omission of parentheses in (3) and (6) is justified. 
The distributive law also holds: 

(10) A n (B u C) = (A n B) u (A n C). 

To prove this, let the left and right members of (10) be denoted by E and F, 
respectively. 

Suppose x e E. Then x e A and x e B u C, that is, x e B or x e C (pos
sibly both). Hence x e A n B or x e A n C, so that x e F. Thus E c F. 

Next, suppose x e F. Then x e A n B or x e A n C. That is, x e A, and 
x e B u C. Hence x e A n (B u C), so that F c E. 

It follows that E = F. 
We list a few more relations which are easily verified: 

(11) 

(12) 

A c Au B, 

An Be A. 

If 0 denotes the empty set, then 

(13) 

If A c: B, then 

(14) 

Au 0 =A, 

Au B =B, 

An 0 =0. 

An B=A. 
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2.12 Theorem Let {En}, n = 1, .f, 3, ... , be a sequence of countable sets, and put 

(15) 

Then Sis countable. 

(16) 

(17) 

Proof Let every set En be arranged in a sequence {xnk}, k = I, 2, 3, ... , 
and consider the infinite array 

3132 x,, X34 
41 42 43 44 

in which the elements of En form the nth row. The array contains all 
elements of S. As indicated by the arrows, these elements can be 
arranged in a sequence 

If any two of the sets En have elements in common, these will appear more 
than once in (17). Hence there is a subset T of the set of all positive 
integers such that S "' T, which shows that S is at most countable 
(Theorem 2.8). Since E1 c S, and E1 is infinite, S is infinite, and thus 
countable. 

Corollary Suppose A is at most countable, and, for every ex E A, Ba. is at most 
countable. Put 

Then Tis at most countable. 
For Tis equivalent to a subset of (15). 

2.13 Theorem Let A be a countable set, and let Bn be the set of all n-tuples 
(a1, ••• , an), where ak E A (k = 1, ... , n), and the elements a1, ••• , an need not be 
distinct. Then Bn is countable. 

(18) 

Proof That B1 is countable is evident, since B1 =A. Suppose Bn- 1 is 
countable (n = 2, 3, 4, ... ). The elements of Bn are of the form 

(b, a) (bE Bn-1• a E A). 

For every fixed b, the set of pairs (b, a) is equivalent to A, and hence 
countable. Thus Bn is the union of a countable set of countable sets. By 
Theorem 2.12, Bn is countable. 

The theorem follows by induction. 
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Corollary The set of all rational numbers is countable. 

Proof We apply Theorem 2.13, with n = 2, noting that every rational r 
is of the form b/a, where a and b are integers. The set of pairs (a, b), and 
therefore the set of fractions bfa, is countable. 

In fact, even the set of all algebraic numbers is countable (see Exer-
cise 2). 

That not all infinite sets are, howeve1, countable, is shown by the next 
theorem. 

2.14 Theorem Let A be the set of all sequences whose elements are the digits 0 
and 1. This set A is uncountable. 

The elements of A are sequences like 1, 0, 0, 1, 0, 1, 1, 1, .... 

Proof Let E be a countable subset of A, and let E consist of the se
quences s1 , s2 , s3 , •••• We construct a sequences as follows. If the nth 
digit in sn is 1, we let the nth digit of s be 0, and vice versa. Then the 
sequence s differs from every member of E in at least one place; hence 
s ¢E. But clearly sEA, so that E is a proper subset of A. 

We have shown that every countable subset of A is a proper subset 
of A. It follows that A is uncountable (for otherwise A would be a proper 
subset of A, which is absurd). 

The idea of the above proof was first used by Cantor, and is called Cantor's 
diagonal process; for, if the sequences s1 , s2 , s3 , ••• are placed in an array like 
(16), it is the elements on the diagonal which are involved in the construction of 
the new sequence. 

Readers who are familiar with the binary representation of the real 
numbers (base 2 instead of 10) will notice that Theorem 2.14 implies that the 
set of all real numbers is uncountable. We shall give a second proof of this 
fact in Theorem 2.43. 

METRIC SPACES 

2.15 Definition A set X, whose elements we shall call points, is said to be a 
metric space if with any two points p and q of X there is associated a real 
number d(p, q), called the distance from p to q, such that 

(a) d(p, q) > 0 if p -:F q; d(p, p) = 0; 
(b) d(p, q) = d(q, p); 
(c) d(p, q) ~ d(p, r) + d(r, q), for any reX. 

Any function with these three properties is called a distance function, or 
a metric. 
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2.16 Examples The most important examples of metric spaces, from our 
standpoint, are the euclidean spaces Rk, especially R 1 (the real line) and R 2 (the 
complex plane); the distance in Rk is defined by 

(19) d(x, y) = lx- Yl (x, y E R~t). 

By Theorem 1.37, the conditions of Definition 2.15 are satisfied by (19). 
It is important to obsene that every subset Yofa metric space X is a metiic 

space in its own right, with the same distance function. For it is clear that if 
conditions (a) to (c) of Definition 2.15 hold for p, q, r e X, they also hold if we 
restrict p, q, r to Jie in Y 

Thus every subset of a euclidean space is a metric space. Other examples 
are the spaces rc(K) and !t' 2(J.l), which are discussed in Chaps. 7 and II, respec
tively. 

2.17 Definition By the segment (a, b) we mean the set of all real numbers x 
such that a< x <b. 

By the interval [a, b] we mean the set of all real numbers x such that 
a~ x ~b. 

Occasionally we shall also encounter "half-open intervals" [a, b) and (a, b]; 
the first consists of all x such that a ~ x < b, the second of all x such that 
a< x ~b. 

If a;< b; fori= 1, ... , k, the set of all points x = (x1, ... , xk) in Rk whose 
coordinates satisfy the inequalities a;~ X; < b; (1 ~ i ~ k) is called a k-cell. 
Thus a 1-cell is an interval, a 2-cell is a rectangle, etc. 

Ifx E Rk and r > 0, the open (or closed) ball B with center at x and radiu~ r 
is defined to be the set of ally E Rk such that I y- xI < r (or I y- xI:::; r). 

We call a set E c Rk convex if 

AX+ (1 - A)Y E E 

whenever x e E, y e E, and 0 < A < 1. 
For example, balls are convex. For if I y - xI < r, I z - xI < r, and 

0 < A < 1, we have 

I J-y + (1 - A)z - xI = I J-(y - x) + (1 - A)(z - x) I 

<Aiy-xl +(1-A)Iz-xl <Ar+(l-A)r 

=r. 

The same proof applies to closed balls. It is also easy to see that k-cells are 
convex. 
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2.18 Definition Let X be a metric space. All points and sets mentioned beJow 
are understood to be elements and subsets of X. 

(a) A neighborhood of p is a set N,(p) consisting of all q such that 
d(p, q) < r, for some r > 0, The number r is called the tadius of N,(p). 

(b) A point p is a limit point of the set E if every neighborhood of p 
contams a pomt q =F p such that q e £. 

(c) If p E E and p is not a limit point of E, then p is caned an iyolated 
point of E. 

(d) E is closed if every limit point of E is a point of E. 
(e) A point p is an interior point of E if there is a neighborhood N of p 

such that N c E. 
(f) E is open if every point of E is an interior point of E. 
(g) The complement of E (denoted by Ec) is the set of all points p eX 

such that p ¢E. 
(h) E is perfect if E is closed and if every point of E is a limit point 

of E. 
(i) E is bounded if there is a real number Manda point q eX such that 

d(p, q) < M for all peE. 
(j) E is dense in X if every point of X is a limit point of E, or a point of 

E (or both). 

Let us note that in R1 neighborhoods are segments, whereas in R 2 neigh
borhoods are interiors of circles. 

2.19 Theorem Every neighborhood is an open set. 

Proof Consider a neighborhood E = N,(p), and let q be any point of E. 
Then there is a positive real number h such that 

d(p, q) = r - h. 

For all points s such that d(q, s) < h, we have then 

d(p, s):::;; d(p, q) + d(q, s) < r- h + h = r, 

so that s e E. Thus q is an interior point of E. 

2.20 Theorem If p is a limit point of a set E, then every neighborhood of p 
contains infinitely many points of E. 

Proof Suppose there is a neighborhood N of p which contains only a 
finite number of points of E. Let q1, ••• , qn be those points of N n E, 
which are distinct from p, and put 

r = min d(p, qm) 
l:Sm:Sn 
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[we use this notation to denote the smallest of the numbers d(p. q1), ••• , 

d(p, q,.)]. The minimum of a finite set of positive numbers is clearly posi
tive, so that r > 0. 

The neighborhood Nr(P) contains no point q of E such that q ::P p, 
so that p is not a limit point of E. This contradiction establishes the 
theorem 

Corollary A finite point set has no limit points. 

2.21 Examples Let us consider the following subsets of R2 : 

(a) The set of all complex z such that I z I < 1. 
(b) The set of all complex z such that I z I s; I. 
(c) A nonempty finite set. 
(d) The set of all integers. 
(e) The set consisting of the numbers 1/n (n = 1, 2, 3, ... ). Let us note 
that this set E has a limit point (namely, z = 0) but that no point of E is 
a limit point of E; we wish to stress the difference between having a limit 
point and containing one. 
(f) The set of all complex numbers (that is, R2). 

(g) The segment (a, b). 

Let us note that (d), (e), (g) can be regarded also as subsets of R1
• 

Some properties of these sets are tabulated below: 

Closed Open Perfect Bounded 
(a) No Yes No Yes 
(b) Yes No Yes Yes 
(c) Yes No No Yes 
(d) Yes No No No 
(e) No No No Yes 
(/) Yes Yes Yes No 
(g) No No Yes 

In (g), we left the second entry blank. The reason is that the segment 
(a, b) is not open if we regard it as a subset of R2, but it is an open subset of R1• 

2.22 Theorem Let {E.} be a (finite or infinite) collection of sets E. . Then 

(20) (V E.r = 0 (E!). 

Proof Let A and B be the left and right members of (20). If x e A, then 
X ¢ u. E.' hence X ¢ E. for any IX, hence X E E: for every IX, so that X En E!. 
Thus A c: B. 
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Conversely, if x e B, then x e E! for every a, hence x ¢ £4 for any a, 
hence x ¢ U. E., so that x e ( U~~ E.)c. Thus B c A. 

It follows that A - B. 

2.23 Theorem A set E is open if and only if its complement is closed. 

Proof First, suppose Ec is closed. Choose x e E. Then x ¢ Ec, and xis 
not a hmtt pomt of Ec. Hence there extsts a neighborhood N of x such 
that Ec r. N is empty, that is, N c E. Thus x is an interior point of E, 

and E is open. 
Next, suppose E is open. Let x be a limit point of Ec. Then every 

neighborhood of x contains a point of Ec, so that x is not an interior point 
of E. Since E is open, this means that x e Ec. It follows that Ec is closed. 

Corollary A set F is closed if and only if its complement is open. 

2.24 Theorem 

(21) 

(a) For any collection {G.} of open sets, U. G. is open. 
(b) For any collection {F.} of closed sets, n. F. is closed. 
(c) For any finite collection G1, ••• , G, of open sets, ni= 1 Gi is open. 
(d) For any finite collection F1, ••• , F, of closed sets, Ui = 1 F, is closed. 

Proof Put G = U. G.. If x e G, then x e G. for some a. Since x is an 
interior point of G., xis also an interior point of G, and G is open. This 
proves (a). 

By Theorem 2.22, 

(0 F.y = v (F:}, 

and F! is open, by Theorem 2.23. Hence (a) implies that (21) is open so 
that n!A F. is closed. 

Next, put H = n;= 1 G,. For any X E H, there exist neighborhoods 
N, of x, with radii r,, such that N, c G1 (i = I, ... , n). Put 

r =min (r1, ••• , r,), 

and let N be the neighborhood of x of radius r. Then N c G1 fori= 1, 
... , n, so that N c H, and H is open. 

By taking complements, (d) follows from (c): 

( lJ F,)c = rl(fi). 
f•l f•l 
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2.25 Examples In parts (c) and (d) of the preceding theorem, the finiteness of 

Then G, is an open subset of R1
• Put G = ():-'= 1 G,. Then G consists of a single 

point (namely, x = 0) and is therefore not an open subset of R 1
• 

Thus the intersection of an infinite collection of open sets need not be open 
Similarly, the union of an infinite collection of closed sets need not be closed. 

2.26 Definition If X is a metric space, if E c: X, and if E' denotes the set of 
all limit points of E in X, then the closure of E is the set E = E u E'. 

2.27 Theorem !/Xis a metric space and E c: X, then 

(a) E is closed, 
(b) E = E if and only if E is closed, 
(c) E c: F for every closed set F c: X such that E c: F. 

By (a) and (c), E Is the smallest closed subset of X that contains E. 

Proof 
(a) Ifp eX andp ¢ E thenp is neither a point of E nor a limit point of E. 
Hence p has a neighborhood which does not intersect E. The complement 
of E is therefore open. Hence E is closed. 
(b) If E = E, (a) implies that E is closed. If E is closed, then E' c: E 
[by Definitions 2.18(d) and 2.26], hence E =E. 
(c) If F is closed and F =:J E, then F =:J F', hence F =:J E'. Thus F =:J E. 

2.28 Theorem Let E be a nonempty set of real numbers which is bounded above. 
Let y = sup E. Then y e E. Hence y e E if E is closed. 

Compare this with the examples in Sec. 1.9. 

Proof If y e E then y e E. Assume y ¢ E. For every h > 0 there exists 
then a point x e E such that y - h < x < y, for otherwise y - h would be 
an upper bound of E. Thus y is a limit point of E. Hence y e E. 

2.29 Remark Suppose E c Y c: X, where X is a metric space. To say that E 
is an open subset of X means that to each point p e E there is associated a 
positive number r such that the conditions d(p, q) < r, q eX imply that q e E. 
But we have already observed (Sec. 2.16) that Y is also a metric space, so that 
our definitions may equally well be made within Y. To be quite explicit, let us 
say that E is open relative to Y if to each p e E there is associated an r > 0 such 
that q e E whenever d(p, q) < r and q e Y. Example 2.2l(g) showed that a set 
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may be open relative to Y without being an open subset of X. However, there 
is a simple relation between these concepts, which we now state. 

2.30 Theorem Suppose Y c: X. A subset E of Y is open relative to Y if and 
only if E = Y n G for some open subset G of X. 

Proof Suppose E IS open relative to Y. To each peE there is a positive 
number r P such that the conditions d(p, q) < "p, q e Y imply that q e E 

Let VP be the set of all q eX such that d(p, q) < rP, and define 

Then G is an open subset of X, by Theorems 2.19 and 2.24. 
Smce p E vp for all p E E, it is clear that E c: G n Y. 
By our choice of VP, we have VP n Y c: E for every p e E, so that 

G n Y c: E. Thus E = G n Y, and one half of the theorem is proved. 
Conversely, if G is open in X and E = G n Y, every p e E has a 

neighborhood VP c: G. Then VP n Y c: E, so that E is open relative to Y. 

COMPACT SETS 

2.31 Definition By an open cover of a set E in a metric space X we mean a 
collection {Gil} of open subsets of X such that E c: Uil Ga.. 

2.32 Definition A subset K of a metric space X is said to be compact if every 
open cover of K contains a finite subcover. 

More explicitly, the requirement is that if {Gil} is an open cover of K, then 
there are finitely many indices oc1, ••• , ocn such that 

K C: Ga.
1 

U • • • U Giln • 

The notion of compactness is of great importance in analysis, especially 
in connection with continuity (Chap. 4). 

It is clear that every finite set is compact. The existence of a large class of 
infinite compact sets in Rk will follow from Theorem 2.41. 

We observed earlier (in Sec. 2.29) that if E c: Y c: X, then E may be open 
relative to Y without being open relative to X. The property of being open thus 
depends on the space in which E is embedded. The same is true of the property 
of being closed. 

Compactness, however, behaves better, as we shall now see. To formu
late the next theorem, let us say, temporarily, that K is compact relative to X if 
the requirements of Definition 2.32 are met. 
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2.33 Theorem Suppose K c Y c X. Then K is compact relative to X if and 
only if K is compact relative to Y. 

By virtue of this theorem we are able, in many situations, to regard com
pact sets as metric spaces in their own right, without paying any attention to 
any embedding space. In particular, although it makes little sense to talk of 
open spaces, or of closed spaces (every metnc space X ts an open subset of Itself, 
and is a closed subset of itself), it does make sense to talk of compact metric 
spaces. 

(22) 

(23) 

Proof Suppose K is compact relative to X, and let { Va} be a collection 
of sets, open relative to Y, such that K c Ua Va. By theorem 2.30, there 
are sets G a, open relative to X, such that Va = Y n G a, for all (X; and since 
K is compact relative to X, we have 

K C Ga 1 U · · · U Gan 

for some choice of finitely many indices ct1, ••• , (Xn. Since K c Y, (22) 
implies 

K C Va
1 

U • • • U Van • 

This proves that K is compact relative to Y. 
Conversely, suppose K is compact relative to Y, let { Ga} be a col

lection of open subsets of X which covers K, and put Va = Y n Ga. Then 
(23) will hold for some choice of ct1, ... , (Xn; and since Va c Ga, (23) 
implies (22). 

This completes the proof. 

2.34 Theorem Compact subsets of metric spaces are closed. 

Proof Let K be a compact subset of a metric space X. We shall prove 
that the complement of K is an open subset of X. 

Suppose p E X, p ¢ K. If q E K, let Vq and Wq be neighborhoods of p 
and q, respectively, of radius less than !d(p, q) [sec Definition 2.18(a)]. 
Since K is compact, there are finitely many points q1, ••• , qn inK such that 

K c Wq, u · · · u Wq" = W. 

If V = Vq
1 

n · · · n Vq", then Vis a neighborhood of p which does not 
intersect W. Hence V c Kc, so that p is an interior point of Kc. The 
theorem follows. 

2.35 Theorem Closed subsets of compact sets are compact. 

Proof Suppose F c K c X, F is closed (relative to X), and K is compact. 
Let { Va} be an open cover of F. If pc is adjoined to { Va}, we obtain an 
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open cover n of K. Since K is compact, there is a finite subcollection Cl» 
of n which covers K, and hence F. If pc is a member of Cl», we may remove 
it from Cl» and still retain an open eo~er of F. \Ve have thus shown that a 
finite subcollection of {VIZ} covers F. 

Corollary lf F i \' c/o ved and K is compact, then F n K is compact. 

Proof Theorems 2.24(b) and 2.34 show that F o K is closed; since 
F n K c: K, Theorem 2.35 shows that F n K is compact. 

2.36 Theorem If{ Ka} is a collection of compact subsets of a metric space X such 
that the intersection of every finite subcollection of {Ka} is nonempty, then n Ka 
is nonempty 

Proof Fix a member K1 of {K.} and put G.= K~. Assume that no point 
of K1 belongs to every ·K •. Then the sets G. form an open cover of K1 ; 

and since K 1 is compact, there are finitely many indices (X1, ... , (X11 such 
that K1 c: G., u · · · u G.n. But this means that 

K1 n K., n · · · n Kllln 

is empty, in contradiction to our hypothesis. 

Corollary If {K,.} is a sequence of nonempty compact sets such that K,. => K,.+ 1 

(n = 1, 2, 3, ... ), then ni K,. is not empty. 

2.37 Theorem If E is an infinite subset of a compact set K, then E has a limit 
point inK. 

Proof If no point of K were a limit point of E, then each q e K would 
have a neighborhood Vq which contains at most one point of E (namely, 
q, if q e E). It is clear that no finite subcollection of {Vq} can cover E; 
and the same is true of K, since E c: K. This contradicts the compactness 
of K. 

2.38 Theorem If {/,.} is a sequence of intervals in R\ such that 1,. => /,.+ 1 

(n = 1, 2, 3, ... ), then ni /,.is not empty. 

Proof If/,. = [a,., b,.], let E be the set of all a,.. Then E is nonempty and 
bounded above (by b1). Let x be the sup of E. If m and n are positive 
integers, then 

so that x ::5: bm for each m. Since it is obvious that am ::5: x, we see that 
x e Im form = 1, 2, 3, .... 
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2.39 Theorem Let k be a positive integer. If {In} is a sequence of k-cells such 
that ln => ln+ 1(n I, 2, 3, ... ), then Af ln is not empty. 

Proof I .et 1, consist of all points x - (x1, , Xi:) such that 

(1 < j < k; n = 1, 2, 3, ... ), 

and put In.t =[an 1• bn. 1]. For each j, the sequence {In.;} satisfies the 
hypotheses of Theorem 2.38. Hence there are real numbers xJ(l ~j < k) 
such that 

an,J <xJ < bn,J (1 ~j < k; n = 1, 2, 3, ... ). 

Setting x* = (xi, ... , xt), we see that x* e In for n = 1, 2, 3, . . . . The 
theorem follows. 

2.40 Theorem Every k-eel/ is compact. 

Proof Let I be a k-cell, consisting of all points x = (x1, .•• , xk) such 
that a1 ~x1 ~ b1 (1 <j ~ k). Put 

a = (~ (bj- aj)2
)"

2

. 

Then I x - y I ~ b, if x e /, y e I. 
Suppose, to get a contradiction, that there exists an open cover {Ga} 

of I which contains no finite subcover of I. Put c1 = (a1 + b1)(2. The 
intervals [a1 , c1] and [c1 , b1] then determine 2k k-cells Q i whose union is I. 
At least one of these sets Qi, call it / 1, cannot be covered by any finite 
subcollection of {Ga} (otherwise I could be so covered). We next subdivide 
I1 and continue the process. We obtain a sequence {In} with the following 
properties: 

(a) I=> /1 => lz => /3 => · • • ; 

(b) In is not covered by any finite subcollection of {Ga}; 
(c) ifxeinandye/n, then lx-yl ~2-nb. 

By (a) and Theorem 2.39, there is a point x* which lies in every In. 
For some tx, x* eGa. Since Ga is open, there exists r > 0 such that 
I y- x* I < r implies that y eGa. If n is so large that 2-nb < r (there is 
such an n, for otherwise 2n ~ b/r for all positive integers n, which is 
absurd since R is archimedean), then (c) implies that Inc Ga, which con
tradicts (b). 

This completes the proof. 

The equivalence of (a) and (b) in the next theorem is known as the Heine
Bore! theorem. 
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2.41 Theorem If a set E in Rk has one of the following three properties, then it 
has the other two. 

(a) E zs closed and bounded. 
(b) E is compact. 
(c) Every infinite subset of E has a limit point in E. 

Proof If (a) holds, then E c I for some k-cell I, and (b) follows from 
Theorems 2.40 and 2.3S. Theorem 2.37 shows that (b) tmphes (c). It 
remains to be shown that (c) implies (a). 

If E is not bounded, then E contains points Xn with 

(n = 1, 2, 3, ... ). 

The set S consisting of these points xn is infinite and clearly has no limit 
point in Rk, hence has none in E. Thus (c) implies that E is bounded. 

If E is not closed, then there is a point x 0 e Rk which is a limit point 
of E but not a point of E. For n = 1, 2, 3, ... , there are points xn e E 
such that I xn- x 0 I < 1/n. LetS be the set of these points xn. Then Sis 
infinite (otherwise I xn - x 0 I would have a constant positive value, for 
infinitely many n), S has x 0 as a limit point, and S has no other limit 
point in Rk. For if y e Rk, y "::1: x0 , then 

I Xn - Y I > I Xo - Y I - I Xn - Xo I 
1 1 

> I Xo - Y I - ~ > 2 I Xo - Y I 

for all but finitely many n; this shows that y is not a limit point of S 
(Theorem 2.20). 

Thus S has no limit point in E; hence E must be closed if (c) holds. 

We should remark, at this point, that (b) and (c) are equivalent in any 
metric space (Exercise 26) but that (a) does not, in general, imply (b) and (c). 
Examples are furnished by Exercise 16 and by the space !l'2

, which is dis
cussed in Chap. 11. 

2.42 Theorem (Weierstrass) Every bounded infinite subset of Rk has a limit 
point in Rk. 

Proof Being bounded, the set E in question is a subset of a k-cell I c Rk. 
By Theorem 2.40, I is compact, and so E has a limit point in /, by 
Theorem 2.37. 
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PERFECT SETS 

2.43 Theorem Let P be a nonemptyperfect set in R". Then Pis uncountable. 

Proof Since P has limit points, P must be infinite. Suppose P is count-
able, and denote the points of P by x1 , x2 , x 3 , •••• We shall construct a 
sequence { Vn} of neighborhoods, as follows. 

Let V1 be any neighborhood of x 1 • If V1 consists of all y e R" such 
that I y- x1 1 < r, the closure V1 of V1 is the set of all y e R" such that 

Suppose Vn has been constructed, so that Vn n Pis not empty. Since 
every point of P is a limit point of P, there is a neighbor hood J;'n + 1 such 
that (i) Yn + J c: vn ' ( ii) Xn ¢ Yn + 1' (iii) Vn + 1 n p is not empty. By (iii), 
Vn+t satisfies our induction hypothesis, and the construction can proceed. 

Put Kn = Yn n P. Since Yn is closed and bounded, Yn is compact. 
Since xn ¢ Kn+t• no point of Plies in nf' Kn. Since Kn c: P, this implies 
that nf Kn is empty. But each Kn is nonempty, by (iii), and Kn => Kn+t• 
by (i); this contradicts the Corollary to Theorem 2.36. 

Corollary Every interval [a, b] (a < b) is uncountable. In particular, the set of 
all real numbers is uncountable. 

2.44 The Cantor set The set which we are now going to construct shows 
that there exist perfect sets in R1 which contain no segment. 

Let E0 be the interval [0, 1]. Remove the segment (!,f), and let E1 be 
the union of the intervals 

[0, t1 [f, 1 ]. 

Remove the middle thirds of these intervals, and let E2 be the union of the 
intervals 

[0, t1. [i, tJ, [f, tJ, [!, 1]. 

Continuing in this way, we obtain a sequence of compact sets En, such that 

(a) E1 => E2 => E3 => • • • ; 
(b) En is the union of 2n intervals, each of length 3-n. 

The set 

00 

P= n En 
n= 1 

is called the Cantor set. Pis clearly compact, and Theorem 2.36 shows that P 
is not empty. 
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No segment of the form 

(24) 

where k and m are positive integers, has a point in common with P. Since every 
segment (IX, /3) contains a segment of the form (24), if 

P contains no segment. 

3
-m {3- IX <--, 

To show that Pis perfect, it is enough to show that P contains no isolated 
point. Let x e P, and let S be any segment containing x. Let/,. be that interval 
of £,. which contains x Choose n large enough, so that I,. c S Let x,. be an 
endpoint of I,., such that x,. ¥: x. 

It follows from the construction of P that x,. e P. Hence x is a limit point 
of P, and P is perfect. 

One of the most interesting properties of the Cantor set is that it provides 
us with an example of an uncountable set of measure zero (the concept of 
measure will be discussed in Chap. 11). 

CONNECTED SETS 

2.45 Definition Two subsets A and B of a metric space X are said to be 
separated if both A 11 Band A 11 Bare empty, i.e., if no point of A lies in the 
closure of B and no point of B lies in the closure of A. 

A set E c: X is said to be connected if E is not a union of two nonempty 
separated sets. 

2.46 Remark Separated sets are of course disjoint, but disjoint sets need not 
be separated. For example, the interval [0, 1] and the segment (1, 2) are not 
separated, since 1 is a limit point of (1, 2). However, the segments (0, 1) and 
(1, 2) are separated. 

The connected subsets of the line have a particularly simple structure: 

2.47 Theorem A subset E of the rea/line R1 is connected if and only if it has the 
following property: If x e £, y e £,and x < z < y, then z e E. 

I 

Proof If there exist x e £, y e £, and some z e (x, y) such that z ¢ E, then 
E=A:z u B:z where 

A:z =E 11 (-oo, z), B:z =E 11 (z, oo). 
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Since x e Az andy e Bz, A and Bare nonempty. Since Az c: (- oo, z) and 
Bz c (z, oo), they are separated. Hence E is not connected. 

To prove the converse, suppose E is not connected. Then there are 
nonempty separated sets A and B such that A u B = E. Pick x e A, y e B, 
and assume (without loss of generality) that x < y Define 

z - sup (A n [x, y]). 

By Theorem 2.28, z e A; hence z ¢B. In particular, x ~ z < y. 
If z ¢A, it follows that x < z < y and z ¢E. 
If z e A, then z ¢ B, hence there exists z1 such that z < z1 < y and 

z1 ¢B. Then x < z1 < y and z1 ¢E. 

EXERCISES 

1. Prove that the empty set is a subset of every set. 
2. A complex number z is said to be algebraic if there are integers ao, ... , an, not all 

zero, such that 
ao z" + a1zn-t + · · · + an-tZ +an= 0. 

Prove that the set of all algebraic numbers is countable. Hint: For every positive 
integer N there are only finitely many equations with 

n +lao!+ I at!+ ... + lanl =N. 

3. Prove that there exist real numbers which are not algebraic. 
4. Is the set of all irrational real numbers countable? 
S. Construct a bounded set of real numbers with exactly three limit points. 
6. Let E' be the set of all limit points of a set E. Prove that E' is closed. Prove that 

E and E have the same limit points. (Recall that E = Eu E'.) DoE and E' always 
have the same limit points? 

7. Let Att A2, A3, ... be subsets of a metric space. 
(a) If Bn = Ur .. t A,, prove that Bn = Ur .. t .A,, for n = 1, 2, 3, .... 
(b) If B = ur .. l A,' prove that B ~ U? .. t .A,. 
Show, by an example, that this inclusion can be proper. 

8. Is every point of every open set E c R 2 a limit point of E? Answer the same 
question for closed sets in R 2

• 

9. Let Eo denote the set of all interior points of a set E. [See Definition 2.18(e); 
E 0 is called the interior of E.] 
(a) Prove that Eo is always open. 
(b) Prove that E is open if and only if E 0 =E. 
(c) If G c E and G is open, prove that G c E 0

• 

(d) Prove that the complement of E 0 is the closure of the complement of E. 
(e) Do E and E always have the same interiors? 
(/) Do E and Eo always have the same closures? 
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10. Let X be an infinite set. For p eX and q eX, define 

d(p, q) = {~ (if p ¢ q) 

(ifp q). 

Prove that this is a metric Which subsets of the resulting metric space are open 1 
Which are closed? Which are compact? 

11. For x e R1 andy e R1
, define 

dz(X, y) = VI X - Y I • 

ds(x, y) = 1 + I x - y I . 

Determine, for each of these, whether it is a metric or not. 
12. Let K c. R1 consist of 0 and the numbers 1/n, for n = 1, 2, 3, .... Prove that K is 

compact directly from the definition (without using the Heine-Borel theorem). 
13. Construct a compact set of real numbers whose limit points form a countable set. 
14. Give an example of an open cover of the segment (0, 1) which has no finite sub

cover. 
15. Show that Theorem 2.36 and its Corollary become false (in R 1

, for example) if the 
word "compact" is replaced by "closed" or by "bounded." 

16. Regard Q, the set of alJ rational numbers, as a metric space, with d(p, q) = I p - q 1. 
Let E be the set of all p e Q such that 2 < p 2 < 3. Show that E is closed and 
bounded in Q, but that E is not compact. Is E open in Q? 

17. Let E be the set of all x e [0, 1] whose decimal expansion contains only the digits 
4 and 7. Is E countable? Is E dense in [0, 1]? Is E compact? Is E perfect? 

18. Is there a nonempty perfect set in R 1 which contains no rational number? 
19. (a) If A and B are disjoint closed sets in some metric space X, prove that they 

are separated. 
(b) Prove the same for disjoint open sets. 
(c) Fix p eX, S > 0, define A to be the set of all q eX for which d(p, q) < S, define 
B similarly, with > in place of <. Prove that A and Bare separated. 
(d) Prove that every connected metric space with at least two points is uncount
able. Hint: Use (c). 

20. Are closures and interiors of connected sets always connected? (Look at subsets 
of R 2

.) 

21. Let A and B be separated subsets of some Rk, suppose a e A, be B, and define 

p(t) = (1 - t)a + tb 

forte R 1
• Put Ao = p- 1(A), Bo = p- 1(B). [Thus t e Ao if and only if p(t) eA.] 



(a) Prove that A 0 and Bo are separated subsets of R1
• 

(b) Prove that there exists toE (0, 1) such that p(to) 't A u B. 

(c) Prove that every convex subset of Rk is connected. 
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22. A metric space is called separable if it contains a countable dense subset. Show 
that Rk 1s separable. Hmt: Consider the set of points which have only rational 

coordinates. 

23. A collection { Va} of open subsets of X is said to be a base for X if the following 
Is true: For every x EX and every open set G c X such that x e G, we have 
x e Va c G for some oc. In other words, every open set in X is the union of a 

subcollection of {Va}. 
Prove that every separable metric space has a countable base Hint· Take 

all neighborhoods with rational radius and center in some countable dense subset 

of X. 

24. Let X be a metric space in which every infinite subset has a limit point. Prove that 
X is separable. Hint: Fix S > 0, and pick x1 E X. Having chosen x1, ... , x1 EX, 
choose x1+1 EX, if possible, so that d(xt, x1+t)> S fori= 1, ... ,j. Show that 
this process must stop after a finite number of steps, and that X can therefore be 
covered by finitely many neighborhoods of radius S. TakeS= 1/n (n = 1, 2, 3, ... ), 
and consider the centers of the corresponding neighborhoods. 

25. Prove that every compact metric space K has a countable base, and that K is 
therefore separable. Hint: For every positive integer n, there are finitely many 
neighborhoods of radius 1/n whose union covers K. 

26. Let X be a metric space in which every infinite subset has a limit point. Prove 
that X is compact. Hint: By Exercises 23 and 24, X has a countable base. It 
foJlows that every open cover of X has a countable subcover {Gn}, n = 1, 2, 3, .... 
If no finite subcollection of {Gn} covers X, then the complement Fn of G1 u · · · u Gn 
is nonempty for each n, but n Fn is empty. If E is a set which contains a point 
from each Fn, consider a limit point of E, and obtain a contradiction. 

27. Define a point p in a metric space X to be a condensation point of a set E c X if 
every neighborhood of p contains uncountably many points of E. 

Suppose E c Rk, E is uncountable, and let P be the set of all condensation 
points of E. Prove that P is perfect and that at most countably many points of E 
are not in P. In other words, show that pc 11 E is at most countable. Hint: Let 
{Vn} be a countable base of Rk, let W be the union of those Vn for which E 11 Vn 
is at most countable, and show that p = we. 

28. Prove that every closed set in a separable metric space is the union of a (possibly 
empty) perfect set and a set which is at most countable. (Corollary: Every count
able closed set in Rk has isolated points.) Hint: Use Exercise 27. 

29. Prove that every open set in R 1 is the union of an at most countable collection of 
disjoint segments. Hint: Use Exercise 22. 
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30. Imitate the proof of Theorem 2.43 to obtain the following result: 

If R" = U f Fn, where each Fn is a closed subset of R", then at least one Fn 
has a nonempty interior. 

Equzvalent statement: If Gn IS a dense open subset of Rk, for n - I, 2, 3, ... , 
then QfGn is not empty (in fact, it is dense in R"). 

(This is a special case of Baire's theorem; see Exercise 22, Chap. 3, for the general 
case.) 



3 
NUMERICAL SEQUENCES AND SERIES 

As the title indicates, this chapter will deal primarily with sequences and series 
of complex numbers. The basic facts about convergence, however, are just as 
easily explained in a more general setting. The first three sections will therefore 
be concerned with sequences in euclidean spaces, or even in metric spaces. 

CONVERGENT SEQUENCES 

3.1 Definition A sequence {Pn} in a metric space X is said to converge if there 
is a point p e X with the following property: For every B > 0 there is an integer 
N such that n ~ N implies that d(pn, p) <e. (Here d denotes the distance in X.) 

In this case we also say that {Pn} converges to p, or that p is the limit of 
{Pn} [see Theorem 3.2(b)], and we write Pn--+ p, or 

lim Pn = p. 
n-+oo 

If {Pn} does not converge, it is said to diverge. 
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It might be well to point out that our definition of "convergent sequence" 
depends not only on {p,} but also on X; for instance, the sequence {1/n} con
verges in R 1 (to 0), but fails to converge in the set of all positive real numbers 
[with d(x, y) = I x- y I]. In cases of possible ambiguity, we can be more 
prectse and specify "convergent m X" rather than "convergent." 

We recall that the set of all points p, (n = 1 , 2, 3, ... ) is the range of {.p,} 
The range of a sequence may be a finite set, or it may be infinite. The sequence 
{p,} is said to be bounded if its range is bounded. 

As examples, consider the following sequences of complex numbers 
(that is, X= R2

): 

(a) If s, = 1/n, then lim, ... oo s, = 0; the range is infinite, and the sequence 
is bounded. 

(b) If s, = n2
, the sequence {s,} is unbounded, is divergent, and has 

infinite range. 
(c) If s, = 1 + [(- 1)"/n], the sequence {s,} converges to I, is bounded, 

and has infinite range. 
(d) If s, = i", the sequence {s,} is divergent, is bounded, and has finite 

range. 
(e) If s, = 1 (n = 1, 2, 3, ... ), then {s,} conver~es to 1, is bounded, and 

has finite range. 

We now summarize some important properties of convergent sequences 
in metric spaces. 

3.2 Theorem Let {p,} be a sequence in a metric space X. 

(a) {p,} converges to p e X if and only if every neighborhood of p contains 
p, for all but finitely many n. 

(b) If p eX, p' eX, and if {p,} converges top and top', then p' = p. 
(c) If {p,} converges, then {p,} is bounded. 
(d) If E c X and if p is a limit point of E, then there is a sequence {p,} in E 

such that p = limp, . 
n-+ oo 

Proof (a) Suppose p, ~ p and let V be a neighborhood of p. For 
some e > 0, the conditions d(q, p) < e, q e X imply q e V. Correspond
ing to this e, there exists N such that n ;::: N implies d(p,, p) < e. Thus 
n ;::: N implies Pn E V. 

Conversely, suppose every neighborhood of p contains all but 
finitely many of the p,. Fix e > 0, and let V be the set of all q e X such 
that d(p, q) <e. By assumption, there exists N (corresponding to this V) 
such that p, E V if n ~ N. Thus d(p,, p) < e if n;::: N; hence p, ~ p. 
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(b) Let e > 0 be given There exist integers N, N' such that 

n~N tmphes 
6 

d(pn,p)<2' 

n ;;:::N' implies d(pn, p') < ~ • 

Hence if n > max {N, N'), we have 

d(p, p') ~ d(p, pnl + d(pn, p') < B. 

Since e was arbitrary, we conclude that d(p, p') = 0. 
(c) Suppose Pn ~ p. There is an integer N such that n > N 

implies d(pn , p) < 1. Put 

r =max {1, d(p1 , p), ... , d(pN, p)}. 

Then d(pn,P) ~ r for n = 1, 2, 3, .... 
(d) For each positive integer n, there is a point Pn e E such that 

d(pn, p) < 1/n. Given e > 0, choose N so that Ne > 1. If n > N, it 
follows that d(pn, p) <e. Hence Pn ~ p. 

This completes the proof. 

For sequences in Rk we can study the relation between convergence, on 
the one hand, and the algebraic operations on the other. We first consider 
sequences of complex numbers. 

3.3 Theorem Suppose {sn}, {tn} are complex sequences, and Iimn_.oo sn = s, 
limn-. 00 tn = t. Then 

(a) lim (sn + tn) = s + t; 
n-. oo 

(b) lim csn = cs, lim ( c + sn) = c + s, for any number c; 
n-+oo n-.oo 

(c) lim Sntn = st; 
n-+oo 

(d) lim ..!_ = ! , provided sn =I= 0 (n = 1, 2, 3, ... ), and s =I= 0. 
n-+oo Sn S 

Proof 

(a) Given e > 0, there exist integers N1, N 2 such that 

n ~N1 implies 
e 

lsn- sl < 2' 

n ~N2 implies 
e 

ltn-tl <2· 
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If N - max (N1, ~), then n > N implies 

This proves (a). The proof of (b) is trivial. 

(c) We use the identity 

Given e > 0, there are integers N1, N 2 such that 

n;;::: N 2 implies I 111 - tl < .Je. 

If we take N = max (Nil N 2), n ~ N implies 

I (S11 - s)(tn- t)l < B, 

so that 

lim (sn - s)(tn - t) = 0. 
n-+ oo 

We now apply (a) and (b) to (1), and conclude that 

lim (sntn - st) = 0. 
n-+ oo 

(d) Choosing m such that I S11 - s I < ! Is I if n ;;::: m, we see that 

(n;;::: m). 

Given e > 0, there is an integer N > m such that n ;;::: N implies 

lsn- sl < !lsl 2 e. 
Hence, for n ;;::: N, 

1 1 =Is"- s 2 Sn - ~ sns < Is 12 I Sn - s I < B. 

3.4 Theorem 

(a) Suppose X11 e Rk (n = 1, 2, 3, ... ) and 

Then { X 11} converges to x = ( cc1, •.• , cck) if and only if 
(2) lim IXJ,n = IX1 n-+oo 
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(h) Suppose {x,}, {y,.} are sequences in Rk, {/J,.} is a sequence (}freal numbers, 
and x,.--. x, y,.--. y, /3,.--. {3. Then 

lim (x,. + y,.) = x + y, lim x,. · y,. =X· y, lim /3,. x,. = f3x. 

Proof 

(a) If x,. --. x, the mequabtles 

which follow Immediately from the definition of the norm in R", show that 
(2) holds, 

Conversely, if (2) holds, then to each e > 0 there corresponds an 
integer N such that n ~ N implies 

B 
I C(J,, - C(1l < Jk: (1 ~j ~ k). 

Hence n ;;::: N implies 

lx,.- xl = (I IC(J,n- C(J1 2
)

112 

< B, 
J=l 

so that x,. --. x. This proves (a). 
Part (b) follows from (a) and Theorem 3.3. 

SUBSEQUENCES 

3.5 Definition Given a sequence {pn}, consider a sequence {nk} of positive 
integers, such that n1 < n2 < n3 < · · ·. Then the sequence {p,.,} is called a 
subsequence of {p,.}. If {p,.,} converges, its limit is called a subsequential limit 
of {p,.}. 

It is clear that {p,.} converges to p if and only if every subsequence of 
{Pn} converges top. We leave the details of the proof to the reader. 

3.6 Theorem 

(a) If {p,.} is a sequence in a compact metric space X, then some sub
sequence of {p,.} converges to a point of X. 

(b) Every bounded sequence in Rk contains a convergent subsequence. 
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(a) Let E be the range of {pn}~ If E is finite then there is ape E and a 
sequence {n1} with n1 < n2 < n3 < I I I, such that 

Pnt = Pna = ' ' ' = p. 

The subsequence {PnJ so obtained converges evidently to p. 
If E is infinite, Theorem 2.37 shows that E has a limit point p e X. 

Choose n1 so that d(P,Pn1) < 1. Having chosen n17 ••• , n1-h we see from 
Theorem 2.20 that there ts an mteger n1 > n1_ 1 such that d(p,pn,) < lfi. 
Then {p,.,} converges to p. 

(b) This follows from (a), since Theorem 2.41 implies that every bounded 
subset of Rk lies in a compact subset of Rk. 

3.7 Theorem The subsequential limits of a sequence {Pn} in a metric space X 
form a closed subset of X. 

Proof Let E* be the set of all subsequential limits of {Pn} and let q be a 
limit point of E*. We have to show that q e E*. 

Choose n1 so that Pn1 =I= q. (If no such n1 exists, then E* has only 
one point, and there is nothing to prove.) Put ~ = d(q, Pn)· Suppose 
n1, ••• , n1_ 1 are chosen. Since q is a limit point of E*, there is an x e E* 
with d(x, q) < 2-'~. Since x e E*, there is an n1 > n1_ 1 such that 
d(X,Pn,) < 2- 1 ~. Thus 

d(q, Pn
1
) ~ 2l-l~ 

for i = 1, 2, 3, . . . . This says that {Pn,} converges to q. Hence q e E*. 

CAUCHY SEQUENCES 

3.8 Definition A sequence {pn} in a metric space X is said to be a Cauchy 
sequence if for every B > 0 there is an integer N such that d(p" , Pm) < e if n ~ N 
and m ~N. 

In our discussion of Cauchy sequences, as well as in other situations 
which will arise later, the following geometric concept will be useful. 

3.9 Definition Let E be a nonempty subset of a metric space X, and let S be 
the set of all real numbers of the form 

1

d(p, q), with .p e E and q e E. the sup 
of S is called the diameter of E. 
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If{p,} is a sequence in X and if EN consists of the points PN, PN+ 1 ,PN+ 2 , ••• , 

it is clear from the two preceding definitions that {p11} is a Cauchy sequence 
if and only if 

lim diam EN = 0. 

3.10 Theorem 

(a) If E is the closure of a set E in a metric space X, then 

diam E = diam E. 

(b) If K" is a sequence of compact sets in X such that K"::::) Kn+t 
(n = 1, 2, 3, ... ) and if 

hm dtam Kn- 0, 
n~oo 

then n '? Kn consists of exactly one point. 

Proof 

(a) Since E c E, it is clear that 

diam E::;;; diam E. 

Fix a > 0, and choose p E E, q E E. By the definition of E, there are 
points p', q', in E such that d(p, p') < e, d(q, q') <e. Hence 

d(p, q) ~ d(p, p') + d(p' q') + d(q'' q) 

< 2s + d(p', q') ~ 2s -+ diam E. 

It follows that 
diam E ~ 2s + diam E, 

and since e was arbitrary, (a) is proved. 
(b) Put K = n '? K". By Theorem 2.36, K is not empty. If K contains 
more than one point, then diam K > 0. But for each n, K" ::::) K, so that 
diam Kn ~ diam K. This contradicts the assumption that diam Kn --+ 0. 

3.11 Theorem 

(a) In any metric space X, every convergent sequence is a Cauchy sequence. 
(b) If X is a compact metric space and if {p11} is a Cauchy sequence in X, 

then {p11 } converges to some point of X. 
(c) In Rk, every Cauchy sequence converges. 

Note: The difference between the definition of convergence and 
the definition of a Cauchy sequence is that the limit is explicitly involved 
in the former, but not in the latter. Thus Theorem 3.1l(b) may enable us 
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(3) 

to decide whether or not a given sequence converges without knowledge 
of the limit to which it may converge. 

The fact (contained in Themem 3.11) that a sequence con~erges in 
Rk if and only if it is a Cauchy sequence is usually called the Cauchy 
criterion for convergence. 

Proof 

(a) If Pn--. p and if e > 0, there is an integer N such that d(p, Pn) < e 
for all n > N. Hence 

d(p 11 , p 111 ) < d(p 11 , p) + d(p, p 111) < 2B 

as soon as n >Nand m > N. Thus {p11 } is a Cauchy sequence. 

(b) Let {p"} be a Cauchy sequence in the compact space X. For 
N = 1, 2, 3, ... , let EN be the set consisting of PN, PN+l' PN+2, ... . 
Then 

lim diam EN= 0, 
N-+oo 

by Definition 3.9 and Theorem 3.10(a). Being a closed subset of the 
compact space X, each EN is compact (Theorem 2.35). Also EN=> EN+ 1, 

so that EN=> EN+l· 
Theorem 3.10(b) shows now that there is a unique p EX which lies 

in every EN. 
Let e > 0 be given. By (3) there is an integer N 0 such that 

diam EN < e if N ~ N 0 • Since pEEN, it follows that d(p, q) < B for 
every q E EN, hence for every q E EN. In other words, d(p, Pn) < e if 
n ~ N 0 • This says precisely that Pn --. p. 

(c) Let {xn} be a Cauchy sequence in Rk. Define EN as in (b), with x 1 

in place of Pi. For some N, diam EN< 1. The range of {x11} is the union 
of EN and the finite set {x1, .•• , xN- t}. Hence {x11 } is bounded. Since 
every bounded subset of Rk has compact closure in Rk (Theorem 2.41), 
(c) follows from (b). 

3.12 Definition A metric space in which every Cauchy sequence converges is 
said to be complete. 

Thus Theorem 3.11 says that all compact metric spaces and all Euclidean 
spaces are complete. Theorem 3.11 implies also that every closed subset E of a 
complete metric space X is complete. (Every Cauchy sequence in Eisa Cauchy 
sequence in X, hence it converges to some p EX, and actually pEE since E is 
closed.) An example of a metric space which is not complete is the space of all 
rational numbers, with d(x, y) = I x- yj. 
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Theorem 3.2(c) and example (d) of Definition 3.1 show that convergent 
sequences are bounded, but that bounded sequences in Rk need not converge. 
However, there is one important case in which convergence is equivalent to 
boundedness; this happens for monotonic sequences in R1

• 

3.13 Definition A sequence {sn} of real numbers is said to be 

(a) monotonically increasing if Sn < Bn + 1 (n 1, 2, 3, ... ) ; 
(b) monotonically decreasing if sn ~ sn+l (n = 1, 2, 3, ... ). 

The class of monotonic sequences consists of the increasing and the 
decreasing sequences. 

3.14 Theorem Suppose {sn} is monotonic. Then {sn} converges if and only if it 
is bounded. 

Proof Supposes"~ sn+l (the proof is analogous in the other case). 
Let E be the range of {sn}· If {sn} is bounded, let s be the least upper 
bound of E. Then 

(n = 1, 2, 3, ... ). 

For every B > 0, there is an integer N such that 

for otherwise s- e would be an upper bound of E. Since {sn} increases, 
n ~ N therefore implies 

s- e < Sn ~ s, 

which shows that {sn} converges (to s). 
The converse follows from Theorem 3.2(c). 

UPPER AND LOWER LIMITS 

3.15 Definition Let {sn} be a sequence of real numbers with the following 
property: For every real 1\1 there is an integer N such that n ~ N implies 
sn ~ M. We then write 

Sn-++00. 

Similarly, if for every real M there is an integer N such that n > N implies 
sn ~ M, we write 
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It should be noted that we now use the symbol -+ (introduced in Defini-
tion 3.1) for certain types of divergent sequences, as well as for convergent 
sequences, hut that the definitions of convergence and of limit, given in Defini-
tion 3.1, are in no way changed. 

3.16 Definition Let {sn} be a sequence of real numbers. Let E be the set of 
numbers x (in the extended real number system) such that sn,. -+ x for some 
subsequence {s",.) . This set E contains all subsequential limits as defined in 
Definition 3.5, plus possibly the numbers + oo, - oo. 

We now recall Defimt10ns 1.8 and 1.23 and put 

s*- sup E, 

The numbers s*, s* are called the upper and lower limits of {s"}; we use the 
notation 

lim sups"= s*, lim inf sn = s*. 
n-+ oo n-+ oo 

3.17 Theorem Let {sn} be a sequence of real numbers. Let E and s* have the 
same meaning as in Definition 3.16. Then s* has the following two properties: 

(a) s* e E. 
(b) If x > s*, there is an integer N such that n ~ N implies s" < x. 

Moreover, s* is the only number with the properties (a) and (b). 

Of course, an analogous result is true for s*. 

Proof 

(a) If s* = + oo, then E is not bounded above; hence {sn} is not bounded 
above, and there is a subsequence {s"k} such that sn,.-+ + oo. 

If s* is real, then E is bounded above, and at least one subsequential 
limit exists, so that (a) follows from Theorems 3.7 and 2.28. 

If s* = - oo, then E contains only one element, namely - oo, and 
there is no subsequential limit. Hence, for any real M, sn > M for at 
most a finite number of values of n, so that s"-+ - oo. 

This establishes (a) in all cases. 
(b) Suppose there is a number x > s* such that sn ~ x for infinitely 
many values of n. In that case, there is a number y e E such that 
y ~ x > s*, contradicting the definition of s*. 

Thus s* satisfies (a) and (b). 
To show the uniqueness, suppose there are two numbers, p and q, 

which satisfy (a) and (b), and suppose p < q. Choose x such thatp < x < q. 
Since p satisfies (b), we have sn < x for n > N. But then q cannot satisfy (a). 
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3.18 · Examples 

(a) Let {s,.} be a sequence containing all rationals. Then every real 
number is a subsequential hmit, and 

hmsups,.- +oo, hm inr s,. - - oo. 
,. ... 00 

(b) Let s,. = (- 1 ") /[1 + (1/n)]. Then 

lim sups,.= 1, lim inf s,. = - 1. 
,. ... 00 

(c) For a real-valued sequence {s,.}, lim s,. = s if and only if 

lim sups,.= lim inf s,. = s. 

We close this section with a theorem which is useful, and whose proof is 
quite trivial: 

3.19 Theorem If s,. ~ t,. for n :;::: N, where N is fixed, then 

lim inf s,. ~ lim inf t,., 

lim sups,. ~ lim sup t,.. 
,. ... 00 ,. ... 00 

SOME SPECIAL SEQUENCES 

We shall now compute the limits of some sequences which occur frequently. 
The proofs will all be based on the following remark: If 0 ~ x,. ~ s,. for n:;::: N, 
where N is some fixed number, and if s,. .-. 0, then x,. .-. 0. 

3.20 Theorem 

(a) If p > 0, then lim 
1
P = 0. 

,. ... oo n 

(b) If p > 0, then lim ~p = 1. 

(c) lim ~n = 1. 

na. 
(d) If p > 0 and~ is real, then lim (

1 
)" = 0. 

,. ... 00 + p 

(e) If I xl < 1, then lim x" = 0. 
,. ... 00 
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Proof 

(a) Take n > (1/s) 11
P. (Note that the archimedean property of the real 

number system is used here.) 

(b) If p > 1, put Xn - '\/P I. Then Xn > 0, and, by the binomial 
theorem, 

so that 

p-1 
O<x,.S: . 

n 

Hence x" .-. 0. It p - I, (b) ts trivial, and If 0 < p < I, the result ts o btatned 
by taking reciprocals. 

(c) Put x" = ::./~- 1. Then Xn ~ 0, and, by the binomial theorem, 

Hence 

n(n- 1) n = (1 + Xn)" ~ 
2 

x;. 

0 ~ Xn ~J 2 
n-1 

(n ~ 2). 

(d) Let k be an integer such that k > ~, k > 0. For n > 2k, 

(1 
)" (") k _ n(n - 1) · · · (n - k + 1) k nkpk 

+ p > k p - k! p > 2kk!. 

Hence 

na. 2kk! 
0 < (1 + p)" < JT na.- k (n > 2k). 

Since~- k < 0, na.-k -.o, by (a). 
(e) Take ~ = 0 in (d). 

SERIES 

In the remainder of this chapter, all sequences and series under consideration 
will be complex-valued, unless the contrary is explicitly stated. Extensions of 
some of the theorems which follow, to series with terms in Rk, are mentioned 
in Exercise 15. 
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3.21 Definition Given a sequence {an}, we use the notation 
q 

L an (p !!:. q) 
n=p 

to denote the sum aP + ap+ 1 + · · · + aq. Wtth {an} we associate a sequence 
{s11}, where 

k= 1 

For (sn) we also use the symbolic expression 

or, more concisely, 

(4) 

The symbol (4) we call an infinite series, or just a series. The numbers 
sn are called the partial sums of the series. If {sn} converges to s, we say that 
the series converges, and write 

00 

:L an= s. 
n= 1 

The number s is called the sum of the series; but it should be clearly under
stood that s is the limit of a sequence of sums, and is not obtained simply by 
addition. 

If {s11} diverges, the series is said to diverge. 
Sometimes, for convenience of notation, we shall consider series of the 

form 

(5) 

And frequently, when there is no possible ambiguity, or when the distinction 
is immaterial, we shall simply write :I:an in place of (4) or (5). 

It is clear that every theorem about sequences can be stated in terms of 
series (putting a1 = s1, and an = sn - sn - 1 for n > 1 ), and vice versa. But it is 
nevertheless useful to consider both concepts. 

The Cauchy criterion (Theorem 3.11) can be restated in the following 
form: 

3.22 Theorem :I:an converges if and only if for every B > 0 there is an integer 
N such that 

(6) 

ifm ~n ~N. 



In particular, by taking m = n, (6) becomes 

In other words: 

3.23 Theorem /f:I:an converges, then limn-+oo an = 0. 

The condition ~ __. 0 is not, however, sufficient to ensure convergence 
of :I:an. For instance, the series 

n-

diverges; for the proof we refer to Theorem 3.28. 

Theorem 3.14, concerning monotonic sequences, also has an immediate 
counterpart for series. 

3.24 Theorem A series of nonnegative1 terms converges if and only if its 
partial sums form a bounded sequence. 

We now tum to a convergence test of a different nature, the so-called 
"comparison test." 

3.25 Theorem 

(a) If I an I ~ Cn for n ~ N 0 , where N 0 is some fixed integer, and if :I:cn 
converges, then :I:an converges. 
(b) If an~ dn ~ 0 for n ~ N 0 , and zf:I:dn diverges, then :I:an diverges. 

Note that (b) applies only to series of nonnegative terms an. 

Proof Given e > 0, there exists N ~ N 0 such that m ~ n ~ N implies 

by the Cauchy criterion. Hence 

1.~. a• I :5: J.l a. I :5: .~. c• :5: e, 

and (a) follows. 
Next, (b) follows from (a), for if :I:an converges, so must :I:dn [note 

that (b) also follows from Theorem 3.24]. 

1 The expression " nonnegative" always refers to real numbers. 
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The comparison test is a very useful one; to use it efficiently, we have to 
become famthar wtth a number of senes of nonnegative terms whose conver
gence or divergence is known. 

SERIES OF NONNEGATIVE TERMS 

The simplest of all is perhaps the geometric series. 

3.26 Theorem If 0 ~ x < 1, then 

"-
1 00 

n=O 1 -X 

If x ~ 1, the series diverges. 

Proof If x -::f:. 1, 

1- xn+1 
xk=---

1-x 

The result follows if we let n --+ oo. For x = 1, we get 

1+1+1+"', 

which evidently diverges. 

In many cases which occur in applications, the terms of the series decrease 
monotonically. The following theorem of Cauchy is therefore of particular 
interest. The striking feature of the theorem is that a rather "thin" subsequence 
of {an} determines the convergence or divergence of ran. 

3.27 Theorem Suppose a1 ~ a2 ~ a 3 ~ · • • ~ 0. Then the series I:= 1 an con
verges if and only if the series 

(7) 
00 

L 2ka2,. = a1 + 2a2 + 4a4 + 8a8 + · · · 
k=O 

converges. 

Proof By Theorem 3.24, it suffices to consider boundedness of the 
partial sums. Let 

Sn = a1 + a2 + ... + an' 

tk = a1 + 2a2 + · · · + 2ka2,.. 
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(9) 

sot at 

On the other hand, if n > 2k, 

so that 

2sn;;::: tk. 

By (8) and (9), the sequences {sn} and {tk} are either both bounded 
or both unbounded. This completes the proof. 

I 
3.28 Theorem L - converges if p > I and diverges if p s; 1. nP 

Proof If p < 0, divergence follows from Theorem 3.23. If p > 0, 
Theorem 3.27 is applicable, and we are led to the series 

C() 1 C() 

"2k.- = " 2(1- p)k 
~ 2kp ~ . 

k=O k=O 

Now, 21
- P < 1 if and only if 1 - p < 0, and the result follows by com

parison with the geometric series (take x = 21
- P in Theorem 3.26). 

As a further application of Theorem 3.27, we prove: 

3.29 Theorem If p > 1, 

(10) 
C() 1 

n~2 n(log n)P 

converges,· if p < 1, the series diverges. 

Remark "log n" denotes the logarithm of n to the base e (compare Exercise 7, 
Chap. 1); the number e will be defined in a moment (see Definition 3.30). We 
let the series start with n = 2, since log 1 = 0. 
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Proof The monotonicity of the logarithmic function (which will be 
discussed in more detail in Chap. 8) implies that {log n} increases. Hence 
{1/n log n} decreases, and we can apply Theorem 3.27 to (10); this 
leads us to the series 

(11) 
00 1 

k¥1 (k log 2)P 

and Theorem 3.29 follows from Theorem 3.28. 

1 00 1 

(log 2)P k¥t kP' 

This procedure may evidently be continued. For instance, 

(12) 
<X) 1 

n~3 n log n log log n 

diverges, whereas 

(13) 
00 1 

n~3 n log n(log log n)2 

converges. 

We may now observe that the terms of the series (12) differ very little 
from those of (13). Still, one diverges, the other converges. If we continue the 
process which led us from Theorem 3.28 to Theorem 3.29, and then to (12) and 
(13), we get pairs of convergent and divergent series whose terms differ even 
less than those of (12) and (13). One might thus be led to the conjecture that 
there is a limiting situation of some sort, a "boundary" with all convergent 
series on one side, all divergent series on the other side-at least as far as series 
with monotonic coefficients are concerned. This notion of "boundary" is of 
course quite vague. The point we wish to make is this: No matter how we make 
this notion precise, the conjecture is false. Exercises ll(b) and 12(b) may serve 
as illustrations. 

We do not wish to go any deeper into this aspect of convergence theory, 
and refer the reader to Knopp's "Theory and Application of Infinite Series," 
Chap. IX, particularly Sec. 41. 

THE NUMBER e 

3.30 Definition e = I ..!._ · 
n=on! 

Here n! = 1 · 2 · 3 · · · n if n ~ 1, and 0! = 1. 
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1 1 1 
1+1+ + +'"+ 

1·2 1·2·3 1·2 .. ·n 

1 1 1 
<1+1+-+2+···+ n-1<3, 

the series converges, and the definition makes sense In fact, the series converges 
very rapidly and allows us to compute e with great accuracy. 

It is of mterest to note that e can also be defined by means of another 
limit process; the proof provides a good illustration of operations with limits: 

3.31 Theorem lim (I + I r e. 

(14) 

(15) 

Proof Let 
n 1 

Sn = L kl' 
k=O • 

By the binomial theorem, 

tn = 1 + 1 + _!._ (1 - !) + _!_ (1 - !) (1 - ~) + • · · 
2! n 3! n n 

+ :! ( 1 - ~) ( 1 - ~) · · · ( 1 - n: 1
) · 

Hence tn ~ sn, so that 

lim sup tn < e, 
n->oo 

by Theorem 3.19. Next, if n > m, 

tn > 1 + 1 + _.!._ (1 - !) + .. · + _l (1 - ~) · · · (1 - m -
1
). 

2! n m! n n 

Let n-+ oo, keeping m fixed. We get 

1. . f 1 1 
1m m t > 1 + 1 + - + · · · + -, 

n->oo n- 2! m! 

so that 

n-> oo 

Letting m -+ oo, we finally get 

e ~ lim inf tn. 
n-+ oo 

The theorem follows from (14) and (15). 
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The rapidity with which the senes L ..!_ converges can be estimated as 
n! 

follows: If s" has the same meaning as above, we have 

e-s = + + + ··· 
" (n + 1)! (n + 2)! (n + 3)! 

1 

n!n 

(16) 
n.n 

Thus s10 , for instance, approximates e with an error less than 10- 7
• The 

inequality (16) is of theoretical interest as well, since it enables us to prove the 
irrationality of e very easily. 

3.32 Theorem e is irrational. 

(17) 

Proof Suppose e is rational. Then e = pfq, where p and q are positive 
integers. By (16), 

1 
0 <q!(e -sq) < -. 

q 

By our assumption, q!e is an integer. Since 

q's =q'(1 + 1 + ..!_ + · .. + ..!_) 
• q • 2! q! 

is an integer, we see that q!(e - sq) is an integer. 
Since q ~ 1, (17) implies the existence of an integer between 0 and 1. 

We have thus reached a contradiction. 

Actually, e is not even an algebraic number. For a simple proof of this, 
see page 25 of Niven's book, or page 176 of Herstein's, cited in the Bibliography. 

THE ROOT AND RATIO TESTS 

3.33 Theorem (Root Test) Given :Ea", put a= lim sup::/ I an I· 
Then 

(a) if a< 1, :Ean converges,· 
(b) if a> 1, :Ean diverges; 
(c) zf a = 1, the test gives no information. 

n->oo 
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Proof If cc < 1, we can choose fJ so that cc < fJ < 1, and an integer N 
such that 

~Ia,.! </1 
for n ~ N [by Theorem 3.17(b)]. That is, n ~ N implies 

I a,. I < fJ". 
Since 0 < fJ < I, tfJ" converges. Convergence of :Ea,. follows now from 
the comparison test 

If cc > 1, then, again by Theorem 3.17, there is a sequence {nk} such 

Hence I a,. I > 1 for infinitely many values of n, so that the condition 
a,. -+0, necessary for convergence of ta,., does not hold (Theorem 3.23). 

To prove (c), we consider the series 

For each of these series cc = 1, but the first diverges, the second converges. 

3.34 Theorem (Ratio Test) The series :ta,. 

f/1. a,.+l 1 (a) converges 1 1m sup - < , 
,. .... oo a,. 

(b) diverges if a,.+t ~ 1 for all n ~ n0 , where n0 is some fixed integer. 
a,. 

Proof If condition (a) holds, we can find fJ < 1, and an integer N, such 
that 

for n ~ N. In particular, 

a,.+t 
a,. 

I aN+ 1 I < fJ I aN I , 

<fJ 

laN+21 < fJiaN+tl < fJ2 IaNI, 

. . . . . . . . . . . . . . . . . . . 
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That is, 

for n ~ N, and (a) follows from the comparison test, since !:.{J" converges. 
If I a,.+ 1 1 ~ I a,. I for n ~ n0 , it is easily seen that the condition a,. -+ 0 

does not hold, and (b) follows. 

Note: The knowledge that lim a,,..da,. = 1 implies nothing about the 
convergence of !:.a,.. The series !:.1/n and !:.1/n2 demonstrate this. 

3.3~ Examples 

(a) Consider the series 

for which 

I. . fan+l I' (2)" 0 1mm - = 1m 
3
- = , 

,. .... oo a,. ,. .... oo 

~
-

• • n • 2 1 1 
hm mf yr;;,. = hm -;; = J-' 

n-+oo n-+oo 3 3 

yl- ~-1 1 • _ • 2n __ 
hm sup a,. - hm -;; - J-' 

n-+oo n-+oo 2 2 

I. an+l 1. 1 (3)" 1m sup--= 1m - - = +oo. 
n-+oo a,. n-+oo 2 2 

The root test indicates convergence; the ratio test does not apply. 
(b) The same is true for the series 

I I I I 1 I I 
2 + 1 + 8 + 4 + 32 + I6 + I28 + 64 + 

0 0 0 

where 

1. . f an+t I 1mm --=-, 
n-+oo a,. 8 

1° an+1 2 1m sup-= , 
,. .... oo a,. 

but 

limy/a,.= l· 
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3.36 Remarks The ratio test is frequently easier to apply than the root test, 
smce It IS usually easier to compute ratios than nth roots. However, the root 
test has wider scope More preciseJy· Whenever 1he ratio test shows conver-
gence, the root test does too; whenever the root test is inconclusive, the ratio 
test is too. This is a consequence of Theorem 3.37, and is illustrated by the 
above examples. 

Neither of the two tests is subtle with regard to divergence. Both deduce 
divergence from the fact that an does not tend to zero as n • oo. 

3.37 Theorem For any sequence {en} of positive numbers, 

(18) 

1, . f Cn+l ~ 1m m -- < lim inf.n 

1. nl- 1' cn+l 1m sup v en ~ 1m sup- · 
n-+ oo n-+ oo Cn 

Proof We shall prove the second inequality; the proof of the first is 
quite similar. Put 

1. Cn+l a= Imsup--· 
n-+ 00 en 

If a = + oo, there is nothing to prove. If a is finite, choose [3 >a. There 
is an integer N such that 

for n ~ N. In particular, for any p > 0, 

(k = 0, 1' ... ' p - 1 ). 

Multiplying these inequalities, we obtain 

CN+p ~ fJPcN, 

or 

C < C p-N 'pn n- N (n > N). 

Hence 

so that 

lim sup ~en~ [3, 
n-+oo 
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by Theorem 3.20(b). Since (18) is true for every [3 > e<, we have 

lim sup dC,. < e<. 
n-+ oo 

POWER SERIES 

3.38 Definition Given a sequence {en} of complex numbers, the series 

(19) 
n 

is ca11ed a power veries The numbers c,, are ca11ed the coefficients of the series; 
z is a complex number. 

In general, the series will converge or diverge, depending on the choice 
of z. More specifically, with every power series there is associated a circle, the 
circle of convergence, such that (19) converges if z is in the interior of the circle 
and diverges if z is in the exterior (to cover all cases, we have to consider the 
plane as the interior of a circle of infinite radius, and a point as a circle of radius 
zero). The behavior on the circle of convergence is much more varied and can
not be described so simply. 

3.39 Theorem Given the power series !:en zn, put 

e< = lim sup y/1 en I, 
n-+ oo 

1 
R=-· 

C( 

(lfe< = 0, R = +oo; ife< = +oo, R = 0.) Then I:cnzn converges if lzl < R, and 
diverges if I z I > R. 

Proof Put an= cnzn, and apply the root test: 

lim sup y/1 an I = I z I lim sup y/~ 
lzl --· 

n-+ oo n-+ oo R 

Note: R is called the radius of convergence of .!:en zn. 

3.40 Examples 

(a) The series :Enn zn has R = 0. 
zn 

(b) The series L I has R = + oo. (In this case the ratio test is easier to 
n. 

apply than the root test.) 
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(c) The series :Ez" has R = 1. If lzl = 1, the series diverges, since {z"} 

(d) The senes L- has R - 1. It dtverges If z - 1. It converges for all 
n 

other z with I z I - 1. (The last asserbon will be proved m Theorem 3.44.) 
n 

(e) The series L z2 has R - 1. It converges for all z with I z I 1, by 
n 

the comparison test, since I z"jn2 l lfn1 • 

SUMMATION BY PARTS 

3.41 Theorem Given two sequences {a,}, {b,}, put 

II 

A,= I ak 
k=O 

ifn ~ 0; put A_ 1 = 0. Then, ifO <p ~ q, we have 

(20) 
q q-1 

I a,b, =I A,(b,- b,+ 1) + Aqbq- Ap-lbp. 
n=p n=p 

Proof 

q q q q-1 

I a,b, =I (A,- A,_ 1)b, =I A,b,- I A,b,+ 1, 
n=p n=p n=p n=p-1 

and the last expression on the right is clearly equal to the right side of 
(20). 

Formula (20), the so-called "partial summation formula," is useful in the 
investigation of series of the form :Ea,b,, particularly when {b,} is monotonic. 
We shall now give applications. 

3.42 Theorem Suppose 

(a) the partial sums A, of:Ea,form a bounded sequence,· 
(b) bo ~ b1 ~ b2 ~ .. · ; 
(c) lim b, = 0. 

n-+oo 

Then :Ea, b,. converges. 
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Proof Choose M such that I An I < M for all n. Given e > 0, there is an 
integer N such that b.v:::;;; (!./2M) For N ~ p ~ q, we have 

n=p n=p I 

=2Mb <2MbN ~e. 

Convergence now follows from the Cauchy criterion. We note that the 
first inequality in the above chain depends of course on the fact that 
h,- h,+l ~ 0 

3.43 Theorem Suppose 

(a) I ctl ~ I c2l ~ I c31 ~ " · ; 
(b) C2m-1 ~ 0, C2m S: 0 (m = 1, 2, 3, ... ); 
(c) limn-+oo Cn = 0. 

Then I:cn converges. 

Series for which (b) holds are called "alternating series"; the theorem was 
known to Leibnitz. 

Proof Apply Theorem 3.42, with an = ( -1 )n + 1, bn = I cn I· 

3.44 Theorem Suppose the radius of convergence of I:cn zn is 1, and suppose 
c0 ~ c1 ~ c2 ~ ···,limn .... co Cn = 0. Then I:cnz" converges at every point on the 
circle I z I = 1, except possibly at z = 1. 

Proof Put an= zn, bn = C11 • The hypotheses of Theorem 3.42 are then 
satisfied, since 

if 1 z 1 = 1 , z =1= 1. 

ABSOLUTE CONVERGENCE 

1 - zn+l 

1-z 
2 

~11-zl' 

The series Ian is said to converge absolutely if the series I: I an I converges. 

3.4~ Theorem lfl:an converges absolutely, then Ian converges. 
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Proof The assertion follows from the inequality 

k: n k•n 

plus the Cauchy criterion 

3.46 Remarks For series of positive terms, absolute convergence is the same 
as convergence. 

If La,. converges, but L 1 a,. 1 diverges, we say that l:a,. converges non
ab.wlutely For instance, the series 

n 

converges nonabsolutely (Theorem 3.43). 
The comparison test, as well as the root and ratio tests, is really a test for 

absolute convergence, and therefore cannot give any information about non
absolutely convergent series. Summation by parts can sometimes be used to 
handle the latter. In particular, power series converge absolutely in the interior 
of the circle of convergence. 

We shall see that we may operate with absolutely convergent series very 
much as with finite sums. We may multiply them term by term and we may 
change the order in which the additions are carried out, without affecting the 
sum of the series. But for nonabsolutely convergent series this is no longer true, 
and more care has to be taken when dealing with them. 

ADDITION AND MULTIPLICATION OF SERIES 

3.47 Theorem If La,. = A, and Lb,. = B, then L(a,. + b,.) = A + B, and 
Lean = cA, for any fixed c. 

Proof Let 

Then 
n 

A,. + B,. = L (ak + bk). 
k=O 

Since lim,. .... 00 A,.= A and lim,. .... 00 B,. = B, we see that 

n-+ oo 

The proof of the second assertion is even simpler. 
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Thus two convergent senes may be added term by term, and the result
ing series converges to the sum of the two series. The situation becomes more 
complicated when we consider multiplication of two series. To begin with, we 
have to define the ptoduct. This can be done in sevetal ways, we shall consider 
the so-called "Cauchy product." 

3.48 Definition Given :ta" and r.b", we put 

" (n-0,1,2, ... ) 

and call l:c" the product of the two given series. 
This definition may be motivated as follows. If we take two power 

series l:a"z" and r.b"z", multiply them term by term, and collect terms contain-
ing the same power of z, we get 

00 00 

L anz" · L bnz" = (a0 + a1z + a2 z2 + · · ·)(b0 + b1z + b2 z2 + · · ·) 
n=O n=O 

= a0 b0 + (a0 b1 + a1b0}z + (a0 b2 + a 1b1 + a2 b0}z2 + · · · 

= c0 + c 1 z + c 2 z2 + · · · . 

Setting z = 1, we arrive at the above definition. 

3.49 Example If 

and A" ---.A, B" ---. B, then it is not at all clear that { C"} will converge to AB, 
since we do not have C" = A" B". The dependence of { C"} on {A"} and {.B"} is 
quite a complicated one (see the proof of Theorem 3.50). We shall now show 
that the product of two convergent series may actually diverge. 

The series 

00 
( -1)" 1 1 1 I =1--+---+··· n=oJn + 1 J2 J3 J4 

converges (Theorem 3.43). We form the product of this series with itself and 
obtain 
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en= c -tr 2: · 
k = o J (n - k + 1 )(k + 1) 

n 1 

Since 

we have 

I I I 2 _ 2(n + t) 

so that the condition en ...,. 0, which is necessary for the convergence of :Ecn , is 
not satisfied. 

In view of the next theorem, due to Mertens, we note that we have here 
considered the product of two nonabsolutely convergent series. 

3.50 I heorem Suppose 

Then 

00 

(a) L an converges absolutely, 
n=O 

00 

(b) L an= A, 
n=O 

00 

(c) L bn = B, 
n=O 

n 

(d) Cn = L ak bn-k 
k=O 

(n = 0, 1, 2, ... ). 

00 

L Cn =AB. 
n=O 

That is, the product of two convergent series converges, and to the right 
value, if at least one of the two series converges absolutely. 

Proof Put 

Then 

en= aobo + (aob1 + a1bo) + ... + (aobn + a1bn-1 + ... + anbo) 

= a0 Bn + a1 Bn-l + · · · + anBo 

= ao(B + Pn) + a1(B + Pn-1) + · · · + an(B +Po) 

= AnB + aoPn + a1Pn-1 + ... + anPo 
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Put 

\'/e wish to show that Cn ---+ AB. Since An B • AB, it suffices to 
show that 

lim Yn = 0. 

Put 

n=O 

[It is here that we use (a).] Let e > 0 be given. By (c), fln • 0. Hence •.ve 
can choose N such that I Pn I ~ e for n ;;::: N, in which case 

IYnl ~ lfJoan + "· + fJNan-NI + lfJN+lan-N-1 + ·" + f3naol 

~ lf3oan + · · · + fJNan-NI +ea. 

Keeping N fixed, and letting n ---+ oo, we get 

lim sup I Yn I ~ ea, 
n-+ oo 

since ak---+ 0 ask---+ oo. Since e is arbitrary, (21) follows. 

Another question which may be asked is whether the series l:cn, if con
vergent, must have the sum AB. Abel showed that the answer _is in the affirma
tive. 

3.51 Theorem If the series l:an, l:bn, l:cn converge to A, B, C, and 
Cn = ao bn + ... + an bo' then c = AB. 

Here no assumption is made concerning absolute convergence. We shall 
give a simple proof (which depends on the continuity of power series) after 
Theorem 8.2. 

REARRANGEMENTS 

3.52 Definition Let {kn}, n = 1, 2, 3, ... , be a sequence in which every 
positive integer appears once and only once (that is, {kn} is a 1-1 function from 
J onto J, in the notation of Definition 2.2). Putting 

a'= ak 
n " 

(n=l,2,3, ... }, 

we say that l:a~ is a rearrangement of l:an . 
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If {sn}, {s~} are the sequences of partial sums of l:an, l:a~, it is easily seen 
that, in genetal, these two sequences consist of entiiely diffetent nambets. 
We are thus led to the problem of determining under what conditions all 
rearrangements of a convergent series will converge and whether the sums are 
necessarily the same. 

3.53 Example Consider the convergent series 

(22) 1-t+t-!+!--l;+·" 

and one of its rearrangements 

(23) 1 +t-t+t+t-!+t+-tr-1>-+ ... 

in which two positive terms are always followed by one negative. If s is the 
sum of (22), then 

s<1-!+!=i. 

Since 

1 1 1 0 
4k - 3 + 4k - 1 - 2k > 

for k ;:::: 1, we see that s~ < s~ < s~ < · · · , where s~ is nth partial sum of (23). 
Hence 

lim sups~ > s~ = !, 
n-+ oo 

so that (23) certainly does not converge to s [we leave it to the reader to verify 
that (23) does, however, converge]. 

This example illustrates the following theorem, due to Riemann. 

3.54 Theorem Let l:an be a series of real numbers which converges, but not 
absolutely. Suppose 

- oo ~ex~ p ~ oo. 

Then there exists a rearrangement l:a~ with partial sums s~ such that 

(24) lim inf s~ = ex, lim sups~ = p. 
n-+ oo n-+oo 

Proof Let 

(n = 1, 2, 3, ... ). 
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must both diverge. 
For if both were convergent, then 

would converge, contrary to hypothesis. Since 

N N N N 

b a,. = b (p,. - q,) = b p, - b q,' 
n=1 n=1 n=1 n=1 

divergence of "fp, and convergence of "fq, (or vice versa) implies diver-
gence of l:a, , again contrary to hypothesis. 

Now let P 1 , P2 , P3 , ••• denote the nonnegative terms of l:a,, in the 
order in which they occur, and let Q17 Q2 , Q3 , be the ab~olute value~ 
of the negative terms of l:a,., also in their original order. 

The series l:P,., l:Q, differ from l:p,, l:q, only by zero terms, and 
are therefore divergent. 

We shall construct sequences {m,}, {k,}, such that the series 

(25) P1 + ··· +P,l- Qt- ···- Qk1 +P,1+1 + ··· 

+P,2- Qk1+1- ... - Qk2 + .. ·, 

which clearly is a rearrangement of l:a,, satisfies (24). 
Choose real-valued sequences {ex,}, {[3,} such that ex,--+ ex, {3,--+ {3, 

ex, < p,, fJ1 > o. 
Let m1 , k1 be the smallest integers such that 

P1 + ··· +P,l >Pt. 

P1 + · · · + P m1 - Ql - · · · - Qk1 < exl; 

let m 2 , k 2 be the smallest integers such that 

P1 + ··· +P,l- Qt- ···- Qk1 +P,1+1 + ... +P,2 > fJ2, 

P1 + ··· +P,l- Ql- ···- Qk1 +Pm1+1 + ··· +P,2- Qk1+1 

- ... - Qk2 < ex2; 

and continue in this way. This is possible since l:P, and l:Q, diverge. 
If x,, y, denote the partial sums of (25) whose last terms are P ,", 

- Qkn• then 

Since P,--+ 0 and Q,--+ 0 as n--+ oo, we see that x, --+ {3, y,--+ ex. 
Finally, it is clear that no number less than ex or greater than f3 can 

be a subsequential limit of the partial sums of (25). 
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3.55 Theorem If"i:.an is a series of complex numbers which converges absolutely, 
then every rearrangement oj "f.an converges, and they all converge to the same sum. 

Proof Let 'fa~ be a rearrangement, with pat tial sums s~. Given e > 0, 
there exists an integer N such that m;;::: n;;::: N implies 

m 

(26) b I ail < 6 • 
i=n 

Now choose p such that the integet s 1, 2, ... , J.V ate all contained in the 
set kb k 2 , ••• , k0 (we use the notation of Definition 3.52). Then if n > p, 
the numbers a1, ... , aN will cancel in the difference sn - s~, so that 
isn s~ I < s, by (26). Hence {s~} converges to the same sum as {sn}. 

EXERCISES 

1. Prove that convergence of {sn} implies convergence of {I sn I}. Is the converse true? 

2. Calculate lim ('V n2 + n- n). 
n-+00 

3. If St = v2, and 

(n = 1, 2, 3, ... ), 

prove that {sn} converges, and that sn < 2 for n = 1, 2, 3, ... 
4. Find the upper and lower limits of the sequence {sn} defined by 

St =0; 

S. For any two real sequences {an}, {bn}, prove that 

lim sup (an + bn) :::;; lim sup an + lim sup bn, 
n-+ oo n-+00 n-+oo 

provided the sum on the right is not of the form oo- oo. 
6. Investigate the behavior (convergence or divergence) of :l:an if 

(a) On =Vn + 1- v-;;; 
(b) On = v-;;+1- V-;;; 

n 

(c) On= (\Y-;;- l)n; 

1 
(d) On = 1 + zn' for complex values of z. 

7. Prove that the convergence of :l:an implies the convergence of 

Van 
L:-n-, 

if On;;?: 0. 
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8. If La,. converges, and if {b,.} is monotonic and bounded, prove that La,. b,. con-
verges. 

9. Find the radius of convergence of each of the following power series: 

2" 
(c) ""- z" ,t.., n2 ' 

(b) L 'z", n. 
2" 

10. Suppose that the coefficients of the power series :La,. z" are integers, infinitely many 
of which are distinct from zero. Prove that the radius of convergence is at most 1. 

11. Suppose a,. > 0, s,. a1 + + a,., and .Ea,. diverges. 

(a) Prove that :L -
1
-"- diverges. +a,. 

(b) Prove that 

aN+l + ... + aN+k > 1 _ _.!_!!__ 
SN+l SN+k SN+k 

and deduce that :La,. diverges. 
s,. 

(c) Prove that 

""a,. and deduce that ,t.., 2 converges. 
s,. 

(d) What can be said about 

a,. 1 1 
2~----
s,. Sn-1 S,. 

L a,. 
1 +na,. 

and :L a,. ? 
1 + n2a,. · 

12. Suppose a,. > 0 and La,. converges. Put 

(a) Prove that 

00 

r,.= Lam. 
m=n 

if m < n, and deduce that :La,. diverges. 
r,. 
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(b) Prove that 

• I II 

13. Prove that the Cauchy product of two absolutely convergent series converges 
absolutely. 

14. If {s,.} IS a complex sequence, define 1ts arithmetic means a,. by 

(n =0, 1, 2, ... ). 

(a) If lim s,. = s, prove that lim a,. = s. 

(b) Construct a sequence {s,.} which does not converge, although lim a,.= 0. 
(c) Can it happen that s,. > 0 for all nand that lim sups,.= oo, although lim a,.= 0? 
(d) Put a,. = s,. - s,. _ t. for n > 1. Show that 

1 II 

s,.-a,.=--
1 

L:kak. 
n + k=l 

Assume that lim (na,.) = 0 and that {a,.} converges. Prove that {s,.} converges. 
[This gives a converse of (a), but under the additional assumption that na,.~ 0.] 
(e) Derive the last conclusion from a weaker hypothesis: Assume M < oo, 
I na,.J < M for all n, and lim a,. =a. Prove that lim s,. =a, by completing the 
following out1ine: 

If m < n, then 

m+ 1 1 " 
s,.- a,.=-- (a,.- am) + -- L (s,.- St). 

n-m n-m t=m+l 

For these i, 

(n - i)M (n - m - l)M 
Is,.- st) < i + 1 < m + 2 . 

Fix e > 0 and associate with each n the integer m that satisfies 

n-e 
m<1+e <m+l. 

Then (m + 1)/(n- m) < 1/e and Is,.- s1l <Me. Hence 

lim sup Is,.- al <Me. 
II-+ 00 

Since e was arbitrary, lim s,. =a. 
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15. Definition 3.21 can be extended to the case in which the a" lie in some fixed Rk. 
Absolute convergence is defined as convergence of :l: I alii· Show that Theorems 
3.22, 3.23, 3.25(a), 3.33, 3.34, 3.42, 3.45, 3.47, and 3.55 ate hue in this more 
general setting. (Only slight modifications are required in any of the proofs.) 

16. Fix a positive number IX. Choose x1 > v IX, and define x2, X3, X4, ••• , by the 
recursion formula 

(a) Prove that {x~~} decreases monotonically and that lim x,. = YIX. 

(h) Put ell x11 ,;;, and shO'tv that 

II+ 1 

so that, setting f3 = 2v;;, 

e,., <P(;j)'" (n = 1, 2, 3, ... ). 

(c) This is a good algorithm for computing square roots. since the recursion 
formula is simple and the convergence is extremely rapid. For example, if IX= 3 
and x1 = 2, show that etff3 < lo and that therefore 

Bs < 4' 10- 16
, 

17. Fix IX> 1. Take Xt > v;;, and define 
2 

IX+ Xn IX- X 11 
Xn+1 =-1 --L = Xn+ -1 + . 

(a) Prove that Xt > X3 > Xs > .. ·. 
(b) Prove that x2 < X4 < x6 < · · · . 
(c) Prove that lim x,. = V~. 

, X 11 Xn 

(d) Compare the rapidity of convergence of this process with the one described 
in Exercise 16. 

18. Replace the recursion formula of Exercise 16 by 

_p-1 +IX -p+l 
Xn+l- --x~~ - X11 

p p 

where p is a fixed positive integer, and describe the behavior of the resulting 
sequences {x,.}. 

19. Associate to each sequence a= {IX~~}, in which IX,. is 0 or 2, the real number 

oo IX 
x(a)= L: ~· 

II= 1 3 

Prove that the set of all x(a) is precisely the Cantor set described in Sec. 2.44. 
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20. Suppose {p~~} is a Cauchy sequence in a metric space X, and some subsequence 
{p,.,} converges to a point p e X. Prove that the full sequence {p~~} converges top. 

21. Prove the following analogue of Theorem 3.10(h): If {E~~} is a sequence of closed 
nonempty and bounded sets in a complete metric space X, if Ell => E,. + 1, and if 

lim diam E11 = 0, 
11-+00 

then n f E11 consists of exactly one point. 
22. Suppose X 1s a nonempty complete metnc space, and {<i,.J 1s a sequence of 

dense open subsets of X. Prove Baire's theorem, namely, that O fG11 is not 
empty. (In fact, it 1s dense in X.) Hint: Find a shrinking sequence of neighbor~ 
h.oods E,. such that£,. c G,., and apply Exercise 21. 

23. Suppose {p~~} and {q~~} are Cauchy sequences in a metric space X. Show that the 
sequence {d(pll, q~~)} converges. Hint: For any m, n, 

d(p11, qll) ~ d(pll, Pm) + d(Pm, qm) + d(qm , qll); 

it follows that 

I d(pll, qll) - d(pm , qm) I 
is small if m and n are large. 

24. Let X be a metric space. 
(a) Call two Cauchy sequences {p~~}, {q~~} in X equivalent if 

lim d(p~~, q,.) = 0. 
II-+ 00 

Prove that this is an equivalence relation. 
(b) Let X* be the set of all equivalence classes so obtained. If P eX*, Q eX*, 
{p,,} e P, {q~~} e Q, define 

!l.(P, Q) = lim d(pll, qll); 
11-+00 

by Exercise 23, this limit exists. Show that the number !l.(P, Q) is unchanged if 
{p~~} and {q~~} are replaced by equivalent sequences, and hence that fl. is a distance 
function in x•. 
(c) Prove that the resulting metric space X* is complete. 
(d) For each p eX, there is a Cauchy sequence all of whose terms are p; let Pp 
be the element of X* which contains this sequence. Prove that 

!l.(Pp, P4) = d(p, q) 

for all p, q e X. In other words, the mapping g; defined by g;(p) = P P is an isometry 
(i.e., a distance-preserving mapping) of X into X*. 

(e) Prove that g;(X) is dense in X*, and that g;(X) =X* if X is complete. By (d), 
we may identify X and g;(X) and thus regard X as embedded in the complete 
metric space X*. We call X* the completion of X. 

25. Let X be the metric space whose points are the rational numbers, with the metric 
d(x, y) =I x- y 1. What is the completion of this space? (Compare Exercise 24.) 



CONTINUITY 

The function concept and some of the related terminology were introduced in 
Definitions 2.1 and 2.2. Although we shall (in later chapters) be mainly interested 
in real and complex functions (i.e., in functions whose values are real or complex 
numbers) we shall also discuss vector-valued functions (i.e., functions with 
values in Rk) and functions with values in an arbitrary metric space. The theo
rems we shall discuss in this general setting would not become any easier if we 
restricted ourselves to real functions, for instance, and it actually simplifies and 
clarifies the picture to discard unnecessary hypotheses and to state and prove 
theorems in an appropriately general context. 

The domains of definition of our functions will also be metric spaces, 
suitably specialized in various instances. 

LIMITS OF FUNCTIONS 

4.1 Definition Let X and Y be metric spaces; suppose E c X, f maps E into 
Y, and p is a limit point of E. We write f(x) __. q as x __. p, or 

(1) limf(x) =q 
x-+p 
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if there is a point q e Y with the following property: For e~ery e > 0 there 
exists a o > 0 such that 

(2) dr(f(x), q) < e 

for all points x e E for which 

(3) 0 < dx(x,p) < 0. 

The symbols dr and dr refer to the distances in X and Y, respectively. 
If X and/ or Y are replaced by the real line, the complex plane, or by some 

euclidean space Rk, the distances tlx , tlr are of course replaced by absolute ~ alues, 
or by norms of differences (see Sec. 2.16). 

It should be noted that p e X, but that p need not be a point of E 
in the above definition. Moreover, even if peE, we may very well have 
f(p) ::/:- limx-+pf(x). 

We can recast this definition in terms of limits of sequences: 

4.1 Theorem Let X, Y, E, f, and p be as in Definition 4.1. Then 

(4) Iimf(x) =q 
x-+p 

if and only if 

(5) lim f(pn) =q 
n-+oo 

for every sequence {Pn} in E such that 

(6) Pn f:. p, lim Pn =p. 
n-+oo 

Proof Suppose ( 4) holds. Choose {Pn} in E satisfying (6). Let e > 0 
be given. Then there exists o > 0 such that dr(f(x), q) < e if x e E 
and 0 < dx(x, p) < o. Also, there exists N such that n > N implies 
0 < dx(Pn ,p) < o. Thus, for n > N, we have dy(f(pn), q) < e, which 
shows that (5) holds. 

Conversely, suppose ( 4) is false. Then there exists some e > 0 such 
that for every o > 0 there exists a point x e E (depending on o), for which 
dr(f(x), q) :2:: e but 0 < dx(x, p) < o. Taking on = 1/n (n =I, 2, 3, ... ), we 
thus find a sequence in E satisfying (6) for which (5) is false. 

Corollary Iff has a limit at p, this limit is unique. 

This follows from Theorems 3.2(b) and 4.2. 
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4 3 Definition Suppose we have two compJex functions,fand g, both defined 
on E. By f + g we mean the function which assigns to each point x of E the 
number f(x) + g(x). Similarly we define the difference f g, the product fg, 
and the quotientf/g of the two functions, with the understanding that the quo-
tient is defined only at those points x of E at which g(x) "I: 0. Iff assigns to each 
point x of E th@ sam@ numb@r c, th@n f is said to be a constant function, or 
simply a constant, and we write f = c. Iff and g are real functions, and if 
j(x) > g(x) for every x e £, we shaH sometimes wnte j > g, for brevtty. 

Similarly, if f and g map E into Rk, we define f + g and f · g by 

(f + g)(x) = f(x) + g(x), (f • g)(x) = f(x) • g(x); 

and if). is a real number, ().f)(x) = ).f(x). 

4.4 Theorem Suppose E c X, a metric space, p is a limit point of E, f and g 
are complex functions on E, and 

lim f(x) =A, lim g(x) =B. 
x-+p x-+p 

Then (a) lim (f + g)(x) = A + B; 
x-+p 

(b) lim (fg)(x) = AB; 
x-+p 

(c) lim (L)(x) =A, if B "I: 0. 
x-+p g B 

Proof In view of Theorem 4.2, these assertions follow immediately from 
the analogous properties of sequences (Theorem 3.3). 

Remark Iff and g map E into Rk, then (a) remains true, and (b) becomes 
(b') lim (f • g)(x) = A • B. 

x-+p 

(Compare Theorem 3.4.) 

CONTINUOUS FUNCTIONS 

4.5 Definition Suppose X and Y are metric spaces, E c X, p e E, and f maps 
E into Y. Then f is said to be continuous at p if for every e > 0 there exists a 
c5 > 0 such that 

dr(f(x),f(p)) < e 

for all points x e E for which dx(x, p) < c5. 
Iff is continuous at every point of E, then f is said to be continuous on E. 
It should be noted that f has to be defined at the point p in order to be 

continuous at p. (Compare this with the remark following Definition 4.1.) 
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lfp is an isolated point of E, then our definition implies that every function 
f which has E as its domain of definition is continuous at p. For, no matter 
which e > 0 we choose, we can ptck c5 > 0 so that the only pomt x e E tor whtch 
dx(x, p) < b is x = p; then 

dr(f(x),f(p)) = 0 < e. 

4.6 Theorem In the situation given in Definition 4.5, assume also that p is a 
,. · · rE '!',' r· · ·r , ry ·rr J'(} "(} mmt pomt o.r.rum.r zs contmuous at p z.r ana om z.rtmx ... pl x J 71 . 

Proof This is clear if v;e compare Definitions 4.1 and 4.5. 

We now turn to compostbons of functiOns. A bnef statement of the 
following theorem is that a continuous function of a continuous function is 
continuous. 

4. 7 Theorem Suppose X, Y, Z are metric spaces, E c X, f maps E into Y, g 
maps the range off, f(E), into Z, and h is the mapping of E into Z defined by 

h(x) = g(f(x)) (x e E). 

Iff is continuous at a point peE and if g is continuous at the point f(p), then h is 
continuous at p. 

This function his called the composition or the composite off and g. The 
notation 

h =gof 

is frequently used in this context. 

Proof Let e > 0 be given. Since g is continuous at f(p), there exists 
11 > 0 such that 

dz(g(y), g(f(p))) < e if dy(y,f(p)) < 11 andy ef(E). 

Since f is continuous at p, there exists b > 0 such that 

dr(f(x),f(p)) < 11 if dx(x, p) <band x e E. 

It follows that 

dz(h(x), h(p)) = dz(g(f(x)), g(f(p))) < e 

if dx(x, p) <band x e E. Thus his continuous at p. 

4.8 Theorem A mapping f of a metric space X into a metric space Y is con
tinuous on X if and only iff- 1 

( V) is open in X for every open set V in Y. 

(Inverse images are defined in Definition 2.2.) This is a very useful charac
terization of continuity. 
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Proof Suppose/is continuous on X and Vis an open set in Y. We have 
to show that every pomt of 1 1(V) ts an mtenor pomt of 1 1(V). So, 
suppose p e X and f(p) e V. Since V is open. there exists e > 0 such that 
y e V if dr(f(p), y) < e; and since f is continuous at p, there exists b > 0 
such that dr(f(x),f(p)) < e if dx(x, p) < b. Thus x ef- 1(V) as soon as 
dx(x,p) <b. 

Conversely, suppose f 1(V) is open in X for every open set V in Y. 
Fix p e 1' and e > 0, let V be the set of ally e Y SlJCh that dy(y,f(p)) < e 
Then Vis open; hencef- 1(V) is open; hence there exists b > 0 such that 
x ef 1(P )as soon as dx(P, x) < c>. But if x e f 1(V), then f(x) e V, so 
that dy({(x), {(p)) < e. 

This completes the proof. 

Corollary A mapping f of a metric space X into a metric space Y is continuous if 
and only iff- 1 (C) is closed in X for every closed set C in Y. 

This follows from the theorem, since a set is closed if and only if its com
plement is open, and sincef- 1(Ec) = [f- 1(E)Y for every E c Y. 

We now turn to complex-valued and vector-valued functions, and to 
functions defined on subsets of Rk. 

4.9 Theorem Let f and g be complex continuous functions on a metric space X. 
Thenf + g,fg, andffg are continuous on X. 

In the last case, we must of course assume that g(x) "I: 0, for all x e X. 

Proof At isolated points of X there is nothing to prove. At limit points, 
the statement follows from Theorems 4.4 and 4.6. 

4.10 Theorem 

(7) 

(a) Let / 1, ••• , .h be real functions on a metric space X, and let f be the 
mapping of X into Rk defined by 

f(x) = (Ji(x), ... ,h(x)) (x eX); 

then f is continuous if and only if each of the functions Ji, ... , h is continuous. 
(b) Iff and g are continuous mappings of X into Rk, then f + g and f • g 
are continuous on X. 

The functions Ji, ... , h are called the components of f. Note that 
f + g is a mapping into R\ whereas f • g is a real function on X. 
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Proof Part (a) follows from the inequalities 

l.fiCr)-!Nll :s: 1rcxl- r(y) 1 -{ t 1/,Crl-t.CYl l2r. 
forj 1, ... , k. Part (b) follows from (a) and Theorem 4.9. 

4.11 Examples If xh ... , xk are the coordinates of the point x e Rk, the 
functions t!J, defined by 

(8) 

are continuous on Rk, since the inequality 

shows that we may take b = e in Definition 4.5. The functions ¢ 1 are sometimes 
called the coordinate functions. 

Repeated application of Theorem 4.9 then shows that every monomial 

(9) x:1~2 ... x::k 
where nh ... , nk are nonnegative integers, is continuous on Rk. The same is 
true of constant multiples of (9), since constants are evidently continuous. It 
follows that every polynomial P, given by 

(10) 

is continuous on Rk. Here the coefficients c"t'""k are complex numbers, n1 , ••• , nk 
are nonnegative integers, and the sum in (10) has finitely many terms. 

Furthermore, every rational function in x1, ... , xk, that is, every quotient 
of two polynomials of the form (1 0), is continuous on Rk wherever the denomi
nator is different from zero. 

From the triangle inequality one sees easily that 

(11) 

Hence the mapping x--. I xI is a continuous real function on Rk. 
If now f is a continuous mapping from a metric space X into Rk, and if <P 

is defined on X by setting </J(p) = lf(p)l, it follows, by Theorem 4.7, that <Pis a 
continuous real function on X. 

4.12 Remark We defined the notion of continuity for functions defined on a 
subset E of a metric space X. However, the complement of E in X plays no 
role whatever in this definition (note that the situation was somewhat different 
for limits of functions). Accordingly, we lose nothing of interest by discarding 
the complement of the domain off This means that we may just as well talk 
only about continuous mappings of one metric space into another, rather than 
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of mappings of subsets. This simplifies statements and proofs of some theorems. 
We have already made use of this principle in Theorems 4.8 to 4.10, and will 
contmue to do so m the followmg section on compactness. 

CONTINUITY AND COMPACTNESS 

4.13 Definition A mapping f of a set E into Rk is said to be bounded if there is 
a real number M such that I f(x) I =::; M for all x e E. 

4.14 Theorem Suppose f is a continuous mapping of a compact metric space 
X into a mezric space Y. Then f(X) is compact. 

Proof Let {VIZ} be an open cover off( X). Sincefis continuous, Theorem 
4.8 shows that each of the sets f- 1(VIZ) is open. Since X is compact, 
there are finitely many indices, say a1, ••• , an, such that 

(12) X cf-1(VIZ) u "· u f- 1(VIZJ. 

Sincef(f- 1(£)) c E for every E c Y, (12) implies that 

(13) f(X) c vi%1 u ... u VIZn. 

This completes the proof. 

Note: We have used the relation f(f- 1(E)) c E, valid for E c Y. If 
E c X, thenf- 1(f(E)) => E; equality need not hold in either case. 

We shall now deduce some consequences of Theorem 4.14. 

4.15 Theorem Iff is a continuous mapping of a compact metric space X into 
Rk, then f(X) is closed and bounded. Thus, f is bounded. 

This follows from Theorem 2.41. The result is particularly important 
when .f is real: 

4.16 Theorem Suppose f is a continuous real function on a compact metric 
space X, and 

(14) M = sup f(p), m = inf f(p). 
peX peX 

Then there exist points p, q eX such thatf(p) = M andf(q) = m. 

The notation in (14) means that M is the least upper bound of the set of 
all numbersj(p), where p ranges over X, and that m is the greatest lower bound 
of this set of numbers. 
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The conclusion may also b@ stat@d as follows: There exist points p and q 
in X such that f(q) ~f(x) ~f(p) for all x eX; that is, f attains its maximum 
(at p) and Its mmtmum (at q). 

Proof By Theorem 4.15, f( X) is a closed and bounded set of real num
bers; hence f(X) contains 

M supf( :t'") and m inLf( 1'), 

by Theorem 2 28 

4.17 Theorem Suppose f is a continuous 1-1 mapping of a compact metric 
space X onto a metric vpace Y Then the inverse mapping f- 1 defined on Y by 

(xe X) 

is a continuous mapping of Y onto X. 

Proof Applying Theorem 4.8 to .f- 1 in place off, we see that it suffices 
to prove thatf(V) is an open set in Y for every open set V in X. Fix such 
a set V. 

The complement V c of V is closed in X, hence compact (Theorem 
2.35); hence f(Vc) is a compact subset of Y (Theorem 4.14) and so is 
closed in Y (Theorem 2.34). Since.fis one-to-one and onto, f(V) is the 
complement off( V c). Hence f( V) is open. 

4.18 Definition Let/be a mapping of a metric space X into a metric space Y. 
We say thatfis uniformly continuous on X if for every e > 0 there exists{)> 0 
such that 

(15) dy(f(p),f(q)) < B 

for all p and q in X for which dx(P, q) <b. 
Let us consider the differences between the concepts of continuity and of 

uniform continuity. First, uniform continuity is a property of a function on a 
set, whereas continuity can be defined at a single point. To ask whether a given 
function is uniformly continuous at a certain point is meaningless. Second, if 
f is continuous on X, then it is possible to find, for each e > 0 and for each 
point p of X, a number{) > 0 having the property specified in Definition 4.5. This 
{)depends one and on p. If/is, however, uniformly continuous on X, then it is 
possible, for each e > 0, to find one number{)> 0 which will do for all points 
pof X. 

Evidently, every uniformly continuous function is continuous. That the 
two concepts are equivalent on compact sets follows from the next theorem. 
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4.19 Theorem [.et f he a continuouv mapping of a compact metric space X 
into a metric space Y. Then f is uniformly continuous on X. 

(16) 

(17) 

(18) 

(19) 

(20) 

Proof Let e > 0 be given. Since f is continuous, we can associate to 
each point p e X a posith e number lj>(p) such that 

q eX, dx(P, q) < lj>(p) implies dr(f(p), f(q)) < 2· 

Let J(p) be the set of all q eX for which 

dx(P, q) < !l/J(p). 

Since p e J(p), the collection of all sets J(p) is an open cover of X; and 
since X is compact, there is a finite set of points p 1, .•• , Pn in X, such that 

We put 
b =! min [¢(Pt), · ·., ¢(Pn)]. 

Then b > 0. (This is one point where the finiteness of the covering, in
herent in the definition of compactness, is essential. The minimum of a 
finite set of positive numbers is positive, whereas the inf of an infinite set 
of positive numbers may very well be 0.) 

Now let q and p be points of X, such that dx(P, q) <b. By (18), there 
is an integer m, 1 ~ m :S n, such that p e J (Pm); hence 

and we also have 

dx(q, Pm) ~ dx(P, q) + dx(P, Pm) < D + !l/>(Pm) :S l/J{pm). 

Finally, (16) shows that therefore 

dr(f(p),f(q)) :S dr(f(p),f(Pm)) + dr(f(q),f(Pm)) < B. 

This completes the proof. 

An alternative proof is sketched in Exercise 10. 
We now proceed to show that compactness is essential in the hypotheses 

of Theorems 4.14, 4.15, 4.16, and 4.19. 

4.20 Theorem Let E be a noncompact set in R1• Then 

(a) there exists a continuous function onE which is not bounded,· 
(b) there exists a continuous and bounded function on E which has no 
maximum. 

If, in addition, E is bounded, then 
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(21) 

(22) 

(23) 

(c) there ~xists a continuous function on E which is not uniformly 
continuous. 

Proof Suppose first that E is bounded, so that there exists a limit point 
x0 of E which is not a point of E. Consider 

f(x) 
1 

(x e E). 
X Xo 

Thts ts continuous onE (Theorem 4.9), but evtdently unbounded. To see 
that (21) is not uniformly continuous, let e > 0 and~> 0 be arbitrary. and 
choose a point x e E such that I x - x0 I < ~. Taking t close enough to 
x0 , we can then make the difference lf(t) f(x) I greater than e, although 
It- xl < ~. Since this is true for every~> O,fis not uniformly continu
ous on E. 

The function g given by 

1 
g(x) = 1 + (x - x

0
) 2 (xeE) 

is continuous on E, and is bounded, since 0 < g(x) < 1. It is clear that 

sup g(x) = 1, 
xeE 

whereas g(x) < 1 for all x e E. Thus g has no maximum on E. 
Having proved the theorem for bounded sets E, let us now suppose 

that E is unbounded. Then f(x) = x establishes (a), whereas 

x2 
h(x) = 1 2 

+x 
(xeE) 

establishes (b), since 

sup h(x) = 1 
xeE 

and h(x) < 1 for all x e E. 
Assertion (c) would be false if boundedness were omitted from the 

hypotheses. For, let E be the set of all integers. Then every function 
defined on E is uniformly continuous on E. To see this, we need merely 
take~< 1 in Definition 4.18. 

We conclude this section by showing that compactness is also essential in 
Theorem 4.17. 
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4.21 Example Let X be the half-open interval [0, 2n) on the real line, and 
let f be the mapping of X onto the cit cle Y consisting of all points whose distance 
from the origin is 1, given by 

(24) f(t) = (cos t, sin t) (0 ~ t < 2n). 

The continuity of the trigonometric functions cosine and sine, as well as their 
periodicity properties, will be established in Chap. 8. These results show that 
f is a continuous 1-1 mapping of X onto Y. 

However, the mverse mappmg (which exists, smce I IS one-to-one and 
onto) fails to be continuous at the point (1, 0) = f(O). Of course, X is not com-
pact in this example. (It may be of interest to observe that f -t fails to be 
continuous in spite of the fact that Y is compact!) 

CONTINUITY AND CONNECTEDNESS 

4.22 Theorem Iff is a continuous mapping of a metric space X into a metric 
space Y, and if E is a connected subset of X, then f(E) is connected. 

Proof Assume, on the contrary, thatf(E) =Au B, where A and Bare 
nonempty separated subsets of Y. Put G =En f- 1(A), H =En f- 1(B). 

Then E = G u H, and neither G nor His empty. 
Since A c A (the closure of A), we have G cf- 1(A); the latter set is 

closed, sincejis continuous; hence G cf- 1(A). It follows thatf(G) cA. 
Since f(H) =Band An B is empty, we conclude that G n His empty. 

The same argument shows that G n His empty. Thus G and Hare 
separated. This is impossible if E is connected. 

4.23 Theorem Let f be a continuous real function on the interval [a, b ]. If 
f(a) <f(b) and if c is a number such that f(a) < c <f(b), then there exists a 
point x e (a, b) such that f(x) =c. 

A similar result holds, of course, if f(a) > f(b). Roughly speaking, the 
theorem says that a continuous real function assumes all intermediate values on 
an interval. 

Proof By Theorem 2.47, [a, b] is connected; hence Theorem 4.22 shows 
that f([a, b]) is a connected subset of R 1

, and the assertion follows if we 
appeal once more to Theorem 2.47. 

4.24 Remark At first glance, it might seem that Theorem 4.23 has a converse. 
That is, one might think that if for any two points x1 < x 2 and for any number c 
betweenf(x1) andf(x2) there is a point x in (x1, x2) such thatf(x) = c, then/ 
must be continuous. 

That this is not so may be concluded from Example 4.27(d). 
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DISCONTINUITIES 

If x is a point in the domain of definition of the function f at which f is not 
continuous, we say thatjis discontinuous at x, or that/ has a discontinuity at x. 
Iff is defined on an interval or on a segment, it is customary to divide discon-
tinuities into two types. Before giving this classification, we have to define the 
rzght-hand and the lejt-hand lzmzts of] at x, which we denote byf(x +) andf(x- ), 
respectively. 

4.25 Definition Let f be defined on (a, b). Consider any point x such that 
a ~ x < h. We ·.vrite 

if f(tn)-+ q as n-+ oo, for all sequences {tn} in (x, b) such that tn-+ x. To obtain 
the definition of f(x- ), for a < x < b, we restrict ourselves to sequences { tn} in 
(a, x). 

It is clear that any point x of (a, b), limf(t) exists if and only if 
t-+x 

f(x+) = f(x-) = limf(t). 
t-+x 

4.26 Definition Letfbe defined on (a, b). Ifjis discontinuous at a point x, 
and if f(x +) and f(x-) exist, then f is said to have a discontinuity of the first 
kind, or a simple discontinuity, at x. Otherwise the discontinuity is said to be of 
the second kind. 

There are two ways in which a function can have a simple discontinuity: 
either f(x+) =1= f(x-) [in which case the valuef(x) is immaterial], or f(x+) = 
f(x-) =I= f(x). 

4.27 Examples 
(a) Define 

f(x) = (~ (x rational), 
(x irrational). 

Thenfhas a discontinuity of the second kind at every point x. since 
neither f(x +) nor f(x-) exists. 
(b) Define 

f(x) = (~ (x rational), 
(x irrational). 
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1'1 ,. 0 0 tenT Is contmuous at x 
kind at every other point. 

0 and has a discontinuity of the second 

(c) Define 

( -3 <X< -2), 

( -2 ~X< 0), 

(0 ~X< 1). 

Then f has a simple discontinuity at x - 0 and is continuous at 
every other point of (- 3, 1 ). 
(d) Define 

{ 

0 1 
sm-

f(x) = 0 x 
(x :1: 0), 

(x = 0). 

Since neither f(O +) nor f(O-) exists, f has a discontinuity of the 
second kind at x = 0. We have not yet shown that sin xis a continuous 
function. If we assume this result for the moment, Theorem 4. 7 implies 
that f is continuous at every point x =I= 0. 

MONOTONIC FUNCTIONS 

We shall now study those functions which never decrease (or never increase) on 
a given segment. 

4.28 Definition Let f be real on (a, b). Then f is said to be monotonically 
increasing on (a, b) if a< x < y < b implies f(x) ~f(y). If the last inequality 
is reversed, we obtain the definition of a monotonically decreasing function. The 
class of monotonic functions consists of both the increasing and the decreasing 
functions. 

4.29 Theorem Let f be monotonically increasing on (a, b). Then f(x+) and 
!(x-) exist at every point of x of(a, b). More precisely, 

(25) sup f(t) =f(x-) ~f(x) ~f(x+) = inf /(t). 
a<t<x x<t<b 

Ft.trthermore, if a < x < y < b, then 

(26) f(x+) <f(y- ). 

Analogous results evidently hold for monotonically decreasing functions. 



96 PRINCIPLES OF MATHEMATICAL ANALYSIS 

(27) 

(28) 

(29) 

(30) 

Proof By hypothesis, the set ofnumbers](t), where a< t < x, IS bounded 
above by the number ((x), and therefore has a least upper bound which 
we shall denote by A. Evidently A 5:./(x). We have to show that 

Let e > 0 be given. It follows from the definition of A as a least 
upper bound that there exists ~ > 0 such that a < x - ~ < x and 

A - e <](x- {))<A. 

s· ~· · h mce :r IS mono tome, weave 

f(x fJ) 5/. f(t) < A (x fJ < t < x). 

Combining (27) and (28), we see that 

lf(t)- AI< e (x- ~ < t < x). 

Hencef(x-) =A. 
The second half of (25) is proved in precisely the same way. 
Next, if a < x < y < b, we see from (25) that 

f(x+) = inf f(t) = inf f(t). 
x<t<b x<t<y 

The last equality is obtained by applying (25) to (a, y) in place of (a, b). 
Similarly, 

f(y-) = sup f(t) = sup f(t). 
a<t<y x<t<y 

Comparison of (29) and (30) gives (26). 

Coronary Monotonic functions have no discontinuities of the second kind. 

This corollary implies that every monotonic function is discontinuous at 
a countable set of points at most. Instead of appealing to the general theorem 
whose proof is sketched in Exercise 17, we give here a simple proof which is 
applicable to monotonic functions. 

4.30 Theorem Let f be monotonic on (a, b). Then the set of points of (a, b) at 
which f is discontinuous is at most countable. 

Proof Suppose, for the sake of definiteness, that f is increasing, and 
let E be the set of points at which f is discontinuous. 

With every point x of E we associate a rational number r(x) such 
that 

f(x-) < r(x) <fix+). 
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Since x1 < x 2 implies f(x1 +) ~f(x2 - ), we see that r(x1) ¥= r(x2 ) if 
Xt ¥= x2. 

We have thus established a 1-1 correspondence between the set E and 
a subset of the set of rational numbers. The latter, as we know, is count-
a e. 

4.31 Remark It should be noted that the discontinuities of a monotonic 
function need not be isolated. In fact, given any countable subset E of (a, b), 
which may even be dense, we can construct a function f, monotonic on (a, b), 
discontinuous at every point of E, and at no other point of (a, b). 

To show this, Jet the points of E he arranged in a sequence {xn}, 
n = 1, 2, 3,.... Let {en} be a sequence of positive numbers such that I:cn 
converges. Define 

(31) f(x) L Cn (a< x <b). 
Xn<x 

The summation is to be understood as follows: Sum over those indices n 

for which Xn < x. If there are no points Xn to the left of x, the sum is empty; 
following the usual convention, we define it to be zero. Since {31) converges 
absolutely, the order in which the terms are arranged is immaterial. 

We leave the verification of the following properties off to the reader: 

(a) f is monotonicaJly increasing on (a, b); 
(b) fis discontinuous at every point of E; in fact, 

f(xn+)- f(xn-) =en. 

(c) f is continuous at every other point of (a, b). 

Moreover, it is not hard to see thatf(x-) =f(x) at all points of (a, b). If 
a function satisfies this condition, we say that f is continuous from the left. If 
the summation in (31) were taken over all indices n for which xn ~ x, we would 
havef(x+) = f(x) at every point of (a, b); that is, fwould be continuous from 
the right. 

Functions of this sort can also be defined by another method; for an 
example we refer to Theorem 6.16. 

INFINITE LIMITS AND LIMITS AT INFINITY 

To enable us to operate in the extended real number system, we shall now 
enlarge the scope of Definition 4.1, by reformulating it in terms of neighborhoods. 

For any real number x, we have already defined a neighborhood of x to 
be any segment (x- ~' x + ~). 
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4.32 Definition For any real c, the set of real numbers x such that x > c is 
called a neighborhood of+ oo and is written (c, + oo). Similarly, the set (- oo, c) 
is a neighborhood of oo. 

4.33 Definition Let j be a real funct10n defined on E c R. We say that 

f(t) -+ A as t-+ x, 

where A and x are in the extended real number system, if for every neighborhood 
U of A there is a neighborhood V of x such that V n E is not empty, and such 
thatf(t) e U for all t e V n E, t ¥= x. 

A moment's consideration will show that this coincides with Definition 
4.1 when A and x are real. 

The analogue of Theorem 4.4 is still true, and the proof offers nothmg 
new. We state it, for the sake of completeness. 

4.34 Theorem Let f and g be defined on E c R. Suppose 

Then 
f(t)-+ A, g(t)-+ B 

(a) f(t)-+ A' implies A' =A. 
(b) (f + g)(t)-+ A + B, 
(c) (fg)(t)-+ AB, 
(d) (f/g)(t)-+ A/B, 

as t-+ x. 

provided the right members of (b), (c), and (d) are defined. 
Note that oo - oo, 0 · oo, oo/oo, A/0 are not defined (see Definition 1.23). 

EXERCISES 

1. Suppose f is a real function defined on R 1 which satisfies 

lim [f(x +h)- f(x- h)] =0 
11-+0 

for every x e R 1
• Does this imply that f is continuous? 

2. Iff is a continuous mapping of a metric space X into a metric space Y, prove that 

!(E) cf(E) 

for every set E c X. (2 denotes the closure of E.) Show, by an example, that 

/(2) can be a proper subset of f(E). 
3. Let /be a continuous rea] function on a metric space X. Let Z (f) (the zero set of/) 

be the set of aJl p e X at which f(p) = 0. Prove that Z(/) is cJosed. 
4. Let f and g be continuous mappings of a metric space X into a metric space Y, 
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and let E be a dense subset of X. Prove that f(E) is dense in f(X). If g(p) = f(p) 

for all peE, prove that g(p) -](p) for all p e :X. (In other words, a continuous 
mapping is determined by its values on a dense subset of its domain.) 

5. Iff is a real continuous function defined on a closed set E c R 1
, prove that there 

exist continuous real functions g on R 1 such that g(x) f(x) for all x e E. (Such 
functions g are called continuous extensions off from E to R 1 

.) Show that the 
result becomes false if the word "closed" is omitted. Extend the result to vector
valued functions Hint· Let the graph of g be a straight line on each of the seg-
ments which constitute the complement of E (compare Exercise 29, Chap. 2). 
The result remains true if R 1 is replaced by any metric space, but the proof is not 
so simple. 

6. If /is defined onE, the graph of /is the set of points (x, f(x)), for x e E. In partic
ular, if E is a set of real numbers, and f is real valued, the graph off is a subset of 
the plane. 

Suppose E is compact, and prove that f is continuous on E if and only if 
its graph is compact. 

7. If E c X and iff is a function defined on X, the restriction off to E is the function 
g whose domain of definition is E, such that g(p) =f(p) for peE. Define/and g 

on R2 by: /(0, 0) = g(O, 0) = 0, f(x, y) = xy2 /(x 2 + y 4
), g(x, y) = xy2 f(x 2 + y6

) 

if (x, y) i= (0, 0). Prove that f is bounded on R 2
, that g is unbounded in every 

neighborhood of (0, 0), and that f is not continuous at (0, 0); nevertheless, the 
restrictions of both f and g to every straight line in R 2 are continuous! 

8. Let f be a real uniformly continuous function on the bounded set E in R 1
• Prove 

that f is bounded on E. 
Show that the conclusion is false if boundedness of E is omitted from the 

hypothesis. 
9. Show that the requirement in the definition of uniform continuity can be rephrased 

as follows, in terms of diameters of sets: To every e > 0 there exists a 8 > 0 such 
that diam /(E) < e for all E c X with diam E < 8. 

10. Complete the details of the following alternative proof of Theorem 4.19: Iff is not 
uniformly continuous, then for some e > 0 there are sequences {.Pn}, {qn} in X such 
that dx(Pn, qn) ~ 0 but dy(f(pn),f(qn)) >e. Use Theorem 2.37 to obtain a contra
diction. 

11. Suppose f is a uniformly continuous mapping of a metric space X into a metric 
space Y and prove that {/(xn)} is a Cauchy sequence in Y for every Cauchy se
quence {xn} in X. Use this result to give an alternative proof of the theorem stated 
in Exercise 13. 

12. A uniformly continuous function of a uniformly continuous function is uniformly 
continuous. 

State this more precisely and prove it. 
13. Let E be a dense subset of a metric space X, and let f be a uniformly continuous 

real function defined on E. Prove that/has a continuous extension from E to X 
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(see ExerciseS for terminology). (Uniqueness follows from Exercise 4.) Hint: For 
each p eX and each positive integer n, let V,.(p) be the set of all q e E with 
d(p, q) < 1/n. Use Exercise 9 to show that the intersection of the cJosures of the 
sets /(Vt(p)), {(V2(p)), ... , consists of a single point, say g(p), of R 1• Prove that 
the function g so defined on X is the desired extension of): 

Could the range space R1 be replaced by Rk 1 By any compact metric space? 
By any complete metric space 1 By any metric space 1 

14. Let I [0, 1] be the closed unit interval. Suppose f is a continuous mapping of I 
into I. Prove that f(x) = x for at least one x e /. 

15. Call a mappmg of X mto Y open d j ( V) ts an open set m Y whenever Vis an open 
set in X. 

Prove that every continuous open mapping of R 1 into R1 is monotonic. 
16. Let [x] denote the largest integer contained in x, that is, [x] is the integer such 

that x- 1 < [x] < x; and let (x) = x- [x] denote the fractional part of x. What 
discontinuities do the functions [x] and (x) have? 

17. Let/be a real function defined on (a, b). Prove that the set of points at which/ 
has a simple discontinuity is at most countable. Hint: Let E be the set on which 
f(x-) <f(x+ ). With each point x of E, associate a triple (p, q, r) of rational 
numbers such that 
(a) f(x-) < p <f(x+ ), 
(b) a< q < t < x implies/(t) <p, 
(c) x < t < r < b implies/(t) > p. 

The set of all such triples is countable. Show that each triple is associated with at 
most one point of E. Deal similarly with the other possible types of simple dis
continuities. 

18. Every rational x can be written in the form x = m/n, where n > 0, and m and n are 
integers without any common divisors. When x = 0, we take n = 1. Consider the 
function f defined on R 1 by 

f(x) = {~ 
(x irrational), 

(x=;). 
Prove that f is continuous at every irrational point, and that /has a simple discon
tinuity at every rational point. 

19. Suppose f is a real function with domain R 1 which has the intermediate value 
property: If f(a) < c <f(b), then/(x) = c for some x between a and b. 

Suppose also, for every rational r, that the set of all x with/(x) = r is closed. 
Prove that f is continuous. 
Hint: If x,. ~ Xo but f(x,.) > r > f(xo) for some r and all n, then /(t,.) = r 

for some t,. between xo and x,; thus t,. ~ Xo. Find a contradiction. (N. J. Fine, 
Amer. Math. Monthly, vol. 73, 1966, p. 782.) 
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20. If E is a nonempty subset of a metric space X, define the distance from x e X to E 
by 

PE(x) infd(x, z). 
uE 

(a) Prove that pE(x) - 0 tf and only if x e E. 
(b) Prove that PE is a uniformly continuous function on X, by showing that 

I PE(x) - PE(Y) I =:::;: d(x, y) 

for all x eX, y eX. 
Hint: pE(x) < d(x, z) < d(x, y) ± d(y, z). so that 

pE(x) =:::;: d(x, y) ± pE(y). 

21. Suppose K and Fare disjoint sets in a metric space X, K is compact, F is closed. 
Prove that there exists ~ > 0 such that d(p, q) > ~ if p e K, q e F. Hint: (Jl' is a 
continuous positive function on K. 

Show that the conclusion may fail for two disjoint closed sets if neither is 
compact. 

22. Let A and B be disjoint nonempty closed sets in a metric space X, and define 

p .. (p) 
f(p) = p_.(p) ± P s(p) (p E X). 

Show that/is a continuous function on X whose range lies in [0, 1], thatf(p) = 0 
precisely on A and/(p) = 1 precisely on B. This establishes a converse of Exercise 
3: Every closed set A c X is Z(f) for some continuous real f on X. Setting 

v = /- 1([0, !)), w = {- 1((!, 1]), 

show that V and Ware open and disjoint, and that A c V, B c W. (Thus pairs of 
disjoint closed sets in a metric space can be covered by pairs of disjoint open sets. 
This property of metric spaces is called normality.) 

23. A real-valued function f defined in (a, b) is said to be convex if 

f( Ax+ (1 - ,\)y) =:::;: ,\f(x) + (1 - ,\)f(y) 

whenever a < x < b, a < y < b, 0 < ,\ < 1. Prove that every convex function is 
continuous. Prove that every increasing convex function of a convex function is 
convex. (For example, iff is convex, so is e1.) 

If /is convex in (a, b) and if a< s < t < u < b, show that 

f~(t...;....) _-.;;.....f(~s) f(u)- f(s) < f(u)- f(t) 
=:::;: - • 

t-s u-s u-t 

24. Assume that/is a continuous real function defined in (a, b) such that 

!( x ~ Y) =:::;: f(x) ~ f(y) 

for all x, y e (a, b). Prove that/is convex. 
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25. If A c R" and B c R", define A + B to he the set of aJJ sums x + y with x E A, 

yeB. 
(a) If K is compact and Cis closed in R", prove that K + Cis closed. 

Hint: Take z ¢ K + C, put F= z- C, the set of a11 z- y withy e C. Then 
K and Fare disjoint. Choose 8 as in Exercise 21. Show that the open ball with 
center z and radius~ does not intersect K I C. 
(b) Let oc be an irrational real number. Let C1 be the set of all integers, let C2 be 
the set of all noc with n E cl. Show that cl and c2 are closed subsets of R1 whose 
sum C, ± C2 is not closed, by showing that c. ± C2 is a countable dense subset 
of R1

• 

26. Suppose X, Y, Z are metric spaces, and Y is compact. Let f map X into Y, let 
g be a continuous one-to-one mapping of Y into Z, and put h(x) = g(f(x)) for 
xeX. 

Prove that f is uniformly continuous if h is uniformly continuous. 
Hint: g- 1 has compact domain g( Y), and f(x) = g- 1(h(x)). 

Prove also that f is continuous if h is continuous. 
Show (by modifying Example 4.21, or by finding a different example) that 

the compactness of Y cannot be omitted from the hypotheses, even when X and 
Z are compact. 



5 
DIFFERENTtL\TION 

In this chapter we shall (except in the final section) confine our attention to real 
functions defined on intervals or segments. This is not just a matter of con
venience, since genuine differences appear when we pass from real functions to 
vector-valued ones. Differentiation of functions defined on Rk will be discussed 
in Chap. 9. 

THE DERIVATIVE OF A REAL FUNCTION 

5.1 Definition Letfbe defined (and real-valued) on [a, b]. For any x e [a, b] 
form the quotient 

(1) </J(t) = f(t) - f(x) 
t-x 

(a < t < b, t =F x), 

and define 

(2) f'(x) = lim </J(t ), 
t-+x 
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provided this limit exists in accordance with Definition 4.1. 
We thus associate With the functiOn 1 a functiOn 1' whose domam 

is the set of points x at which the limit (2) exists; f' is called the derivative 
off. 

Iff' is defined at a point x, we say that f is d:ijfe1 entiable at x. Iff' is 
defined at every point of a set E c: [a, b], we say that/is differentiable on E. 

It is possible to consider right-hand and left-hand limits in (2); this leads 
to the definition of right-hand and left-hand derivatives In particular, at the 
endpoints a and b, the derivative, if it exists, is a right-hand or left-hand deriva-
tive, respectively. We shall not, however, discuss one-sided derivatives m any 
detail. 

Iff is defined on a segment (a, b) and if a< x < b, then f'(x) is defined 
by (1) and (2), as abo"vre. Butf'(a) andf'(h) are not defined in this case. 

5.2 Theorem Letfbe defined on [a, b]. Iff is differentiable at a point x e [a, b], 
then f is continuous at x. 

Proof As t -+ x, we have, by Theorem 4.4, 

f(t)- f(x) , 
f(t) - f(x) = · (t - x) -+ f (x) · 0 = 0. 

t- X 

The converse of this theorem is not true. It is easy to construct continuous 
functions which fail to be differentiable at isolated points. In Chap. 7 we shall 
even become acquainted with a function which is continuous on the whole line 
without being differentiable at any point! 

5.3 Theorem Suppose f and g are defined on [a, b] and are differentiable at a 
point x e [a, b]. Then/+ g, fg, and f/g are differentiable at x, and 

(a) (f + g)'(x) = f'(x) + g'(x); 

(b) (fg)'(x) = f'(x)g(x) + f(x)g'(x); 

(
f)' (x) = g(x)f'(x) - g'(x)f(x). 

(c) g . g2(x) 

In (c), we assume of course that g(x) :F 0. 

Proof (a) is clear, by Theorem 4.4. Let h =fg. Then 

h(t) - h(x) = f(t )[g(t) - g(x)] + g(x)[f(t) - f(x)]. 
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If we divide this by t - x and note that f(t) --+ f(x) as t--+ x (Theorem 5.2), 
(h) follows. Next, let h ffg. Then 

h(t)- h(x) I [u<x/(t)- f{x) j(x/(t)- g(x)l 
t - X g(t )g(x) t - X t - X 

Letting t--+ x, and applying Theorems 4.4 and 5.2, we obtain (c). 

5.4 Examples The derivative of any constant is clearly zero. Iff is defined 
by f(x) = x, thenf'(x) = 1. Repeated application of (b) and (c) then shows that 
X 11 IS dlfierentlable, and that Its derivative IS nxn 1, for any mteger n (If n < 0, 
we have to restrict ourselves to x ::J= 0). Thus every polynomial is differentiable, 
and so is every rational function, except at the points where the denominator is 

The following theorem is known as the "chain rule" for differentiation. 
It deals with differentiation of composite functions and is probably the most 
important theorem about derivatives. We shall meet more general versions of it 
in Chap. 9. 

5.5 Theorem Suppose f is continuous on [a, b],f'(x) exists at some point 
x E [a, b ], g is defined on an interval I which contains the range off, and g is 
differentiable at the point f(x). If 

h(t) = g(f(t)) (a 5: t 5: b), 

then h is differentiable at x, and 

(3) h'(x) = g'(f(x))f'(x). 

Proof Let y = f(x). By the definition of the derivative, we have 

(4) f(t)- f(x) = (t- x)[f'(x) + u(t)], 

(5) g(s)- g(y) = (s- y)[g'(y) + v(s)], 

(6) 

where t E [a, b], s E I, and u(t)--+ 0 as t--+ x, v(s)--+ 0 ass--+ y. Lets = f(t ). 
Using first (5) and then ( 4), we obtain 

or, if t :F x, 

h(t) - h(x) = g(f(t )) - g(f(x)) 

= [f(t) - f(x)] · [g'(y) + v(s)] 

= (t- x) · [f'(x) + u(t )] · [g'{y) + v(s)], 

h(t)- h(x) = [g'(y) + v(s)] · [f'(x) + u(t)]. 
t -X 

Letting t--+ x, we see that s--+ y, by the continuity· off, so that the right 
side of (6) tends to g'(y)f'(x), which gives (3). 
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5.6 Examples 

(7) 

(8) 

(9) 

(10) 

(11) 

(a) Let f be defined by 

{ . I x sm-
f(x) =0 x 

(x :F 0), 

(x = 0). 

Taking for granted that the derivative of sin x is cos x (we shall 
discuss the tngonometnc functions m Chap. 8), we can apply Theorems 
5.3 and 5.5 whenever x ::/: 0, and obtain 

'( ) . 1 1 1 (x :1: 0). 

At x = 0, these theorems do not apply any longer, since 1/x is not defined 
there, and we appeal directly to the definition: for t :F 0, 

f(t)- /(0) . 1 
=SID-. 

t- 0 t 

As t --+ 0, this does not tend to any limit, so that f'(O) does not exist. 
(b) Let f be defined by 

{ 

2 • 1 x sm-
f(x) = 0 x 

As above, we obtain 

! '( ) . 1 1 X = 2x SID - - COS -
X X 

(x :F 0), 

(x = 0), 

(x :F 0). 

At x = 0, we appeal to the definition, and obtain 

f(t) - f(O) . 1 I I 
J:........;.......;..__..:;_~ l = t SID - ~ t 

t-0 t 
(t :F 0); 

letting t --+ 0, we see that 

/'(0) = 0. 

Thus f is differentiable at all points x, but f' is not a continuous 
function, since cos (1/x) in (10) does not tend to a limit as x--+ 0. 
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MEAN VALUE THEOREMS 

5.7 Definition Let f be a real function defined on a metric space X. We say 
that/has a local maximum at a point p e X if there exists~ > 0 such thatf(q) ~ 
j(p) for all q eX w1th d(p, q) < l>. 

Local minima are defined likewise. 
Our next theorem is the basis of many applications of differentiation. 

5.8 Theorem Let f he defined on [a, h]; iff has a local maximum at a point 
x e (a, b), and iff'(x) exists, thenf'(x) = 0. 

The analogous statement for local minima is of course also true. 

Proof Choose~ in accordance with Definition 5.7, so that 

a < X - ~ < X < X + ~ < b. 

If x - ~ < t < x, then 

f(t)- f(x) 
0 ----~. 

t- X 

Letting t--+ x, we see thatf'(x) ~ 0. 
If x < t < x + ~' then 

f(t)- f(x) 
0 ----~' 

t- X 

which shows that f'(x) ~ 0. Hence f'(x) = 0. 

5.9 Theorem Iff and g are continuous real functions on [a, b] which are 
differentiable in (a, b), then there is a point x e (a, b) at which 

(12) 

[f(b)- f(a)]g'(x) = [g(b)- g(a)]f'(x). 

Note that differentiability is not required at the endpoints. 

Proof Put 

h(t) = [f(b)- f(a)]g(t)- [g(b)- g(a)]f(t) (a~ t ~b). 

Then h is continuous on [a, b], h is differentiable in (a, b), and 

h(a) = f(b)g(a)- f(a)g(b) = h(b). 

To prove the theorem, we have to show that h'(x) = 0 for some x e (a, b). 
If h is constant, this holds for every x e {a, b). If h(t) > h(a) for 

some t e (a, b), let x be a point on [a, b] at which h attains its maximum 
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(Theorem 4.16). By (12), x e (a, b), and Theorem 5.8 shows that h'(x) = 0. 
If h(t) < h(a) for some t e (a, b), the same argument applies if we choose 
for x a point on [a, b] where h attains its minimum. 

This theorem is often called a generalized mean value theorem; the following 
special case is usually referred to as "the" mean value theorem: 

5.10 Theorem Iff is a real continuous function on [a, b] which is differentiable 
in (a, b), then there is a point x e (a, b) at which 

f(b) - f(a) = (b- a)f'(x). 

Proof Take g(x) = x in Theorem 5.9. 

5.11 Theorem Suppose f is differentiable in (a, b). 

(a) Jff'(x) ~ Ofor all x e (a, b), thenfis monotonically increasing. 

(b) Jff'(x) = Ofor all x e (a, b), thenfis constant. 

(c) If f'(x) ~ 0 for all x e (a, b), then f is monotonically decreasing. 

Proof All conclusions can be read off from the equation 

f(x2)- f(xl) = (x2- x1)/'(x), 

which is valid, for each pair of numbers x1, x 2 in (a, b), for some x between 
x1 and x2 • 

THE CONTINUITY OF DERI~.ATIVES 

We have already seen [Example 5.6(b)] that a function/may have a derivative 
f' which exists at every point, but is discontinuous at some point. However, not 
every function is a derivative. In particular, derivatives which exist at every 
point of an interval have one important property in common with functions 
which are continuous on an interval: Intermediate values are assumed (compare 
Theorem 4.23). The precise statement follows. 

5.12 Theorem Suppose f is a real differentiable function on [a, b] and suppose 
f'(a) <A. <f'(b). Then there is a point x e (a, b) such that f'(x) =A.. 

A similar result holds of course if f'(a) > f'(b). 

Proof Put g(t) = f(t) - A.t. Then g'(a) < 0, so that g(t1) < g(a) for some 
t1 e (a, b), and g'(b) > 0, so that g(t2) < g(b) for some t2 e (a, b). Hence 
g attains its minimum on [a, b] (Theorem 4.16) at some point x such that 
a < x < b. By Theorem 5.8, g'(x) = 0. Hence f'(x) = A.. 
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Corollary Iff is differentiable on [a, b ], then f' cannot have any simple dis-
continuities on [a, b ]. 

Butf' may very well have discontinuities of the second kind. 

L'HOSPITAL'S RULE 

The following theorem is frequently useful in the evaluation of limits. 

5,13 Theorem Suppovefandg are rea/and differentiable in (a, h), andg'(x) =I= 0 

for all x e (a, b), where - oo ~a< b ~ + oo. Suppose 

f'(x) 
(13) g'(x)-+ A as x-+ a. 

If 
(14) 

or if 
(15) 
then 

(16) 

f(x) -+ 0 and g(x)-+ 0 as x-+ a, 

g(x)-+ + oo as x-+ a, 

f(x) 
--+ A as x-+ a. 
g(x) 

The analogous statement is of course also true if x-+ b, or if g(x) -+ - oo 
in (15). Let us note that we now use the limit concept in the extended sense of 
Definition 4.33. 

(17) 

(18) 

(19) 

Proof We first consider the case in which - oo ~ A < + oo. Choose a 
real number q such that A< q, and then choose r such that A< r < q. 
By (13) there is a point c e (a, b) such that a< x < c implies 

f'(x) 
g'(x) < r. 

If a< x < y < c, then Theorem 5.9 shows that there is a point t e (x, y) 
such that 

f(x) - f(y) f'(t) 
----=-<r. 
g(x)- g(y) g'(t) 

Suppose (14) holds. Letting x -+ a in (18), we see that 

f(y) < < 
g(y)- r q (a< y <c). 
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(20) 

(21) 

(22) 

Next, suppose (15) holds. Keeping y fixed in (18). we can choose 
a point c1 e (a, y) such that g(x) > g(y) and g(x) > 0 if a< x < c1. Multi
plying (18) by [g(x) g(y)]fg(x), we obtain 

f(x) g(y) f(y) 
- < r - r- + - (a < x < c1). 
g(x) g(x) g(x) 

If we let x--+ a in (20), (15) shows that there is a point c2 e (a, c1) 

such that 

f(x) 
g(x) < q 

Summing up, (19) and (21) show that for any q, subject only to the 
condition A < q, there is a point c2 such that f(x)/g(x) < q if a < x < c2 

In the same manner, if - oo <A~ + oo, and p is chosen so that 
p < A, we can find a point c3 such that 

f(x) 
p < - (a < x < c3), 

g(x) 

and (16) follows from these two statements. 

DERIVATIVES OF HIGHER ORDER 

5.14 Definition If/has a derivative/' on an interval, and if/' is itself differen
tiable, we denote the derivative off' by f" and call f" the second derivative off 
Continuing in this manner, we obtain functions 

f,f',f",/(3), ... ,[<n>, 

each of which is the derivative of the preceding one. [<n> is called the nth deriva
tive, or the derivative of order n, off 

In order for [<n> (x) to exist at a point x,f<n-l) (t) must exist in a neighbor
hood of x (or in a one-sided neighborhood, if x is an endpoint of the interval 
on which f is defined), and [<n -l > must be differentiable at x. Since [<n -l > must 
exist in a neighborhood of x,[<n- 2

> must be differentiable in that neighborhood. 

TAYLOR'S THEOREM 

5.15 Theorem Suppose f is a real function on [a, b ], n is a positive integer, 
[<n-l) is continuous on [a, b],f<n>(t) exists for every t e (a, b). Let tx, p be distinct 
points of [a, b ], and define 

n-l[(k)(tx} 
(23) P(t} = L -- (t- tx)k. 

k=O k! 
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Then there exists a point x between IX and {3 such that 

(24) f(P) P(p) + [<n>(x) (p 
n! 

)" IX • 

For n = 1, this is just the mean value theorem. In general, the theorem 
shows that f can be approximated by a polynomial of degree n 1, and that 
(24) allows us to estimate the error, if we know bounds on lf<n>(x) I· 

(25) 

(26) 

(27) 

Proof Let M be the number defined by 

f(/3) = P(/3) + M(/3 - 1Xt 

and put 

g(t) = f(t)- P(t)- M(t- 1X)n (a~ t S b). 

We have to show that n !M = [<n>(x) for some x between IX and {3. By 
(23) and (26), 

(a< t <b). 

Hence the proof will be complete if we can show that g<n>(x) = 0 for some 
x between IX and f3. 

Since p<k>(IX) = [<k>(IX) fork= 0, ... , n- 1, we have 

(28) g(IX) = g'(IX) = • • · = g<n-l)(IX) = 0. 

Our choice of M shows that g(/3) = 0, so that g'(x1) = 0 for some x1 

between IX and /3, by the mean value theorem. Since g'(IX) = 0, we conclude 
similarly that g"(x2) = 0 for some x 2 between IX and x1• After n steps we 
arrive at the conclusion that g<n>(xn) = 0 for some Xn bet ween IX and Xn _1 , 

that is, between IX and {3. 

DIFFERENTIATION OF VECTOR-VALUED FUNCTIONS 

5.16 Remarks Definition 5.1 applies without any change to complex functions 
f defined on [a, b], and Theorems 5.2 and 5.3, as well as their proofs, remain 
valid. If/1 and/2 are the real and imaginary parts off, that is, if 

f(t) = ft(t) + if2(t) 

for a~ t ~ b, where / 1{t) and f 2(t) are real, then we clearly have 

(29) f'(x) = f{(x) + if2(x); 

also, f is differentiable at x if and only if both / 1 and / 2 are differentiable at x. 
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Passing to vector-valued functions in general, i.e., to functions f which 
map [a, b] into some Rk, we may still apply Definition 5.1 to define f'(x). The 
term cp(t) in (1) is now, for each t, a point in Rk, and the limit in (2) is taken with 
respect to the norm of Rk. In other words, f'(x) is that point of Rk (if there is 
one) for which 

(30) ___ . f'(x) ll·m lf(t) - f(x) I 
t-+x t- X 

0, 

and f' 1s agam a functiOn w1th values in Rk. 
If (1, •.. , fk are the components off, as defined in Theorem 4.10, then 

(31) f' = (/{, ... ,JD, 
and f is differentiable at a point x if and only if each of the functions / 1, ••• , h 
is differentiable at x. 

Theorem 5.2 is true in this context as well, and so is Theorem 5.3(a) and 
(b), if fg is replaced by the inner product f · g (see Definition 4.3). 

When we turn to the mean value theorem, however, and to one of its 
consequences, namely, L'Hospital's rule, the situation changes. The next two 
examples will show that each of these. results fails to be true for complex-valued 
functions. 

5.17 Example Define, for real x, 

(32) f(x) = eix = cos x + i sin x. 

{The last expression may be taken as the definition of the complex exponential 
eix; see Chap. 8 for a full discussion of these functions.) Then 

(33) 

but 

(34) 

f(2n)- /(0) = 1 - 1 = 0, 

f'(x) = ie1X, 

so that 1/'(x) I = 1 for all real x. 
Thus Theorem 5.10 fails to hold in this case. 

5.18 Example On the segment (0, 1), definef(x) = x and 

(35) 

Since I eit I = 1 for all real t, we see that 

(36) lim f(x) = 1. 
x-+0 g(x) 
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(37) g'(x) 1 + (2x 21) 1/x' (0 <X< 1), e 
X 

lu'(x) 1 ~ lzx ~I 1 2!: 
2 

1. 
X 

(38) 

lf'(x) I 1 X 
:::;; 

g'(x) lu'(x)l 2- x 
(39) 

r f'(x) 
0. tm '( 

x-+O g x) 
(40) 

By (36) and ( 40), L'Hospital's rule fails in this case. Note also that g'(x) =F 0 
on {0, 1 ), by (38). 

However, there is a consequence of the mean value theorem which, for 
purposes of applications, is almost as useful as Theorem 5.10, and which re
mains true for vector-valued functions: From Theorem 5.10 it follows that 

(41) If( b) - f(a) I ~ (b -a) sup 1/'{x) 1. 
a<x<b 

5.19 Theorem Suppose f is a continuous mapping of [a, b] into Rk and f is 
differentiable in (a, b). Then there exists x E (a, b) such that 

lf{b)- f(a)l ~ (b- a)lf'(x)l. 

Proof1 Put z = f(b) - f(a), and define 

cp(t ) = z • f( t) (a < t < b). 

Then q> is a real-valued continuous function on [a, b] which is differentia
ble in (a, b). The mean value theorem shows therefore that 

cp(b) - cp(a) = (b- a)cp'(x) = (b ·- a)z • f'(x) 

for some x E (a, b). On the other hand, 

cp( b) - cp( a) = z • f( b) - z • f( a) = z • z = I z 12
• 

The Schwarz inequality now gives 

1 z 12 = < b - a) 1 z • r' (x) 1 ~ < b - a) 1 z II f' (x) I· 

Hence lzl ~ (b- a)lf'(x)l, which is the desired conclusion. 

tV. P. Havin translated the second edition of this book into Russian and added this 
proof to the original one. 
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EXERCISES 

1. Let f be defined for all real x, and suppose that 

lf(x)- f(y) I < (x- Y) 2 

for all real x andy. Prove that/is constant. 
2. Suppose/'(x) > 0 in (a, b). Prove that/is strictly incteasing in (a, b), and let g be 

its inverse function. Prove that g is differentiable, and that 

g'( f(x)) = -
1
-

]'(x) 
(a< x <b). 

3. Suppose g is a real function on R\ with bounded derivative (say lu'l < lJ). Fix 
8 > 0, and define/(x) = x + 8g(x). Prove that/is one-to-one if 8 is small enough. 
(A set of admissible values of 8 can be determined which depends only on M.) 

4. If 

C1 Cn-1 Cn 
Co+- + .. · +- + -- = 0, 

2 n n+1 

where Co, ... , Cn are real constants, prove that the equation 

Co+ C1x + · · · + Cn-1x"- 1 + Cnx" = 0 

has at least one real root between 0 and 1. 
5. Suppose/is defined and differentiable for every x > 0, and/'(x)-+ 0 as x -+ + oo. 

Put g(x) =f(x + 1)- f(x). Prove that g(x)-+ 0 as x-+ + oo. 
6. Suppose 

(a) f is continuous for x ;;;::: 0, 
(b) f'(x) exists for x > 0, 
(c) f(O) = 0, 
(d) f' is monotonically increasing. 
Put 

g(x) =f(x) 
X 

and prove that g is monotonically increasing. 

(x >0) 

7. Suppose f'(x), g'(x) exist, g '(x) =I= 0, and f(x) = g(x) = 0. Prove that 

lim /(t) =f'(x). 
r-u g(t) g'(x) 

{This holds also for complex functions.) 
8. Suppose f' is continuous on [a, b] and 8 > 0. Prove that there exists 8 > 0 such 

that 

l

f(t)- f(x) _ f'(x)l < 8 
t-x 



DIFFERENTIATION 115 

whenever 0 < It xI < 8, a :::;: x :::;: b, a :::;: t :::;: b. (This could be expxessed by 
saying that/is uniformly differentiable on [a, b] iff' is continuous on [a, b].) Does 
this hold for vector-valued functions too? 

9. Let f be a continuous real function on R 1
, of which it is known that f'(x) exists 

for all x =1= 0 and that f'(x) ~ 3 as x ~ 0. Does it follow that f'(O) exists? 
10. Suppose} and g are complex ddterenttable functlof\s on (0, l),j(x) ~ 0, g(x) ~ 0, 

f'(x) ~ A, g'(x) ~ Bas x ~ 0, where A and Bare complex numbers, B =I= 0. Prove 
that 

lim-=-· 
x-+O g(x) B 

Compare with Example 5.18. Hint: 

f(x) = (f(x) _ A) . 2:_ + A . 2._. 
g(x) x g(x) g(x) 

Apply Theorem 5.13 to the real and imaginary parts of f(x)/x and g(x)/x. 
11. Suppose f is defined in a neighborhood of x, and suppose f"(x) exists. Show that 

I. f(x + h) + f(x - h) - 2/(x) = f"( ) 
tm h2 x. 

11-+0 

Show by an example that the limit may exist even if f"(x) does not. 
Hint: Use Theorem 5.13. 

12. If f(x) =I x 13
, compute f'(x), f"(x) for all real x, and show that fC 3 >(0) does not 

exist. 
13. Suppose a and c are real numbers, c > 0, and f is defined on [- 1, 1] by 

(
x• sin (lxl-c) 

f(x) = 
0 

Prove the following statements: 
(a) f is continuous if and only if a > 0. 
(b) f'(O) exists if and only if a> 1. 
(c) f' is bounded if and only if a;;;::: 1 +c. 
(d) f' is continuous if and only if a> 1 +c. 
(e) f"(O) exists if and only if a> 2 +c. 
(/) f" is bounded if and only if a ~ 2 + 2c. 
(g) !" is continuous if and only if a > 2 + 2c. 

(if X =f= 0), 

(if X= 0). 

14. Let f be a differentiable real function defined in (a, b). Prove that f is convex if 
and only if f' is monotonically increasing. Assume next that f"(x) exists for 
every x e (a, b), and prove that/is convex if and only if f"(x);;;::: 0 for all x e (a, b). 

15. Suppose a e R 1
, [is a twice-differentiable real function on (a, oo ), and M o, Mt. M 2 

are the least upper bounds of lf(x} I, lf'(x) I, lf"(x) I, respectively, on (a, oo ). 
Prove that 



116 PRINCIPLES OF MATHEMATICAL ANALYSIS 

Hint. If II> 0, Taylor's theoxem shows that 

f'(x) = 
2
h [f(x + 2h)- /(x)]- hf"Ce> 

for some e E (x, X + 2h). Hence 

1/'(x) I :5: hM2 + Mo · 

To show that Mf = 4MoMz can actually happen, take a= -1, define 

r·-t (-1 <X< 0), 

(0 < x < oo), 

and show that Mo = 1, Mt = 4, M2 = 4. 
Does Mf < 4M oM 2 hold for vector-valued functions too? 

16. Suppose f is twice-differentiable on (0, oo ), f" is bounded on (0, oo ), and f(x) -+ 0 
as x-+ oo. Prove thatf'(x)-+ 0 as x-+ oo. 

Hint: Let a -+ oo in Exercise 15. 
17. Suppose [is a real, three times differentiable function on [ -1, 1], such that 

/(-1) =0, /(0) =0, f(l) = 1, /'(0) = 0. 

Prove thatj<3 >(x);;;::: 3 for some x e ( -1, 1). 
Note that equality holds for !(x3 + x 2). 
Hint: Use Theorem 5.15, with oc = 0 and {3 = ± 1, to show that there exist 

s e (0, 1) and t e ( -1, 0) such that 

j<3 >(s) + j<3 >(t) = 6. 

18. Suppose f is a real function on [a, b ], n is a positive integer, and f<" -o exists for 
every t e [a, b]. Let oc, {3, and P be as in Taylor's theorem (5.15). Define 

Q(t) = f(t)- /({3) 
t- {3 

for t e [a, b ], t =1= {3, differentiate 

/(t)- /({3) = (t- {3)Q(t) 

n- 1 times at t = oc, and derive the following version of Taylor's theorem: 

Q<n-t>(oc) 
/({3) = P({3) + (n- 1)! ({3- oc)". 

19. Suppose f is defined in ( -1, 1) and f'(O) exists. Suppose -1 < ocn < f3n < 1, 
ocn -+ 0, and f3n -+ 0 as n -+ oo. Define the difference quotients 
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Prove the following statements: 
(a) If IXn < 0 < fJn, then lim Dn = f'(O). 
(b) If 0 < oc .. < {3 .. and {{3 .. /({3.. IX .. )} is bounded, then lim D .. - f'(!J) 
(c) Iff' is continuous in ( -1, 1), then lim Dn = f'(O). 

GIVe an example m whtchj 1s ddferenhable m (-I, 1) (but]' 1s not contm
uous at 0) and in which IXn , f3n tend to 0 in such a way that lim Dn exists but is differ-
ent from f'(O). 

26. F01mulate and prove an inequality which follows from Taylor's theorem and 
which remains valid for vector-valued functions. 

21. Let E be a closed subset of R 1
• We saw in Exercise 22, Chap. 4, that there is a 

real continuous function fon R 1 whose zero set is E Is it possible, for each closed 
set E, to find such an f which is differentiable on R1

, or one which is n times 
differentiable, or even one which has derivatives of all orders on R1 ? 

22. Suppose f is a real function on (- oo, oo ). Call x a fixed point off if f(x) = x. 
(a) If/is differentiable andf'(t) =1= 1 for every real t, prove that/has at most one 
fixed point. 
(b) Show that the function/defined by 

f(t) = t + (1 + er)- 1 

has no fixed point, although 0 <f'(t) < 1 for all real t. 
(c) However, if there is a constant A < 1 such that lf'(t) I ~A for all real t, prove 
that a fixed point x off exists, and that x =lim Xn, where x1 is an arbitrary real 
number and 

Xn+l =/(Xn} 

for n = 1, 2, 3, .... 
(d) Show that the process described in (c) can be visualized by the zig-zag path 

23. The function f defined by 

f(x) = x3 + 1 
3 

has three fixed points, say IX, {1, y, where 

-2<1X<-1, 0 < fJ < 1, 1 < 'Y < 2. 

For arbitrarily chosen x~, define {xn} by setting Xn + 1 = f(xn). 
(a) If X1 <IX, prove that Xn --+- - oo as n --+- oo. 
(b) If IX< X1 < y, prove that Xn --+- fJ as n--+- oo. 
(c) If y < Xt, prove that Xn --+- + oo as n --+- oo. 
Thus fJ can be located by this method, but IX and y cannot. 
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24. The process described in part (c) of Exercise 22 can of course also be applied to 
functions that map (0, oo) to (0, oo ). 

Fix some ex > 1, and put 

cx+x 
g(x) = 1 + x' 

Both f and g have .y; as their only fixed point in (0, oo ). Try to explain, on the 
basis of properties off and g, why the convergence in Exercise 16, Chap. 3, is so 
much more rapid than it is in Exercise 17. (Compare f' and g ', dray; the zig zags 
suggested in Exercise 22.) 

Do the same when 0 <ex< I. 
25. Suppose f is twice differentiable on [a, b], f(a) < 0, f(b) > 0, f'(x) > 8 > 0, and 

0 <f"(x) < M for all x E [a, b]. Let g be the unique point in (a, b) at which 
[(g)= 0. 

Complete the details in the following outline of Newton's method for com
puting g, 
(a) Choose Xt E ce, b), and define {Xn} by 

f(xn) 
Xn+l = Xn- f'(Xn) • 

Interpret this geometrically, in terms of a tangent to the graph of f. 
(b) Prove that Xn+t < Xn and that 

lim Xn = g, 
n-o oo 

(c) Use Taylor's theorem to show that 

for some tn E (g, Xn), 

(d) If A= M/28, deduce that 

0 :5:: Xn + 1 - g :5:: ~ (A(Xt - g)Jzn. 

(Compare with Exercises 16 and 18, Chap. 3.) 
(e) Show that Newton's method amounts to finding a fixed point of the function 

g defined by 

f(x) 
g(x) = x - f'(x) . 

How does g '(x) behave for x near g? 
(/) Putf(x) =x113 on (-oo, oo) and try Newton's method. What happens? 
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26. Suppose f is differentiable on [a, b], f(a) = 0, and there is a real number A such 
that lf(x)l <AIJ(x)l on[a,b]. Provethatj(x)-Oforallxe[a,b]. Hmt:Fix 
Xo E [a, b], let 

Mo =sup! f(x)l, Mt =sup lf'(x) I 
for a < x < Xo . For any such x, 

lf(x) I < Mt(Xo- a)< A(xo- a)Mo. 

Hence M o = 0 if A(xo - a) < 1. That is, f = 0 on [a, Xo]. Proceed. 
27 Let c/> be a real function defined on a rectangle R in the plane, given by a < x < b, 

ex <y < {3. A solution of the initial-value problem 

y' = cp(x, y), y(a) = c (ex~ c < {3) 

is, by definition, a differentiable function/on [a, b] such thatf(a) c, cx <f(x)::::;;; {3, 
and 

j '(x) = Cf>(x, j (x)) (a <x <b). 

Prove that such a problem has at most one solution if there is a constant A such 
that 

I cp(x, Y2) - cp(x, Yt) I ~A I Y2 - Y1 I 
whenever (x, Yt) E R and (x, Y2) E R. 

Hint: Apply Exercise 26 to the difference of two solutions. Note that this 
uniqueness theorem does not hold for the initial-value problem 

y(O) = 0, 

which has two solutions: f(x) = 0 and/(x) = x 2/4. Find all other solutions. 
28. Formulate and prove an analogous uniqueness theorem for systems of differential 

equations of the form 

yj = c/>J(x, Y1, . · · , Yk), yJ(a) = c1 (j = 1, ... 'k). 

Note that this can be rewritten in the form 

y' = ~(x, y), y(a) = c 

where y = (y1, ... , yk) ranges over a k-cell, ~ is the mapping of a (k + I)-cell 
into the Euclidean k-space whose components are the functions c/>t, ... , c/>k, and c 
is the vector (ct. ... , ck). Use Exercise 26, for vector-valued functions. 

29. Specialize Exercise 28 by considering the system 

(j = 1' ... ' k - 1), 
k 

Y~ = f(x) - L gJ(x)yJ, 
J=l 

where/, Ot. ... , Ok are continuous real functions on [a, b], and derive a uniqueness 
theorem for solutions of the equation 

yck> + Ok(x)y<k -l> + · · · + 02(x)y' + Ot(X)y = f(x), 

subject to initial conditions 

y'(a) = c2, ... ' 



6 
THE RIEMANN STIELTJES INTEGRAL 

The present chapter is based on a definition of the Riemann integral which 
depends very explicitly on the order structure of the real line. Accordingly, 
we begin by discussing integration of real-valued functions on intervals. Ex
tensions to complex- and vector-valued functions on intervals follow in later 
sections. Integration over sets other than intervals is discussed in Chaps. 10 
and 11. 

DEFINITION AND EXISTENCE OF THE INTEGRAL 

6.1 Definition Let [a, b] be a given interval. By a partition P of [a, b] we 
mean a finite set of points x0 , x1, ••• , Xn, where 

We write 

(i=1, ... ,n). 
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Now suppose f is a bounded real function defined on [a, b ]. Corresponding to 
each partition P of [a, b] we put 

and finally 

(1) 

(2) 

M 1 = supf(x) 

m 1 inf/(x) 
n 

U(P,f) = L Mi AXi, 
i= 1 

n 

L(P,f) = L: mi dx1, 
i 1 

(x,_ 1 ;:5; x ;:5; xi), 

(xi-1 ::; x <xi), 

J: fdx- inf V(P,f), 

J6 

f dx = sup L(P,f), 
_a 

where the inf and the sup are taken over all partitions P of [a, b]. The left 
members of {1) and (2) are called the upper and lower Riemann integrals off 
over [a, b], respectively. , 

If the upper and lower integrals are equal, we say that f is Riemann
integrable on [a, b], we write f E f!A (that, is, f!A denotes the set of Riemann
integrable functions), and we denote the common value of (1) and (2) by 

(3) 

or by 

(4) Jb f(x) dx. 
a 

This is the Riemann integral off over [a, b]. Since f is bounded, there 
exist two numbers, m and M, such that 

m <f(x) :s; M (a< x :s; b). 

Hence, for every P, 

m(b- a)< L(P,f) < U(P,f) :s; M(b- a), 

so that the numbers L(P,f) and U(P,f) form a bounded set. This shows that 
the upper and lower integrals are defined for every bounded function f The 
question of their equality, and hence the question of the integrability off, is a 
more delicate one. Instead of investigating it separately for the Riemann integral, 
we shall immediately consider a more general situation. 
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6.2 Definition Let ~ be a monotonically increasing function on [a, b] (since 
~(a) and ~(b) are finite, it follows that~ is bounded on [a, b]). Corresponding to 
each partition P of [a, b], we write 

It is clear that A~, ~ 0 For any real function f which is bounded on [a, b] 
we put 

n 

L(P,J, ~)- L m 1 A~ 1 , 
i= 1 

where M i, m 1 have the same meaning as in Definition 6.1, and we define 

-b t f d~ = inf U(P,f, ~), (5) 

(6) Jb f d~ =sup L(P,J, ~), 
_a 

the inf and sup again being taken over all partitions. 
If the left members of (5) and (6) are equal, we denote their common 

value by 

(7) 

or sometimes by 

(8) J: f(x) d~(x). 
This is the Riemann-Stieltjes integral (or simply the Stieltjes integral) of 

fwith respect to~, over [a, b]. 
If (7) exists, i.e., if (5) and (6) are equal, we say that f is integrable with 

respect to ~, in the Riemann sense, and write f e Bf(~). 
By taking ~(x) = x, the Riemann integral is seen to be a special case of 

the Riemann-Stieltjes integral. Let us mention explicitly, however, that in the 
general case ~ need not even be continuous. 

A few words should be said about the notation. We prefer (7) to (8), since 
the letter x which appears in (8) adds nothing to the content of (7). It is im
material which letter we use to represent the so-called "variable of integration." 
For instance, (8) is the same as 

b L f(y) d~(y). 
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The integral depends on f, IX, a and b, but not on the variable of integration, 
which may as well be omitted. 

The role played by the variable of integration is quite analogous to that 
of the index of summation: The two symbols 

i= 1 k= 1 

mean the same thing, since each means c1 + c2 + · · · + en. 
Of course, no harm is done by inserting the variable of integration, and 

in many cases it is actually convenient to do so. 
We shall now investigate the existence of the integral (7) Without saying 

so every time,fwill be assumed real and bounded, and IX monotonically increas-

ing on [a, b]; and, when there can be no misunderstanding, we shall write in 

place of J:. 
6.3 Definition We say that the partition P* is a refinement of P if P* =:J P 
(that is, if every point of Pis a point of P*). Given two partitions, P1 and P2 , 

we say that P* is their common refinement if P* = P1 u P2 • 

6.4 Theorem If P* is a refinement of P, then 

(9) 
and 
(10) 

L(P,f, IX)~ L(P*,f, IX) 

U(P*,f, IX)~ U(P,f, IX). 

Proof To prove (9), suppose first that P* contains just one point more 
than P. Let this extra point be x•, and suppose x1_1 < x• < x1, where 
xi_ 1 and x 1 are two consecutive points of P. Put 

w1 = inff(x) 

w2 = inff(x) 

(x1_1 ~ x ~ x*), 

(x* ~X~ x1). 

Clearly w1 ~ m1 and w2 ~ m1, where, as before, 

m1 = inff(x) 
Hence 

L(P*,f, IX)- L(P,J, IX) 

= w1[1X(x*)- 1X(x1_ 1)] + w2 [1X(x1)- 1X{x*)]- m1[1X(x1)- 1X(x1_ 1)] 

= (w1 - m1)[1X(x*) - 1X(x1_ 1)] + (w2 - m1)[1X(x1) - IX{x*)] ~ 0. 

If P* contains k points more than P, we repeat this reasoning k 
times, and arrive at (9). The proof of (1 0) is analogous. 
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rb Jb 
6.5 Theorem J fda. !5 J fda.. 

_a a 

(11) 

(12) 

Proof Let P* be the common refinement of two partitions P 1 and P 2 • 

By Theorem 6.4, 

If P2 is fixed and the sup is taken over all P 1, (11) gives 

" 

The theorem follows by taking the inf over all P2 in (12). 

6.6 Theorem fe al(a.) on [a, b] if and only if for every 8 > 0 there exists a 
partition P such that 

(13) 

(14) 

(15) 

U(P,f, a.) - L(P,f, a.) < 8. 

Proof For every P we have 

L(P,f, a.)< 1 fda.< J fda.~ U(P,f, a.). 

Thus (13) implies 

Hence, if (13) can be satisfied for every 8 > 0, we have 

that is, f e af(a.). 
Conversely, suppose fe al(a.), and let e > 0 be given. Then there 

exist partitions P 1 and P2 such that 
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We choose P to be the common refinement of P 1 and P2 • Then Theorem 
6.4, togethet with (14) and (15), shows that 

U(P,f, oc) < U(P2 ,f, oc) < J f doc+ i < L(Pbf, oc) + e < L(P,f, oc) + e, 

so that (13) holds for this partition P. 

Theorem 6 6 furnishes a convenient criterion for integrability. Before we 
apply it, we state some closely related facts. 

6.7 Theorem 
(a) lf(13) holds for some P and some e, then (13) holds (with the same e) 

far er;ery refinement {}JP. 
(b) If (13) holds for P = {x0 , ••• , xn} and if si, ti are arbitrary points in 

[xi-h xa, then 

n 

2: lfCsi)-f(tJI aoci<e. 
i= 1 

(c) lffe al(oc) and the hypotheses of(b) hold, then 

I ,t, f(t,) ~lex,- r. f dcx I <e. 

Proof Theorem 6.4 implies (a). Under the assumptions made in (b), 
bothf(sJ andf(tJ lie in [mi, MJ, so that lf(sJ- f(t 1)1 ~Mi-mi. Thus 

n 

I lf(si) - f(t i) I aoci < U(P,f, oc) - L(P,f, oc), 
i= 1 

which proves (b). The obvious inequalities 

L(P,f, oc) < Lf(tJ aoci < U(P,f,oc) 
and 

L(P,f, oc) < J f doc< U(P,f, oc) 
prove (c). 

6.8 Theorem Iff is continuous on [a, b] thenfe al(oc) on [a, b]. 

(16) 

Proof Let e > 0 be given. Choose 11 > 0 so that 

[oc(b) - oc(a)]17 < e. 

Since f is uniformly continuous on [a, b] (Theorem 4.19), there exists a 
~ > 0 such that 

lf(x)- f(t)l < 11 
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(17) 

ifxe[a,b], te[a,b],and lx-tl <b. 
If P ts any partitiOn of [a, b] such that L\X1 < ~ for all i, then (16) 

implies that 
(i- 1, ... , n) 

and therefore 
n 

U(P,J, oc) - L(P,J, oc) = L (M1 - m1) ll.oc1 
I= 1 

n 

~ n L ll.oc1 = n[oc(b) - oc(a)] < e. 
i= 1 

By Theorem 6.6, fe Bl(oc). 

6.9 Theorem Iff is monotonic on [a, b ], and if oc is continuous on [a, b ], then 
fe fJt(oc). (We still assume, of course, that oc is monotonic.) 

Proof Let 8 > 0 be given. For any positive integer n, choose a partition 
such that 

ll.oc, = oc(b) - oc(a) 
n 

(i=l, ... ,n). 

This is possible since oc is continuous {Theorem 4.23). 
We suppose that/is monotonically increasing (the proof is analogous 

in the other case). Then 

(i = 1, ... , n), 
so that 

oc(b) - oc(a) n 
U(P,J, oc)- L(P,J, oc) = L [f(x1)- f(x 1-t)1 

n i= 1 

= oc(b) - oc(a). [f(b) - f(a)] < 8 

n 

if n is taken large enough. By Theorem 6.6,/e r!l/(oc). 

6.10 Theorem Suppose f is bounded on [a, b], f has only finitely many points 
of discontinuity on [a, b ], and oc is continuous at every point at which f is discon
tinuous. Then f e r!l/(oc). 

Proof Let 8 > 0 be given. Put M = sup lf(x) I , let E be the set of points 
at which f is discontinuous. Since E is finite and oc is continuous at every 
point of E, we can cover E by finitely many disjoint intervals [u1 , v1] c 
[a, b] such that the sum of the corresponding differences oc(v1)- oc(u1) is 
less than 8. Furthermore, we can place these intervals in such a way that 
every point of En (a, b) lies in the interior of some [u1 , v1]. 
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Remove the segments (uJ , v;) from [a, b]. The remaining set K is 
compact. Hence f is uniformly continuous on K, and there exists ~ > 0 
such that 1/(s)- f(t)l < e tf s e K, t e K, Is- tl < ~. 

Now form a partition P = {x0 , x1 , ••• , x,} of [a, b], as follows: 
Each u1 occurs in P. Each v1 occurs in P. No point of any segment (u1 , v1) 

occurs in P. If xi _1 is not one of the u1 , then Ax i < c5. 
Note that Mi-mi< 2M for every i, and that M 1 - m1 ~ e unless 

xi- 1 is one of the u1 . Hence, as in the proof of Theorem 6.8, 

U(P,j, oc) - L(P,j, oc) < [oc(b) - e<(a)]e +2M e. 

Since e is arbitrary, Theorem 6.6 shows thatfe Bf(oc). 
Note: Iff and oc have a common point of discontinuity, then f need not 

be in ~( e< ). Exercise 3 shows this. 

6.11 Theorem Suppose fe ~(e<) on [a, b], m <f ~ M, 4> is continuous on 
[m, M], and h(x) = 4J(f(x)) on [a, b]. Then he ~(e<) on [a, b]. 

(18) 

(19) 

Proof Choose e > 0. Since 4> is uniformly continuous on [m, M], there 
exists c5 > 0 such that c5 < e and I4J(s) - 4J(t) I < e if Is - t I ~ c5 and 
s, t E [m, M]. 

Sincefe ~(e<), there is a partition P = {x0 , x1, ••• , X 11} of [a, b] such 
that 

U(P,f, e<) - L(P,f, e<) < c52
• 

Let Mt. mi have the same meaning as in Definition 6.1, and let Mt, mt 
be the analogous numbers for h. Divide the numbers 1, ... , n into two 
classes: i e A if M 1 - m1 < c5, i e B if Mi-mi~ c5. 

Forie A, our choice of c5 shows that Mt- mi ~e. 
For i e B, Mi*- mi ~ 2K, where K = supi4J(t)l, m ~ t < M. By 

(18), we have 

c5 L ~e<i < L (Mi - mi) ~oci < ~2 
ieB ieB 

so that Li eB ~C<i < c5. It follows that 

U(P, h, e<)- L(P, h, e<) = I (Mt- mi) ~oc 1 + L (M(- mi) ~oc 1 
ieA ieB 

~ e[e<(b) - e<(a)] + 2Kc5 < e[oc(b) - e<(a) + 2K]. 

Since e was arbitrary, Theorem 6.6 implies that he ~(e<). 
Remark: This theorem suggests the question: Just what functions are 

Riemann-integrable? The answer is given by Theorem 11.33(b). 
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PROPERTIES OF THE IN I EGRAL 

6.12 Theorem 
(a) lJh e 9f(oc) andj2 e 9f(oc) on [a, b], then 

c.recx 1 o1 eve1y cons1an c, ana 

(b) /ffJ.(x) </2(x) on [a, b], then 

fb fb 
a h doc < a /2 doc. 

(c) If fe al(oc) on [a, b] and if a< c < b, then fe Bt'(oc) on [a, c] and on 
[c, b], and 

I: f doc + I: f doc = I: f doc. 

(d) Iffe al(oc) on [a, b] and if )f(x)) < M on [a, b], then 

I J: f d<X' < M[<X(b)- <X(a)). 

(e) lffe al(oct) andfe al(oc2), thenfe af(oc1 + oc2) and 

I: f d(oc1 + oc2) =I: f doc1 +I: f doc2 ; 

zffe al(oc) and cis a positive constant, thenfe al(coc) and 

Proof Iff= h + / 2 and P is any partition of [a, b ], we have 

(20) L(P,/1, oc) + L(P,/2 , oc) < L(P,f, oc) 

< U(P,f, oc) < U(P,IJ., oc) + U(P,/2 , oc). 

If / 1 e af(oc) and / 2 e af(oc), let e > 0 be given. There are partitions P, 
(j = 1, 2) such that 
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These inequalities persist if P, and P, are replaced by their common 
refinement P. Then (20) implies 

U(P,f, rt) - L(P,f, rt) < 2e, 

which proves thatfe af(rt). 
With this same P we have 

(j = 1, 2); 

hence (20) implies 

Since e was arbitrary, we conclude that 

If we replace / 1 and / 2 in (21) by -/1 and -/2 , the inequality is 
re~ersed, and the equality is pro~ed. 

The proofs of the other assertions of Theorem 6.12 are so similar 
that we omit the details. In part (c) the point is that (by passing to refine
ments) we may restrict ourselves to partitions which contain the point c, 
in approximating J f dr:~.. 

6.13 Theorem lffe al(r:~.) and g e af(rt) on [a, b], then 
(a) fg e af(r~.); 

(b) Ill e 91(~) and IS: I d~l :S: J: Ill d~. 
Proof Ifwetakelj>(t) = t 2

, Theorem6.11 showsthat/2 eaf(r~.)ifjeaf(Q:). 
The identity 

4fg = (f + g)2 - (f- g)2 

completes the proof of (a). 
If we take lj>(t) = It I, Theorem 6.11 shows similarly that 1/1 e Bf(rt). 

Choose c = ± 1, so that 
c Jfdrt ~ 0. 

Then 
I Jfdr:~.l = c Jfdrt = S cfdrt ~-sIll drt, 

since cf ~ If!. 

6.14 Definition The unit step function I is defined by 

I(x) ={~ (x ~ 0), 

(x > 0). 
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6.15 Theorem If a < s < b, f is bounded on [a, b ], f is continuous at s, and 
~(x) = I(x - s), then 

b 

Ja fda = f(s). 

Ploof Consider partitions P = {x0, xh x2, x3}, where x0 =a, and 
x 1 - s < x 2 < x 3 - b Then 

L(P,f, sc) m2 • 

Since f is continuous at s, we see that JJ2 and m 2 con~erge to f(s) as 

6.16 Theorem Suppose en~ 0 for 1, 2, 3, ... , I:cn converges, {sn} is a sequence 
of distinct points in (a, b), and 

00 

(22) ~(x) = L en l(x - Sn)· 
n= 1 

Let f be continuous on [a, b]. Then 

(23) 

Proof The comparison test shows that the series (22) converges for 
every x. Its sum ~(x) is evidently monotonic, and ~(a) = 0, ~(b) = I:cn. 
(This is the type of function that occurred in Remark 4.31.) 

Let e > 0 be given, and choose N so that 

00 

Len< 8. 
N+1 

Put 

N 00 

~1(x) = L cnl(x- Sn), 
n= 1 

~2(x) = I Cnl(x- sn)• 
N+1 

By Theorems 6.12 and 6.15, 

b N 

(24) L f d~1 = i~1 cnf(sn)· 

Since ~2(b) - ~2(a) < e, 

(25) IJ: f dll2 1 ~ Me, 



THE RIEMANN-STJEI TIES INTEGR AI 131 

where M = sup lf(x) I· Since ~ = ~1 + ~2 , it follows from (24) and (25) 
that 

(26) 

If we let N ~ oo, we obtain (23). 

6.17 Theorem Assume ~ increases monotonically and a' e rJt on [a, b]. Let f 
be a bounded rea/junctzon on [a, b]. 

Then (e rJt(~) if and only iff~' e rJt. In that case 
b b 

(27) { f fkJ. { f(x)el (x) dx. 

Proof Let e > 0 be given and apply Theorem 6.6 to ~·: There is a par
tition P = {x0 , ••. , x,J of [a, b] such that 

(28) U(P, ~')- L(P, ~')<e. 

(29) 

The mean value theorem furnishes points t 1 e [x1_h xi] such that 

~~i = ~'(ti) ~xi 

for i = 1, ... , n. If s1 e [x1_ 1, xt], then 
n 

I I ~'(sJ- ~'(t1) I ~xi< e, 
i= 1 

by (28) and Theorem 6.7(b). Put M = suplf(x)l. Since 
n n 

I f(sJ ~~i = I f(sJ~'(tJ ~xi 
i= 1 i= 1 

it follows from (29) that 

(30) IJ/(s,) Ao<1 - ,t/(s1)o<'(s1) Ax, I< Me. 

In particular, 

n 

I f(si) ~~i ~ U(P,f~') + Me, 
i= 1 

for all choices of s1 e [x1_b x1], so that 

U(P,f, ~) < U(P,f~') + Me. 

The same argument leads from (30) to 

U(P,f~') < U(P,f, ~) + Me. 
Thus 

(31) I U(P,f, ~) - U(P,f~') I < Me. 
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(32) 

Now note that (28) remains true if Pis replaced by any refinement. 
Hence (31) also remains true. We conclude that 

II: I drx - r: f(x)rx'(x) dx I ~ Me. 

But e is arbitrary. Hence 
-b t f(x)cx'(:x) dx, 

for any bounded f The equality of the lower integrals follows from (30) 
in exactly the same way The theorem follows 

6.18 Remark The two preceding theorems illustrate the generality and 
flexibility which are inherent in the Stieltjes process of integration. If ex is a pure 
step function [this is the name often given to functions of the form (22)], the 
integral reduces to a finite or infinite series. If ex has an integrable derivative, 
the integral reduces to an ordinary Riemann integral. This makes it possible 
in many cases to study series and integrals simultaneously, rather than separately. 

To illustrate this point, consider a physical example. The moment of 
inertia of a straight wire of unit length, about an axis through an endpoint, at 
right angles to the wire, is 

(33) 

where m(x) is the mass contained in the interval [0, x]. If the wire is regarded 
as having a continuous density p, that is, if m'(x) = p(x), then (33) turns into 

1 

(34) J
0 

x 2 p(x) dx. 

On the other hand, if the wire is composed of masses m i concentrated at 
points x, (33) becomes 

(35) L xf mi. 
i 

Thus (33) contains (34) and (35) as special cases, but it contains much 
more; for instance, the case in which m is continuous but not everywhere 
differentiable. 

6.19 Theorem (change of variable) Suppose ({J is a strictly increasing continuous 
function that maps an interval [A, B] onto [a, b]. Suppose ex is monotonically 
increasing on [a, b] andfe Bf(ex) on [a, b]. Define P and g on [A, B] by 

(36) p(y) = ex( ({J(y)), g(y) = /(({J(y)). 
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Then g ~ fJl(/J) and 

(37) 

(38) 

(39) 

JAg dfJ- Ja fdrx. 

Proof To each partition P = {x0 , ••• , xn} of [a, b] corresponds a partition 
Q {y0 , ••• , Yn} of [A, B], so that x, ({J(y,). All partitions of [A, B] 
are obtained in this way. Since the values taken by f on [xt- 1, xtl are 
exactly the same as those taken by g on [y i _ 1, y tJ, we see that 

U(Q, g, p) - U(P,j, rx), L(Q, g, P) - L(P,f, rx). 

Sincefe &l(rx), P can be chosen so that both U(P,J, a) and L(P,f, a) 
are close to [/ drx. Hence (38), combined with Theorem 6.6, shows that 
g e rJt(/J) and that (37) holds. This completes the proof. 

Let us note the following special case: 
Take oc(x) = x. Then P = cp. Assume cp' e fJt on [A, B]. If Theorem 

6.17 is applied to the left side of (37), we obtain 

I: f(x) dx =I~ /(({J(y))q/(y) dy. 

INTEGRATION AND DIFFERENTIATION 

We still confine ourselves to real functions in this section. We shall show that 
integration and differentiation are, in a certain sense, inverse operations. 

6.20 Theorem Letfe fJt on [a, b]. For a ~ x ~ b, put 

F(x) =I: f(t) dt. 

Then F is continuous on [a, b ],· furthermore, iff is continuous at a point x0 of 
[a, b ], then F is differentiable at x0 , and 

F'(xo) = f(xo). 

Proof Since fe rJt, f is bounded. Suppose 1/(t)l ~ M for a< t ~b. 
If a ~ x < y ~ b, then 

IF(y)- F(x)l = IJ:t(t)dt' ~ M(y- x), 

by Theorem 6.12(c) and (d). Given B > 0, we see that 

IF(y)-F(x)l <e, 
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provided that I y - xI < efM. This proves continuity (and, in fact, 
uniform continuity) of F. 

Now suppose/is continuous at x0 • Gi~en e > 0, choose~ > 0 such 
that 

lf(t)- f(xo)l < B 

if It- x0 I < l>, and a=::;; t =::;;b. Hence, if 

x 0 - l> < s =::;; x 0 =::;; t < x 0 + l> and a=::;; s < t =::;; b, 

we have, by Theorem 6.12(d), 

It follows that F'(x0 ) = f(x0 ). 

6.21 The fundamental theorem of calculus Iff e 9l on [a, b] and if there is 
a differentiable function F on [a, b] such that F' = f, then 

J: f(x) dx = F(b)- F(a). 

Proof Let B > 0 be given. Choose a partition P = {x0 , ••• , xn} of [a, b] 
so that U(P,f)- L(P,f) <B. The mean value theorem furnishes points 
tie [xi-b xi] such that 

for i = 1, ... , n. Thus 
n 

L f(ti) axi = F(b)- F(a). 
i= 1 

It now follows from Theorem 6.7(c) that 

IF(b)- F(a)- S: f(x) dxl <e. 

Since this holds for every e > 0, the proof is complete. 

6.22 Theorem (integration by parts) Suppose F and G are differentiable func
tions on [a, b], F' = f ePA, and G' = g e fJt. Then 

b b t F(x)g(x) dx = F(b)G(b) - F(a)G(a) - {f(x)G(x) dx. 

Proof Put H(x) = F(x)G(x) and apply Theorem 6.21 to Hand its deriv
ative. Note that H' e 9l, by Theorem 6.13. 
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INTEGRATION OF VECTOR-VALUED FUNCTIONS 

6.23 Definition Letfi, ... ,h. be real functions on [a, b], and let f = (h, ... ,h.) 
be the corresponding mapping of [a, b] into Rk. If ex increases monotonically 
on [a, b], to say that f e gt(cx) means thatjj e gt(cx) for j - 1, .. , k If this is the 
case, we define 

In other words, Jf dcx is the point in Rk whose jth coordinate is Jh dcx. 
It is clear that parts (a), (c), and (e) of Theorem 6.12 are valid for these 

vector-valued integrals; we simply apply the earlier results to each coordinate. 
The same is true of Theorems 6 17, 6 20, and 6 21 To i11ustrate, we state the 
analogue of Theorem 6.21. 

6.24 Theorem Iff and F map [a, b] into Rk, iff e 9l on [a, b ], and ifF' = f, then 

s:f(t) dt = F(b)- F(a). 

The analogue of Theorem 6.13(b) offers some new features, however, at 
least in its proof. 

6.25 Theorem Iff maps [a, b J into Rk and iff e 9l( ex) for some monotonically 
increasing function ex on [a, b ], then I fl e al(ex), and 

(40) If r docl :s; s: I fl doc. 

Proof If f 1, ... , fk are the components of f, then 

(41) lfl = (f~ + ... + fk2)112, 

(42) 

By Theorem 6.11, each of the functionsft2 belongs to al(ex); hence so does 
their sum. Since x2 is a continuous function of x, Theorem 4.17 shows 
that the square-root function is continuous on [0, M], for every real M. 
If we apply Theorem 6.11 once more, (41) shows that lfl erJl(ex). 

To prove (40), put y = (Yt> ... , Yk), where y1 = Jjj dex. Then we have 
y = Jf dex, and 

IYI 2 = LYf = LYJ Jjj dex = J (LYJjj) dex. 

By the Schwarz inequality, 

LYJJj(t) ~ IYIIf(t)l (a~t<b); 
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hence Theorem 6.12(b) implies 

(43) I Y 12 < I Y I i I r I drx. 
J 

9, (40) is trivial. If y I= 9, division of (43) by I :Y I gi~es (40). 

RECTIFIABLE CURVES 

We conclude this chapter with a topic of geometric interest which provides an 
application of some of the preceding theory. The case k = 2 (i.e., the case of 
plane curves) is of considerable importance in the study of analytic functions 
of a complex variable. 

6.26 Definition A continuous mapping y of an interval [a, b] into Rk is called 
a curve in Rk. To emphasize the parameter interval [a, b], we may also say that 
y is a curve on [a, b). 

If y is one-to-one, y is called an arc. 
If y(a) = y(b), y is said to be a closed curve. 

It should be noted that we define a curve to be a mapping, not a point set. 
Of course, with each curve y in Rk there is associated a subset of Rk, namely 
the range of y, but different curves may have the same range. 

We associate to each partition P = {x0 , ••• , xn} of [a, b] and to each 
curve yon [a, b] the number 

n 

A(P, y) = L I y(xt)- y(xi-t)l. 
i= 1 

The ith term in this sum is the distance (in Rk) between the points y(xi_ 1) and 
y(xi). Hence A(P, y) is the length of a polygonal path with vertices at y(x0 ), 

y(x1), ••• , y(xn), in this order. As our partition becomes finer and finer, this 
polygon approaches the range of y more and more closely. This makes it seem 
reasonable to define the length of y as 

A(y) =sup A(P, y), 

where the supremum is taken over all partitions of [a, b]. 
If A(y) < oo, we say that y is rectifiable. 
In certain cases, A( y) is given by a Riemann integral. We shall prove this 

for continuously differentiable curves, i.e., for curves y whose derivative y' is 
continuous. 
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6.27 Theorem If y' is continuous on [a, b], then y is rectifiable, and 

A(y) = f I y'(t) I dt. 
a 

Proof If a~ x,_, < x, < b, then 

Xt-l Xt-l 

Ja 

for every partition P of [a, b]. Consequently, 

To prove the opposite inequality, let B > 0 be given. Since y' is 
uniformly continuous on [a, b ], there exists {J > 0 such that 

I y'(s)- y'(t) I < B if 1 s - t I < b. 

Let P = {x0 , •.• , xn} be a partition of [a, b], with 6.x1 < {J for all i. If 
x 1_ 1 ~ t ~ X~o it follows that 

I y'(t) I ~ I y'(xi) I + e. 
Hence 

J:1

_

1 

I y'(t) I dt ~ I y'(x1) I 6.xi + B 6.x1 

= I(_, (y'(t) + r'(x,) - r'(t)] dt I + ellx, 

~ 1 r .r-(1) dt 1 + 1 r. !r'(x,)- y'(t)] dtl +e llx, 

~I y(xi)- y(xi- 1)1 + 2e 6.xi. 

If we add these inequalities, we obtain 

J: I y'(t) I dt ~ A(P, y) + 2e(b -a) 

~ A(y) + 2e(b- a). 
Since B was arbitrary, 

b L I y'(t)l dt ~ A(y). 

This completes the proof. 
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EXERCISES 

1. Suppose ex increases on [a, b], as Xo s b, ex ts contmuous at Xo, 1 (xo) = 1, and 
f(x) = 0 if X =I= Xo. Prove that ( E Bf(oc) and that f (doc= 0. 

b 

2. Suppose [-;;::. 0, f is continuous on [a, b ], and f(x) dx = 0. Prove that f(x) = 0 

for all x e [a, b]. (Compare this with Exercise 1.) 
3. Define three functions f3., f3,, f33 as follows. f3J(x) 0 if x < 0, f3J(x) 1 if x > 0 

for j = 1, 2, 3; and {31(0) = 0, f32(0) =1, {33(0) = !. Let/be a bounded function on 
[-1,1]. 
(a) Prove thatfe af({Jt) if and only if.f(O+) f(O) and that then 

J fdf3t f(O). 

(b) State and prove a similar result for fJ 2 • 

(c) Prove thatfe ~({33) if and only if /is continuous at 0. 
(d) If /is continuous at 0 prove that 

I fd{3. =I fd/32 =I tdf33 =/(0). 

4. If/(x) = 0 for all irrational x,f(x) = 1 for all rational x, prove that/¢~ on[a, b] 
for any a< b. 

S. Suppose f is a bounded real function on [a, b], and / 2 e Bt on [a, b]. Does it 
follow that f e Bt? Does the answer change if we assume that / 3 e ~? 

6. Let P be the Cantor set constructed in Sec. 2.44. Let f be a bounded real function 
on [0, 1] which is continuous at every point outside P. Prove that f e ~ on [0, 1 ]. 
Hint: P can be covered by finitely many segments whose total length can be made 
as small as desired. Proceed as in Theorem 6.10. 

7. Suppose f is a real function on (0, 1] and f e ~ on [c, 1] for every c > 0. Define 

f.
1 

f(x) dx =lim J1 

f(x) dx 
0 C-+0 c 

if this limit exists (and is finite). 
(a) If fe ~on [0, 1], show that this definition of the integral agrees with the old 
one. 
(b) Construct a function/such that the above limit exists, although it fails to exist 
with I /I in place off 

8. Supposefe ~on [a, b] for every b >a where a is fixed. Define 

f oo f(x) dx =lim fb f(x) dx 
II b-+ 00 II 

if this limit exists (and is finite). In that case, we say that the integral on the left 
converges. If it also converges after f has been replaced by l/1, it is said to con
verge absolutely. 



THE RIEMANN-STIELTJES INTEGRAL 139 

Assume that f(x) ~ 0 and that f decreases monotonically on [I, oo ). Prove 

{:o f(x) dx 

converges if and only if 

Lf(n) 
n•l 

converges. (This is the so-called "integral test" for convergence of series.) 
9. Show that integration by parts can sometimes be applied to the "improper" 

integrals defined in Exercises 7 and 8. (State appropriate hypotheses, formulate a 
theorem, and prove it.) For instance show that 

('
00 

COS X f. 00 sin X 
Jo l+xdx= o (l+x)zdx. 

Show that one of these integrals converges absolutely, but that the other does not. 
10. Let p and q be positive real numbers such that 

Prove the following statements. 
(a) If u ~ 0 and v ~ 0, then 

!+!=1. 
p q 

u" vq 
uvs-+-· 

p q 

Equality holds if and only if u" = vq. 
(b) If fe Bf(rx), g e Bl(rx),/> 0, g > 0, and 

then 

(c) If /and g are complex functions in Bf(rx), then 

This is Holder's inequality. When p = q = 2 it is usually called the Schwarz 
inequality. (Note that Theorem 1.35 is a very special case of this.) 
(d) Show that Holder,s inequality is also true for the "improper" integrals de
scribed in Exercises 7 and 8. 
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11. Let oc be a fixed increasing function on [a, b]. For u e Bl(oc), define 

Suppose/, g, he Bf(oc), and prove the triangle inequality 

ll/-hll2s ll/-ull2+ llg-hll2 

as a consequence of the Schwarz inequality, as in the proof of Theorem 1.37. 
ll. With the notations of Exercise 11, suppose fe Bl(oc) and e > 0. Prove that 

there exists a continuous function g on [a, b] such that II/- ull2 <e. 
Hint: Let P = {xo, ... , Xn} be a suitable partition of [a, b], define 

( ) I f( ) ~X 1-1 ji(X,) gt =~ Xt-1 + u.x, x, 

if Xt-1 S t S Xt. 

13. Define 

f
x+1 

f(x) = x sin (t 2
) dt. 

(a) Prove that 1/(x)l < 1/x if x > 0. 
Hint: Put t 2 = u and integrate by parts, to show thatf(x) is equal to 

cos (x2) cos [(x + 1)2] J<x+ 1>
2 cos u 

2x - 2(x + 1) - x2 4u3 ' 2 du. 

Replace cos u by -1. 
(b) Prove that 

2xf(x) = cos (x2
)- cos [(x + 1)2 ] + r(x) 

where I r(x) I < c/x and c is a constant. 
(c) Find the upper and lower limits of xf(x), as x ~ oo. 

(d) Does Jooo sin (t 2
) dt converge? 

14. Deal similarly with 

f
x+1 

f(x) = x sin (et) dt. 

Show that 

and that 

exf(x) =cos (ex)- e- 1 cos (ex+ 1) + r(x), 

where lr(x)l < ce-x, for some constant C. 
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15. Suppose/is a real, continuously differentiable function on [a, b],f(a) =f(b) = 0, 
and 

J a xf(x)f'(x) dx = -! 

and that 

a a 

16. For 1 < s < oo define 

n=l n 

(I hts ts Rtemann,s zeta functiOn, of great Importance m the study of the dtstn
bution of prime numbers.) Prove that 

foo [x] 
(a) '(s) = s 1 r+l dx 

and that 

s Joo X- [x] 
(b) '(s) = --1- s s+1 dx, s- 1 x 

where [x] denotes the greatest integer s x. 
Prove that the integral in (b) converges for all s > 0. 
Hint: To prove (a), compute the difference between the integral over [1, N] 

and the Nth partial sum of the series that defines '(s). 
17. Suppose oc increases monotonically on [a, b], g is continuous, and g(x) = G'(x) 

for a s x <b. Prove that 

J:oc(x)g(x) dx = G(b)oc(b)- G(a)oc(a)- J: G doc. 

Hint: Take g real, without loss of generality. Given P = {xo, Xt, ••• , Xn}, 

choose t, e (x,_ h x,) so that g(t,) ~x, = G(x,)- G(x,-t). Show that 
n n 

L oc(x,)g(t,) ~x, = G(b)oc(b)- G(a)oc(a)- L G(Xt- 1) ~oc,. 
1•1 I= 1 

18. Let ')It, ')'2, ')'3 be curves in the complex plane, defined on [0, 27T] by 

Yt(t) = ett, ')'2(t) = e2tt, ')'3(t) = e2nlt Sin (1/t). 

Show that these three curves have the same range, that Yt and ')'2 are rectifiable, 
that the length of Yt is 27T, that the length of ')'2 is 47T, and that ')'3 is not rectifiable. 
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19 Let 3't be a curve in R\ defined on [a, b]; let cp be a continuous l-1 mapping of 
[c, d] onto [a, b], such that cp(c) =a; and define y:z(s) = y.(cp(s)). Prove that Y:z is 
an arc, a closed curve, or a recufiable curve tf and only tf the same is true of y 1 • 

Prove that Y:z and Y• have the same length. 



SEQUENCES AND SERIES OF FUNCTIONS 

In the present chapter we confine our attention to complex-valued functions 
(including the real-valued ones, of course), although many of the theorems and 
proofs which follow extend without difficulty to vector-valued functions, and 
even to mappings into general metric spaces. We choose to stay within this 
simple framework in order to focus attention on the most important aspects of 
the problems that arise when limit processes are interchanged. 

DISCUSSION OF MAIN PROBLEM 

7.1 Definition Suppose {J,.}, n = 1, 2, 3, ... , is a sequence of functions 
defined on a set E, and suppose that the sequence of numbers {J,.(x)} converges 
for every x e E. We can then define a function/by 

(1) f(x) = limJ,.(x) (x e E). 
n-+ oo 
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Under these circumstances we say that {J,.} converges on E and that I is 
the limit, or the limit function, of {J,.}. Sometimes we shall use a more descriptive 
terminoJogy and shaJJ say that "{.ha} converges tofpointwire onE" if (1) holds. 
Similarly, if f.J,.(x) converges for every x e E, and if we define 

co 

(2) l(x) = 'f..J,.(x) (x e E), 
n=l 

the function f is called the sum of the series I.fn . 
The main problem which arises is to determine whether important 

properties of functiOns are preserved under the hmtt operatiOns (1) and {2). 
For instance, if the functions.£. are continuous, or differentiable, or integrah1e, 
is the same true of the limit function? What are the relations between I~ and I', 
say, or between the integrals off,. and that off? 

To say that I is continuous at a limit point x means 

liml(t) = l(x). 
t-+x 

Hence, to ask whether the limit of a sequence of continuous functions is con
tinuous is the same as to ask whether 

(3) lim limJ,.(t) = lim IimJ,.(t), 

i.e., whether the order in which limit processes are carried out is immateriaL 
On the left side of (3), we first let n-+ oo, then t-+ x; on the right side, t-+ x 

first, then n -+ oo. 
We shall now show by means of several examples that limit processes 

cannot in general be interchanged without affecting the result. Afterward, we 
shall prove that under certain conditions the order in which limit operations 
are carried out is immaterial. 

Our first example, and the simplest one, concerns a "double sequence." 

7.2 Example Form= 1, 2, 3, ... , n = 1, 2, 3, ... ,let 

Then, for every fixed n, 

so that 

(4) 

m 
s =--· 

m,n m+n 

lim Sm,n = 1, 
m-+oo 

lim lim Sm,n = 1. 
n-+oo m-+oo 
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On the other hand, for every fixed m, 

Jim .r,,,,. - 0, 
n-+ oo 

s 

(5) lim lim Sm,n 0. 
m-+oo n-+oo 

7.3 Example Let 

] 11(X) (xreal; n 0, I, 2, ... ), 

and consider 

(6) 

Since/,(0) = 0, we havef(O) = 0. For x :1: 0, the last series in (6) is a convergent 
geometric series with sum 1 + x 2 (Theorem 3.26). Hence 

(7) f(x) = (~ + x2 
(x = 0), 
(x :1: 0), 

so that a convergent series of continuous functions may have a discontinuous 
sum. 

7.4 Example Form = 1, 2, 3, ... , put 

fm(x) =lim (cos m!nx)211
• 

n-+ oo 

When m !xis an integer,fm(x) = 1. For all other values of x,fm(x) = 0. Now let 

f(x) = lim fm(x). 
m-+oo 

For irrational x, fm(x) = 0 for every m; hence f(x) = 0. For rational x, say 
x = pfq, where p and q are integers, we see that m !x is an integer if m ~ q, so 
thatf(x) = 1. Hence 

(8) lim lim (cos m !nx) 211 = (
0
1 m-+oon-+oo 

(x irrational), 
(x rational). 

We have thus obtained an everywhere discontinuous limit function, which 
is not Riemann-integrable (Exercise 4, Chap. 6). 
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7.5 Example Let 

(9) J,.(x) = ~liz (xreal, n = 1, 2, 3, ... ), 

and 
f(x) limJ~(x) 0. 

n-+ oo 

Then} '(x) - 0, and 

j ~(x) = 'In cos nx, 

so that (f~} does not converge tof'. For instance, 
c 

j ~(0) = '\1 n -+ + oo 

as n-+ oo, whereasf'(O) = 0. 

7.6 Example Let 

(10) (0 :::;;x:::; I, n = 1, 2, 3, ... ). 

For 0 < x :::;; 1, we have 

limJ,.(x) = 0, 
n-+ oo 

by Theorem 3.20(d). Since/11(0) = 0, we see that 

(11) limJ,.(x) = 0 (0:::;; X:::;; 1). 
n-+ oo 

A simple calculation shows that 

J
l 1 
x(l - x 2

)
11 dx = · 

o 2n + 2 

Thus, in spite of (11), 

as n-+ oo. 
If, in (1 0), we replace n2 by n, (11) still holds, but we now have 

lim JtJ,.(x) dx = lim 2 n 2 = _21' 
n-+oo 0 n-+oo n + 

whereas 

J1 

[ lim/11(x)] dx = 0. 
0 n-+ oo 
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Thus the limit of the integral need not be equal to the integral of the limit, 
even if both are finite. 

After these examples, which show what can go wrong If limit processes 
are interchanged carelessly, we now define a new mode of convergence, stronger 
than pointwise convergence as defined in Definition 7.1, which will enable us to 
arrive at positive results. 

UNIFORM CONVERGENCE 

7.7 Definition VIe say that a sequence of functions {f,.}, n 1, 2, 3, ... , 
converges uniformly on E to a function f if for every e > 0 there is an integer N 
such that n > N implies 
(12) IJ,.(x) - f(x) I ~ e 
for all x e E. 

It is clear that every uniformly convergent sequence is pointwise con
vergent. Quite explicitly, the difference between the two concepts is this: If{!,.} 
converges pointwise on E, then there exists a function f such that, for every 
e > 0, and for every x e E, there is an integer N, depending one and on x, such 
that ( 12) holds if n > N; if{!,.} converges uniformly on E, it is possible, for each 
e > 0, to find one integer N which will do for all x e E. 

We say that the series f.J,.(x) converges uniformly on E if the sequence 
{ s,} of partiaJ sums defined by 

II 

L ft(x) = s,(x) 
i= 1 

converges uniformly on E. 
The Cauchy criterion for uniform convergence is as follows. 

7.8 Theorem The sequence of functions{!,.}, defined on E, converges uniformly 
on E if and only if for every e > 0 there exists an in;teger N such that m > N, 
n ;::::: N, x e E implies 
(13) l/,,(x) - fm(x) I ~ e. 

Proof Suppose {/,.} converges uniformly on E, and let f be the limit 
function. Then there is an integer N such that n > N, x e E implies 

e 
lfn(x) - f(x) I ~ 2' 

so that 

Jf,(x) - fm(x) I ~ Jf,(x) - f(x) I + lf(x) - fm(x) I ~ e 

if n ~ N, m ~ N, x e E. 
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(14) 

Conversely, suppose the Cauchy condition holds. By Theorem 3.11, 
the sequence {f,.(x)} converges, for every x, to a limit which we may call 
f(x). Thus the sequence {f,.} converges on E, to f. We have to prove that 
the convergence is uniform 

Let e > 0 be given, and choose N such that (13) holds. Fix n, and 
let m-+ oo in (13). SinceJm(x) -+](x) as m-+ oo, this gives 

lfn(x) - f(x) I :S: e 

for every n ~ N and every x e E, which completes the proof. 

The following criterion is sometimes useful. 

7.9 Theorem Suppose 

limf,.(x) = f(x) (x e E). 
n-+oo 

Put 
M, = sup lfn(x) - f(x) I· 

xeE 

Then/,-+ f uniformly on E if and only if M, -+ 0 as n-+ oo. 

Since this is an immediate consequence of Definition 7.7, we omit the 
details of the proof. 

For series, there is a very convenient test for uniform convergence, due to 
Weierstrass. 

7.10 Theorem Suppose{f,.} is a sequence of functions defined onE, and suppose 

lfn(x) I :S: M, (x e E, n = 1, 2, 3, ... ). 

Then !:.f, converges uniformly on E if !:.M, converges. 

Note that the converse is not asserted (and is, in fact, not true). 

Proof If !:.M, converges, then, for arbitrary e > 0, 

I ,t,Ji(x) I ::;; ~~ M, ::;; 8 (x e E), 

provided m and n are large enough. Uniform convergence now follows 
from Theorem 7 .8. 
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UNIFORM CONVERGENCE AND CONTINUITY 

7.11 Theorem Suppose/,.--+ /uniformly on a set E in a metric space. Let x he 
a limit point of E, and suppose that 

(15) limJ,.(t) =A, (n = 1, 2, 3, ... ). 
t-+x 

Then {A,} converges, and 

(16) 

(17) 

(18) 

Iimf(t) =lim A,. 
t-+x n-+oo 

In other words, the conclusion is that 

lim limJ,.(t) = lim limJ,.(t). 
-+ -+co -+ -+ 

Proof Let e > 0 be given. By the uniform convergence of {J,.}, there 
exists N such that n ~ N, m ~ N, t e E imply 

lfn(t)- fm(t) I ~B. 
Letting t --+ x in (18), we obtain 

lA,. -Ami ~e 
for n ~ N, m ~ N, so that {A,.} is a Cauchy sequence and therefore 
converges, say to A. 

Next, 

(19) lf(t)- A I ~ lf(t)- /,(t) I + 1/,.(t)- A, I + lA,- A I· 
We first choose n such that 

(20) 
e 

lf(t) - fn(t) I ~ 3 
for all teE (this is possible by the uniform convergence), and such that 

(21) 
e 

IA,-AI ~3' 

Then, for this n, we choose a neighborhood V of x such that 

(22) 
e 

lfn(t) - A, I ~ 3 
if t e V n E, t :1: x. 

Substituting the inequalities (20) to (22) into (19), we see that 

lf(t) - A I ~ e, 

provided t e V n E, t:Fx. This is equivalent to (16). 
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7.12 Theorem I[{[,} is a sequence o[ continuous [unctions on E, and iff:.-+ f 
uniformly on E, then f is continuous on E. 

This very important result is an immediate corollary of Theorem 7.11. 
The converse is not true, that is, a sequence of continuous functions may 

converge to a continuous function, although the convergence is not uniform. 
Example 7.6 is of this kind (to see this, apply Theorem 7.9). But there is a case 
in which we can assert the converse. 

7.13 Tbe01em Suppose K is compact, and 

(a) (f,.} is a sequence (}f continuous functions on K, 
(b) {J,.} converges pointwise to a continuous function f on K, 
(c) ]n(x) '?::.fn+t(x)jor all x E K, n =I, 2, 3, .... 

Then J,. -+ f uniformly on K. 

Proof Put gn = fn- f Then gn is continuous, g"-+ 0 pointwise, and 
gn '?::.. gn+t· We have to prove that gn -+0 uniformly on K. 

Let e > 0 be given. Let Kn be the set of all x E K with gn(x) '?::.. s. 
Since g" is continuous, Kn is closed (Theorem 4.8), hence compact (Theorem 
2.35). Since gn '?::.. gn+t• we have Kn ::::> Kn+t· Fix x E K. Since gn(x)-+ 0, 
we see that X ¢ Kn if n is sufficiently large. Thus X ¢ n Kn . In other words, n Kn is empty. Hence KN is empty for some N (Theorem 2.36). It follows 
that 0 ~ g"(x) < e for all x E K and for all n '?::.. N. This proves the theorem. 

Let us note that compactness is really needed here. For instance, if 

1 
J,.(x) = nx + 

1 
(0 < x < 1; n = 1, 2, 3, ... ) 

thenJ,.(x)-+ 0 monotonically in (0, 1), but the convergence is not uniform. 

7.14 Definition If X is a metric space, ~(X) will denote the set of all complex
valued, continuous, bounded functions with domain X. 

[Note that boundedness is redundant if X is compact (Theorem 4.15). 
Thus ~(X) consists of all complex continuous functions on X if X is compact.] 

We associate with eachfe ~(X) its supremum norm 

11!11 = sup ll(x) I· 
xeX 

Since f is assumed to be bounded, 11!11 < oo. It is obvious that IIIII = 0 only if 
f(x) = 0 for every x EX, that is, only if/= 0. If h =f + g, then 

lh(x) I :S: ll(x) I + lg(x) I :S: 11!11 + llgll 
for all x EX; hence 

Ill+ gil :s: 11!11 + llgll. 
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If we define the distance between f e ~(X) and g e ~(X) to be II/- gil, 
it follows that Axioms 2.1 S for a metric are satisfied. 

We have thus made ~(X) into a metric space. 
Theorem 7.9 can be rephrased as follows: 

A sequence {J,.} converges to f with respect to the metric of ~(X) if and 
only iff, -+ f uniformly on X. 

Accordingly, closed subsets of ct&'(X) are sometimes caJJed uniformly 
closed, the closure of a set d c ~(X) is called its uniform closure, and so on. 

7.15 Theorem The above metric makes ~(X) into a complete metric space. 

Proof Let {J,.} be a Cauchy sequence in ~(X). This means that to each 
e > 0 corresponds an N such that IIJ,. - fm II < e if n ~ N and m ~ N. 
It follows (by Theorem 7.8) that there is a function f with domain X to 
which {J,.} converges uniformly. By Theorem 7.12, f is continuous. 
Moreover, f is bounded, since there is an n such that lf(x) - J,.(x) I < 1 
for all x e X, and J,. is bounded. 

Thus f e ~(X), and since J,.--+ f uniformly on X, we have 
II/-/nil --+ 0 as n--+ oo. 

UNIFORM CONVERGENCE AND INTEGRATION 

7.16 Theorem Let ex be monotonically increasing on [a, b]. Suppose J,. eat( ex) 
on [a, b ], for n = 1, 2, 3, ... , and suppose J,.--+ f uniformly on [a, b ]. Then f e at(cx) 
on [a, b ], and 

b b 

(23) J f dcx = lim J /,. dcx. 
a n-+oo a 

(The existence of the limit is part of the conclusion.) 

Proof It suffices to prove this for real J,. . Put 

(24) e,. = sup IJ,.(x) - f(x) I, 
the supremum being taken over a :::;; x :::;; b. Then 

/,.- e,. =::;;f=::;;J,. + e,, 

so that the upper and lower integrals off (see Definition 6.2) satisfy 
b - b 

(25) J (f,. - e,.) dcx :::;; If dcx :::;; If dcx:::;; J (f,. + e,.) dcx. 
a _ a 

Hence 
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Since sn-+ 0 as n-+ oo (Theorem 7.9), the upper and lower integrals off 
are equal. 

Thus f e Bl(e<). Another application of (25) now yields 

(26) I J: f drx (;, drx I ~ •.[rx(b) rx(a)]. 

This implies (23). 

Corollary Iff,. e Bl( e<) on [a, b] and if 
00 

[(x) = L [..(x) (a< x ~b), 
n=l 

the serzes convergzng unijormly on [a, b], then 

b 00 b I f de< = L I In de<. 
a n= 1 a 

In other words, the series may be integrated term by term. 

UNIFORM CONVERGENCE AND DIFFERENTIATION 

We have already seen, in Example 7.5, that uniform convergence of {f,.} implies 
nothing about the sequence {f~}. Thus stronger hypotheses are required for the 
assertion that f:-+ f' iff,.-+ f. 

7.17 Theorem Suppose {f,.} is a sequence of functions, differentiable on [a, b] 
and such that {.fn(x0)} converges for some point x0 on [a, b]. If {f;} converges 
uniformly on [a, b ], then {fn} converges uniformly on [a, b ], to a function J, and 

(27) f'(x) = limf;(x) (a< x ~b). 
n-+ oo 

Proof Lets> 0 be given. Choose N such that n ~ N, m ~ N, implies 

(28) 

and 

(29) 
B 

lf~(t) - f,:.(t) I < 2(b _ a) (a~ t ~b). 



(30) 

(31) 

(32) 

(33) 
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Ifwe apply the mean value theorem 5.19 tothefunction.fn- fm, (29) 
shows that 

lx t le e 
l.fn(x) - fm(x) - fn(t) + fm(t) I S: 2(b _ a) S: 2 

for any x and t on [a, b), if n :2!: N, m :2!: N. The inequality 

implies, by (28) and (30), that 

l.fn(x) - fm(x) I < e (a S: x S: b, n :2!: N, m :2!: N), 

so that {.fn} converges uniformly on [a, b ]. Let 

f(x) =lim.fn(x) (a s; x s; b). 
n-+ oo 

Let us now fix a point x on [a, b] and define 

4Jn(t) = .fn(t) - .fn(x), 
t- X 

4J(t) = f(t) - f(x) 
t- X 

for a s; t s; b, t :1= x. Then 

lim 4Jn(t) = f:(x) (n = 1, 2, 3, ... ). 
t-+x 

The first inequality in (30) shows that 

(n :2!: N, m :2!: N), 

so that { 4Jn} converges uniformly, for t :1= x. Since ffn} converges to f, we 
conclude from (31) that 

lim 4Jn(t) = 4J(t) 
n-+oo 

uniformly for a s; t s; b, t :1= x. 
If we now apply Theorem 7.11 to { 4Jn}, (32) and (33) show that 

lim 4J(t) = limf:(x); 
t-+x n-+oo 

and this is (27), by the definition of 4J(t). 

Remark: If the continuity of the functions f: is assumed in addition to 
the above hypotheses, then a much shorter proof of (27) can be based on 
Theorem 7.16 and the fundamental theorem of calculus. 
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7.18 Theorem There exists a real continuous function on the rea/line which is 
nowhere dijjerentiable. 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

Proof Define 

cp(x)- lx I ( 1 S: X S: 1) 

and extend the definition of <p(x) to all real x by requiring that 

lfJ (x + 2) lfJ (x). 

Then for all s and t 

l<p(s)- <p(t) I ~ Is- t 1. 
In particular, <p is continuous on R 1• Define 

00 

f(x) = L Ct)n<p(4nx). 
n=O 

Since 0 ~ <p ~ 1, Theorem 7.10 shows that the series (37) converges 
uniformly on R1

• By Theorem 7 .12, f is continuous on R1
• 

Now fix a real number x and a positive integer m. Put 

bm = + l' 4 -m 

where the sign is so chosen that no integer lies between 4mx and 4"'(x + <5,.). 
This can be done, since 4m Ibm I = !. Define 

<p(4n(x + bm)) - <p(4nx) 
y = . 
n <5,. 

When n > m, then 4n<5m is an even integer, so that Yn = 0. When 0 ~ n ~ m, 
(36) implies that IYn I ~ 4n. 

Since IYm I = 4"', we conclude that 

m (3)n 
- n~O 4 Yn 

m-1 

~ 3"'- L 3n 
n=O 

= !(3"' + 1). 

As m--. oo, <5171 --. 0. It follows thatfis not differentiable at x. 

EQUICONTINUOUS FAMILIES OF FUNCTIONS 

In Theorem 3.6 we saw that every bounded sequence of complex numbers 
contains a convergent subsequence, and the question arises whether something 
similar is true for sequences of functions. To make the question more precise, 
we shall define two kinds of boundedness. 
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7.19 Definition Let {.fn} be a sequence of functions defined on a set E. 
VIe say that fin} is pointwise bounded on E if the sequence {:fn(x)} is bounded 

for every x e E, that is, if there exists a finite-valued function 4> defined on E 
such that 

lfn(x) I < (/>(x) (x e E, n = 1, 2, 3, ... ). 

We say that {.fn} is uniformly bounded on E if there exists a number M 
such that 

l.fn(x) I < M (x e E, n = 1, 2, 3, ... ). 

Now if {.fn} is pointwise bounded onE and E1 is a countable subset of E, 
it IS always possible to find a subsequence {.fnk} such that {.fnk(x)} converges for 
eyery x e F; This can he done by the diagonal process which is used in the 
proof of Theorem 7.23. 

However, even if {.fn} is a uniformly bounded sequence of continuous 
functions on a compact set E, there need not exist a subsecr:Jence which con
verges pointwise on E. In the following example, this would be quite trouble
some to prove with the equipment which we have at hand so far, but the proof 
is quite simple if we appeal to a theorem from Chap. 11. 

7.20 Example Let 

.fn(x) = sin nx (0 S: X :5: 21t, n = 1, 2, 3, ... ) . 

Suppose there exis-ts a sequence {nk} such that {sin nkx} converges, for every 
x e [0, 21t]. In that case we must have 

lim (sin nkx- sin nk+lx) = 0 (0 :5: X :5: 21t); 
k-+oo 

hence 

(40) lim (sin nkx- sin nk+1x)2 = 0 (0 :5: X :5: 21t), 
k-+ 00 

By Lebesgue's theorem concerning integration of boundedly convergent 
sequences (Theorem 11.32), (40) implies 

(41) 
2n 

lim J (sin nkx- sin nk+1x)2 dx = 0. 
k-+ 00 0 

But a simple calculation shows that 

2n 

J
0 

(sin nkx- sin nk+ 1x)2 dx = 21t, 

which contradicts (41). 
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Another question is whether every convergent sequence contains a 
umformly convergent subsequence. Our next example wtll show that th1s 
need not be so, even if the sequence is uniformly bounded on a compact set 
(Example 7.6 shows that a sequence of bounded functions may converge 
without being uniformly bounded, but it is trivial to see that uniform conver-
gence of a sequence of bounded functions implies uniform boundedness.) 

7.21 Example Let 

X 

fn(x) = x2 + (1 - nx)2 (0 S: x s; 1, n = 1, 2, 3, ... ). 

Then !};.(x) I s: 1, so that{};.} is uniformly bounded on [0, 1]. Also 

limfn(x) = 0 (0 s; x s; 1), 
n-+oo 

but 

(n = 1, 2, 3, ... ), 

so that no subsequence can converge uniformly on [0, 1]. 

The concept which is needed in this connection is that of equicontinuity; 
it is given in the following definition. 

7.22 Definition A family !F of complex functions f defined on a set E in a 
metric space X is said to be equicontinuous on E if for every 8 > 0 there exists a 
{) > 0 such that 

lf(x) - f(y) I < 8 

whenever d(x, y) < {), x e E, y e E, andfe !F. Here d denotes the metric of X. 
It is clear that every member of an equicontinuous family is uniformly 

continuous. 
The sequence of Example 7.21 is not equicontinuous. 
Theorems 7.24 and 7.25 will show that there is a very close relation 

between equicontinuity, on the one hand, and uniform convergence of sequences 
of continuous functions, on the other. But first we describe a selection process 
which has nothing to do with continuity. 

7.23 Theorem If {fn} is a pointwise bounded sequence of complex functions on 
a countable set E, then {fn} has a subsequence {.fnk} such that {.fnk(x)} converges for 
every x e E. 
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Proof Let {xJ, i = 1, 2, 3, ... , be the points of E, arranged in a sequence. 
Since ffn(xt>} is bounded, there exists a subsequence, which we shall 
denote by {.ft ,k}, such that {it ,k( x 1)} converges as k ~ oo. 

Let us now constder sequences S1, S 2 , S3 , ••• , whtch we represent 
by the array 

s1: /1,1 h,2 /1,3 /1,4 
S2: 12,1 12,2 12,3 12,4 
SJ: f ~3,1 f ~3,2 f ~3,J f ~3,4 

and whtch have the followmg properttes: 

(a) sn is a subsequence of sn-1, torn - 2, 3, 4, .... 
(b) {£, k(x")} converges, as k ~ oo (the boundedness of {t;,(x11)} 

makes it possible to choose sn in this way); 
(c) The order in which the functions appear is the same in each se
quence; i.e., if one function precedes another in S1, tJ,ey are in the same 
relation in every Sn , until one or the other is deleted. Hence, when 
going from one row in the above array to the next below, functions 
may move to the left but never to the right. 

We now go down the diagonal of the array; i.e., we consider the 
sequence 

s· " f f " · · · . Jt,l 2,2 3,3 J4,4 . 

By (c), the sequence S (except possibly its first n - 1 terms) is a sub
sequence of Sn, for n = 1, 2, 3, .. .. Hence (b) implies that {.fn,n(xi)} 
converges, as n ~ oo, for every xi e E. 

7.24 Theorem If K is a compact metric space, iffn e ~(K)for n = 1, 2, 3, ... , 
and if{.fn} converges uniformly on K, then {.fn} is equicontinuous on K. 

Proof Let s > 0 be given. Since {.fn} converges uniformly, there is an 
integer N such that 

(42) 11/n-/Nil < B (n > N). 

(43) 

(See Definition 7.14.) Since continuous functions are uniformly con
tinuous on compact sets, there is a b > 0 such that 

lfi(x) - fi(Y) I < B 

if 1 < i < N and d(x, y) < b. 
If n > N and d(x, y) < b, it follows that 

l.fn(x) - fn(Y) I ~ l.fn(x) - fN(x) I + lfN(x) - fN(Y) I + lfN(Y) - .fn(y) I < 3s. 

In conjunction with (43), this proves the theorem. 



158 PRINCIPLES OF MATHEMATICAL ANALYSIS 

7.25 Theorem If K is compact, if J,. e ~(K) for n = 1, 2, 3, ... , and if {f,.} is 
pointwise bounded and equicontznuous on K, then 

(a) {.fn} is tmifm mly bounded on K, 

(44) 

(45) 

(46) 

(b) {J,.} contains a uniformly convergent subsequence. 

Proof 

(a) Lets> 0 be given and choose lJ > 0, in accordance with Definition 
7 .22, so that 

Jf,.(x) f,.(y) I < B 

for alln, provided that ti(x, y) < lJ. 
Since K is compact, there are finitely many points p1, ••• , p, in K 

such that to every x e K corresponds at least one p1 with d(x, p1) < lJ. 
Since{J,.} is pointwise bounded, there exist M 1 < oo such that lf,(p1) I < Mi 
for all n. If M =max (M1, ••• , M,), then IJ,(x)l < M + s for every 
x e K. This proves (a). 
(b) Let E be a countable dense subset of K. (For the existence of such a 
set E, see Exercise 25, Chap. 2.) Theorem 7.23 shows that {J,.} has a 
subsequence {.fn,} such that {J,.,(x)} converges for every x e E. 

Put In, = g 1 , to simplify the notation. We shall prove that {g 1} 

converges uniformly on K. 
Let s > 0, and pick lJ > 0 as in the beginning of this proof. Let 

V(x, lJ) be the set of ally e K with d(x, y) < lJ. Since E is dense inK, and 
K is compact, there are finitely many points x1, ••• , Xm in E such that 

Since {g i(x)} converges for every x e E, there is an integer N such 
that 

whenever i :2!: N,j :2!: N, 1 :::;; s :::;; m. 
If x e K, (45) shows that x e V(xs, lJ) for somes, so that 

lg,(x)- g1(xs) I < s 

for every i. If i :2!: N andj :2!: N, it follows from (46) that 

lg,(x)- u/x) I :5: lui(x)- g,(xs) I + lu,(xs)- gj(xs) I+ luixs)- gj(x) I 
< 3s. 

This completes the proof. 
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THE STONE-WEIERSTRASS THEOREM 

7.26 Theorem Iff is a continuous complex function on [a, b], there exists a 
sequence o[polynomials P n such that 

lim Pn(x) = f(x) 
n-+oo 

uniformly on [a, b] Iff is real, the Pn may be taken real 

This is the form in which the theorem was originally discovered by 
Weierstrass. 

(47) 

(48) 

(49) 

Proof We may assume, without loss of generality, that [a, b)= [0, 1]. 
\Ve may also assume that f(O) f(l) 0. For if the theorem is proved 
for this case, consider 

g(x) = f(x) - /(0) - x[f(l) - /(0)] (0 ~X~ 1). 

Here g(O) = g(l) = 0, and if g can be obtained as the limit of a uniformly 
convergent sequence of polynomials, it is clear that the same is true for f, 
since f- g is a polynomial. 

Furthermore, we definef(x) to be zero for x outside [0, 1]. Then/ 
is uniformly continuous on the whole line. 

We put 

where cn is chosen so that 
1 I _

1 
Qn(x) dx = 1 

(n = 1, 2, 3, ... ), 

( n = 1 , 2, 3, . . . ) . 

We need some information about the order of magnitude of cn . Since 

I 1 

( 1 - x2)n dx = 2 I 1 

( 1 - x 2t dx ~ 2 I 11 
J-;; ( 1 - x 2t dx 

-1 0 0 

it follows from (48) that 

I
t;J-;; 

~ 2 ( l - nx2
) dx 

0 

4 

=3Jn 
1 

> J~' 
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(51) 

The inequality (1 x 2t > 1 nx2 which we used abo'\le is easily 
shown to be true by considering the function 

which is zero at x = 0 and whose derivative is positive in (0, 1). 
For any [) > 0, (49) implies 

so that Q11 -+ 0 uniformly in {, < I x I s; 1 
Now set 

1 

Pn(x) = f f(x + t)Qn(t) dt (Q <X< 1). 
"-1 

Our assumptions about/ show, by a simple change of variable, that 

1-x 1 

P11(X) = J f(x + t)Q11(t) dt = J f(t)Q 11(t- x) dt, 
-x 0 

and the last integral is clearly a polynomial in x. Thus { P11} is a sequence 
of polynomials, which are real iff is real. 

Givens> 0, we choose b > 0 such that IY- xI < b implies 

B 
lf(y)- f(x) I < 2· 

Let M =sup lf(x) 1. Using (48), (50), and the fact that Q11(x);;::: 0, we 
see that for 0 :::;; x :::;; 1, 

IP.(x)- f(x) I = l([f(x + t)- f(x)]Q.(t) dtl 

1 

:5: J _
1 

lf(x + t) - f(x) I Qn(t) dt 

J
-IJ gflJ J1 

:::;; 2M _
1 

Qn(t) dt + 2 _
6 

Qn(t) dt + 2M 
6 

Qn(t) dt 

<B 

for all large enough n, which proves the theorem. 

It is instructive to sketch the graphs of Qn for a few values of n; also, 
note that we needed uniform continuity off to deduce uniform convergence 
of {P11}. 
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In the proof of Theorem 7.32 we shall not need the full strength of 
Theorem 7.26, but only the following special case, which we state as a corollary. 

7.27 Corollary For every interval [-a, a] there is a sequence of real poly-
nomzals P n such that P n(O) - 0 and such that 

lim P,(x) - I x I 
n-+oo 

uniformly on [- a, a]. 

Proof By Theorem 7.26, there exists a sequence {P:} of real polynomials 
which converges to lx I uniformly on [-a, a]. In particular, P:(o)-+ 0 
as n -+ oo. The polynomials 

P"(x) = P:(x)- P:(O) (n = 1, 2, 3, ... ) 

have desired properties. 

We shall now isolate those properties of the polynomials which make 
the Weierstrass theorem possible. 

7.28 Definition A family .91 of complex functions defined on a set E is said 
to be an algebra if (i) f + g e .91, (ii) fg e .91, and (iii) cf e .91 for allf e .91, g e .91 
and for all complex constants c, that is, if .91 is closed under addition, multi
plication, and scalar multiplication. We shall also have to consider algebras of 
real functions; in this case, (iii) is of course only required to hold for all real c. 

If .91 has the property that f e .91 whenever fn e .91 (n = 1, 2, 3, ... ) and 
fn -+ f uniformly on E, then .91 is said to be uniformly closed. 

Let PJ be the set of all functions which are limits of uniformly convergent 
sequences of members of .91. Then PJ is called the uniform closure of .91. (See 
Definition 7.14.) 

For example, the set of all polynomials is an algebra, and the Weierstrass 
theorem may be stated by saying that the set of continuous functions on [a, b] 
is the uniform closure of the set of polynomials on [a, b ]. 

7.29 Theorem Let PJ be the uniform closure of an algebra .91 of bounded 
functions. Then PJ i~ a uniformly closed algebra. 

Proof Iff e PJ and g e PJ, there exist uniformly convergent sequences 
{fn}, {gn} such thatfn-+ J, gn-+ g andfn e .91, gn e .91. Since we are dealing 
with bounded functions, it is easy to show that 

cfn-+ cj, 

where cis any constant, the convergence being uniform in each case. 
Hence/+ g e PJ,fg e PJ, and cfe PA, so that PJ is an algebra. 
By Theorem 2.27, PJ is (uniformly) closed. 
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7.30 Definition Let .91 be a family of functions on a set E. Then .91 is said 
to separate points onE if to every pair of distinct points x1, x2 e E there corre-
sponds a function] e 091 such thatj(x1) iF](x2). 

If to each x e E there corresponds a function g e .91 such that g(x) ::1: 0, 
we say that .91 vanishes at no point of E. 

The algebra of all polynomials in one \lariable clearly has these properties 
on R1• An example of an algebra which does not separate points is the set of 
all even polynomials, say on [- 1, 1 ], since f(- x) = f(x) for every even function f 

The following theorem will illustrate these concepts further. 

7.31 Theorem Suppose .91 is an algebra of functions on a set E, .91 separates 
points on E, anti o9l vanishes at no point ~~E. Suppose x1, x 2 are distinct points 
of E, and ch c2 are constants (real if .91 is a real algebra). Then .91 contains a 
function f such that 

Proof The assumptions show that .91 contains functions g, h, and k 
such that 

Put 

has the desired properties. 

We now have all the material needed for Stone's generalization of the 
Weierstrass theorem. 

7.32 Theorem Let .91 be an algebra of real continuous functions on a compact 
set K. If .91 separates points on K and if .91 vanishes at no point of K, then the 
uniform closure 11 of .91 consists of all real continuous functions on K. 

We shall divide the proof into four steps. 

STEP 1 lffe 11, then Ill e 11. 

Proof Let 

(52) a = sup lf(x) I (xeK) 
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and let e > 0 be given. By Corollary 7.27 there exist real numbers 
ch ... , en such that 

(53) (-a :S:y :S:a). 

Since dl is an algebra, the function 

I= 1 

is a member of fJI. By (52) and (53), we have 

lg(x)- lf(x) II< e (x e K). 

Smce Bits umformly closed, thts shows that 1/1 e dl. 

STEP 2 Iff e fJI and g e fJI, then max (f, g) e fJI and min (f, g) e fJI. 

By max (f, g) we mean the function h defined by 

h(x) = (f(x) 
g(x) 

if f(x) ~ g(x), 
if f(x) < g(x), 

and min (f, g) is defined likewise. 

Proof Step 2 follows from step 1 and the identities 

f+g lf-gl 
max (/, g) = -

2
- + 

2 
, 

min (f, g) = f; g _ If; g 1. 

By iteration, the result can of course be extended to any finite set 
of functions: If ft, ... ,!, e fJI, then max (ft, ... ,/,) e fJI, and 

min (ft, ... ,/,) e fJI. 

STEP 3 Given a real function f, continuous on K, a point x e K, and e > 0, there 
exists a function gx e fJI such that gx(x) =f(x) and 

(54) 

(55) 

gx(t) > f(t)- e (t E .(<). 

Proof Since .91 c fJI and d satisfies the hypotheses of Theorem 7.31 so 
does fJI. Hence, for every y e K, we can find a function h., e fJI such that 

h.,(x) = f(x), h.,(y) = f(y). 
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By the continuity of h, there exists an open set J, , containing y, 
such that 

(56) h,(t) > f(t)- B (t eJ,). 

Since K is compact, there is a finite set of points Yh ... , y,. such that 

(57) 

Put 

Ux =max (h., 1 , ••• , h.,J. 

By step 2, g e 11, and the relations (55) to (57) show that Ux has the other 
required properties. 

STEP 4 Given a rea/function!, continuous on K, and B > 0, there exists a function 
h e dl such that 

(58) lh(x) - f(x) I < B (x e K). 

Since dl is uniformly closed, this statement is equivalent to the conclusion 
of the theorem. 

(59) 

(60) 

(61) 

(62) 

Proof Let us consider the functions Ux, for each x e K, constructed in 
step 3. By the continuity of Ux, there exist open sets Vx containing x, 
such that 

gx(t) <f(t) + B 

Since K is compact, there exists a finite set of points xh ... , Xm 

such that 

K C Vx 1 U ''' U VXm • 

Put 

h =min (gX1, ••• 'Uxm>· 

By step 2, h e dl, and (54) implies 

h(t) > f(t)- B 

whereas (59) and (60) imply 

h(t) < f(t) + e 

FinalJy, (58) follows from (61) and (62). 

(t E K), 

(t e K). 
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Theorem 7.32 does not hold for complex algebras. A counterexample is 
given m Exercise 21. However, the conclusion of the theorem does hold, even 
for complex algebras, if an extra condition is imposed on ol, namely, that d 
be self-adjoint. This means that for every fed its complex conjugate J must 

also belong to d; J IS defined by J(x) = j (x). 

7.33 Theorem Suppose d is a self-adjoint algebra of complex continuous 
functions on a compact set K, d separates points on K, and d vanishes at no 
point of K. Then the uniform closure .C!J of d consistr; of all complex ' ontinuour; 
functions on K. In other words, dis dense CC(K). 

Proof Let d R be the set of all real functions on K which belong to d. 
If] e C9fl and j = u + w, with u, v real, then 2u-] + J, and smce d 

is self-adjoint, we see that u e d R. If x1 =1= x 2 , there exists f e s¥ such 
that f(x 1) = 1,f(x2 ) = 0; hence 0 = u(x2 ) =I= u(x1) = 1, which shows that 
d R separates points on K. If x e K, then g(x) =1= 0 for some g e d, and 
there is a complex number ). such that ).g(x) > 0; iff= ).g,f = u + iv, it 
follows that u(x) > 0; hence d R vanishes at no point of K. 

Thus d R satisfies the hypotheses of Theorem 7 .32. It follows that 
every real continuous function on K lies in the uniform closure of d R , 

hence lies in f!4. Iff is a complex continuous function on K, f = u + iv, 
then u e f!4, v e f!4, hence f e f!4. This completes the proof. 

EXERCISES 

1. Prove that every uniformly convergent sequence of bounded functions is uni
formly bounded. 

2. If {In} and {gn} converge uniformly on a set E, prove that {In +On} converges 
uniformly on E. If, in addition, {In} and {gn} are sequences of bounded functions, 
prove that {fngn} converges uniformly on E. 

3. Construct sequences {J,}, {gn} which converge uniformly on some set E, but such 
that {J,gn} does not converge uniformly onE (of course, {J,gn} must converge on 
E). 

4. Consider 

00 1 
/(x) = L 1 z • 

n= 1 + n X 

For what values of x does the series converge absolutely? On what intervals does 
it converge uniformly? On what intervals does it fail to converge uniformly? Is I 
continuous wherever the series converges? Is I bounded? 
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s. Let 

f,(x) = 
... 1T 

Sin""
X 

Show that {f,} converges to a continuous function, but not uniformly. Use the 
series l::/11 to show that absolute convergence, even for a11 x, does not imply uni-
form convergence. 

6. Prove that the series 

converges uniformly in every bounded interval, but does not converge absolutely 
for any value of x. 

7. For n = 1, 2, 3, ... , x real, put 

X 
f,.(x) = 1 + nx2. 

Show that {fn} converges uniformly to a function/, and that the equation 

f'(x) = limf~(x) 
II-+ ao 

is correct if x ¥= 0, but false if x = 0. 
8. If 

I(x)={~ (x ~0), 
(x > 0), 

if {x,.} is a sequence of distinct points of (a, b), and if I: I c~~l converges, prove that 
the series 

ao 
f(x) = L c,. l(x - x,.) 

11•1 
(a~x~b) 

converges uniformly, and that f is continuous for every x ¥= x,. . 
9. Let {f,.} be a sequence of continuous functions which converges uniformly to a 

function f on a set E. Prove that 

lim fn(x,.) = f(x) 
II-+ ao 

for every sequence of points x11 e E such that x11 ~ x, and x e E. Is the converse of 
this true? 
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10. Letting (x) denote the fractional part of the real number x (see Exercise 16, Chap. 4, 
for the definition), consider the f•mction 

f(x) (x real). 

Find all discontinuities of /, and show that they form a countable dense set. 
Show that/is nevertheless Riemann-integrable on every bounded interval 

11. Suppose {f,.}, {g,.} are defined on E, and 
(a) '£],.has umformly bounded parual sums; 
(b) Un ~o uniformly onE; 
(c) g1(x) ~g2(x) ~g3(x) ~ · · · for every x e E. 

Pro~e that :E fng,. converges uniformly on E. Hint: Compare with Theorem 

3.42. 
12. Suppose g andf,.(n = 1, 2, 3, ... ) are defined on (0, oo ), are Riemann-integrable on 

[t, T] whenever 0 < t < T < oo, I fnl < g, f,. ~I uniformly on every compact sub
set of (0, oo ), and 

Prove that 

Jet) g(x) dx < oo. 
0 

lim J oo f,.(x) dx = J ctJ f(x) dx. 
n-+ctJ 0 0 

(See Exercises 7 and 8 of Chap. 6 for the relevant definitions.) 
This is a rather weak form of Lebesgue's dominated convergence theorem 

(Theorem 11.32). Even in the context of the Riemann integral, uniform conver
gence can be replaced by pointwise convergence if it is assumed that .f e at. (See 
the articles by F. Cunningham in Math. Mag., vol. 40, 1967, pp. 179-186, and 
by H. Kestelman in Amer. Math. Monthly, vol. 77, 1970, pp. 182-187.) 

13. Assume that {f,.} is a sequence of monotonically increasing functions on R 1 with 
0 S.f,.(x) S. 1 for all x and all n. 
(a) Prove that there is a function/and a sequence {n"} such that 

f(x) = lim fnlx) 
k-+ctJ 

for every x e R1
• (The existence of such a pointwise convergent subsequence is 

usually called Hel/y' s selection theorem.) 
(b) If, moreover, f is continuous, prove that f,." ~/uniformly on compact sets. 

Hint: (i) Some subsequence {f,.,} converges at all rational points r, say, to 
f(r ). (ii) Define f(x), for any x e R1

, to be sup f(r ), the sup being taken over all 
r S. x. (iii) Show that fn,(x) ~ f(x) at every x at which f is continuous. (This is 
where monotonicity is strongly used.) (iv) A subsequence of {f,.1} converges at 
every point of discontinuity of f since there are at most countably many such 
points. This proves (a). To prove (b), modify your proof of (iii) appropriately. 
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14. Let f be a continuous real function on R1 with the following properties: 
0::;;, f(t) < 1,/(t I 2) f(t) for every t, and 

(
0 

f(t) = 1 
(O~t~l) 

(! < t ~ 1). 

Put <J)(t) = (x(t), y(t)), where 

0() 0() 

x(t) = L 2-"[(32n-1t), y(t) = L 2 -n{(3 2"t). 
n-1 

Prove that Ill is eentinuous and that ~ maps I [0, 1] onto the unit square [2 c: R 2 • 

If fact, show that <J) maps the Cantor set onto 12 • 

Hint: Each (xo, Yo) e J2 has the form 

Xo = L 2-"aln-h 
n=1 

where each a, is 0 or 1. If 

0() 

to= L 3 -l- 1(2a 1) 
I= 1 

show that/(3"to) =a", and hence that x(to) = Xo, y(to) =Yo. 

(This simple example of a so-called "space-filling curve" is due to I. J. 
Schoenberg, Bull. A.M.S., vol. 44, 1938, pp. 519.) 

15. Suppose/is a real continuous function on R\fn(t) =f(nt) for n =1, 2, 3, ... , and 
{f~} is equicontinuous on [0, 1]. What conclusion can you draw about f? 

16. Suppose {fn} is an equicontinuous sequence of functions on a compact set K, and 
{fn} converges pointwise on K. Prove that {f,.} converges uniformly on K. 

17. Define the notions of uniform convergence and equicontinuity for mappings into 
any metric space. Show that Theorems 7.9 and 7.12 are valid for mappings into 
any metric space, that Theorems 7.8 and 7.11 are valid for mappings into any 
complete metric space, and that Theorems 7.10, 7.16, 7.17, 7.24, and 7.25 hold for 
vector-valued functions, that is, for mappings into any R". 

18. Let {fn} be a uniformly bounded sequence of functions which are Riemann-inte
grable on [a, b ], and put 

X 

Fn(x) = J J,.(t) dt 
a 

(a<x <b). 

Prove that there exists a subsequence {Fn"} which converges uniformly on [a, b]. 
19. Let K be a compact metric space, let S be a subset of rt'(K). Prove that Sis compact 

(with respect to the metric defined in Section 7.14) if and only if Sis uniformly 
closed, pointwise bounded, and equicontinuous. (If S is not equicontinuous, 
then S contains a sequence which has no equicontinuous subsequence, hence has 
no subsequence that converges uniformly on K.) 



SEQUENCES AND SERIES OF FUNCTIONS 169 

20. Iff is continuous on [0, 1] and if 

1 

( f(x)x" dx = 0 (n = 0, 1, 2, ... ), 
"O 

prove that f(x) 0 on [0, 1]. Hint: The integral of the product off with any 
1 

ro. Use the Weierstrass theorem to show that / 2 x) dx = 0. 

21. Let K be the unit circle in the complex plane (i.e., the set of all z with I z I = 1 ), and 
let d be the algebra of all functions of the form 

f(e 19
) = L Cne1

"
9 (B real). 

n=O 

Then d separates points on K and d vanishes at no point of K, but nevertheless 
there are continuous functions on K which are not in the uniform closure of d. 
Hint: For every fed 

lit 

J f(e 19)e19 dB= 0, 
0 

and this is also true for every fin the closure of d. 
22. Assumefe af(~) on [a, b], and prove that there are polynomials Pn such that 

b 

lim J I f- P n 1
2 d~ = 0. 

n~oo 
11 

(Compare with Exercise 12, Chap. 6.) 
23. Put Po= 0, and define, for n = 0, 1, 2, ... , 

Prove that 

lim Pn(x) = lxl, 
n-+ ao 

uniformly on [ -1, 1]. 
(This makes it possible to prove the Stone-Weierstrass theorem without first 

proving Theorem 7.26.) 
Hint: Use the identity 

lxi-P,.,(x)=!lxi-P.(x)][l-lxl ~P,(x)] 

to prove that 0 S.Pn(x) S.Pn+t(X) S.lxl if lxl S-1, and that 

I X I - Pn(X) So I X I ( 1 - I~ I) n < n ~ 
1 

if I xl S. 1. 
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24. Let X be a metric space, with metric d. Fix a point a e X. Assign to each p e X 
the function /, defined by 

/,(x) = d(x, p) - d(x, a) (x EX). 

Prove that I f,(x) IS. d(a,p) for all x eX, and that therefore f, e ~(X). 
Prove that 

II[, - G II = d(p. q) 
for all p, q e X. 

If 4.>(p) [, it follows that ~ is an isomeity (a distance-presening mapping) 
of X onto <J)(X) c: ~(X). 

Let Y be the closure of <J)(X) in ~(X). Show that Y is complete. 
Conclusion · r is isometric to a dense subset of a complete metric space Y. 

(Exercise 24, Chap. 3 contains a different proof of this.) 
25. Suppose 4> IS a contmuous bounded real function m the stnp defined by 

0 < x < 1, - oo < y < oo. Prove that the initial-value problem 

y' = 4>(x, y), y(O) = c 

has a solution. (Note that the hypotheses of this existence theorem are less stringent 
than those of the corresponding uniqueness theorem; see Exercise 27, Chap. 5.) 

Hint: Fix n. For i = 0, ... , n, put Xt = i/n. Let f, be a continuous function 
on [0, 1] such that f,(O) = c, 

/~(t) = 4>(Xt, fn(Xt)) if Xt < t < Xt + h 

and put 

L\n(f) = f~(t)- 4>(t,fn(t)), 

except at the points x~, where L\n(t) = 0. Then 

fn(X) = C + f x [4>(t, f,(t)) + L\n(f)] dt, 
0 

Choose M < oo so that 14> I < M. Verify the following assertions. 

(a) If~! <M, IL\nl <2M, L\" erJf, and Ifni< lei+ M= Mh say, on [0, 1], for 
all n. 

(b) {f,.} is equicontinuous on [0, 1], since If~ I S.M. 
(c) Some {f,,J converges to some/, uniformly on [0, 1]. 
(d) Since 4> is uniformly continuous on the rectangle 0 < x < 1, IYI S. Mh 

uniformly on [0, 1]. 
(e) L\n(t) ~ 0 uniformly on [0, 1], since 

An(t) = 4>(x~, f,(xt))- 4>(t, f,.(t)) 
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(/) Hence 

[(x) = c + (~ p(t, [(t)) dt. 

This f is a solution of the given pwblem. 
26. Prove an analogous existence theorem for the initial-value problem 

y' = «Z»(x, y), y(O) = c, 

where now c e Rk, y e Rt, and «<» is a continuous bounded mapping of the part of 
Rk+ 1 defined by 0 < x < 1, y e Rk mto Rk. (Compare Exerctse 28, Chap. 5.) Hmt: 
Use the vector-valued version of Theorem 7.25. 



8 
SOME SPECIAL FUNCTIONS 

POWER SERIES 

In this section we shall derive some properties of functions which are represented 
by power series, i.e., functions of the form 

00 

(I) f(x) =I CnXn 
n=O 

or, more generally, 
00 

(2) f(x) = I cn<x- at. 
n=O 

These are called analytic functions. 
We shall restrict ourselves to real values of x. Instead of circles of con

vergence (see Theorem 3.39) we shall therefore encounter intervals of conver
gence. 

If {1) converges for all x in ( -R, R), for some R > 0 (R may be + oo), 
we say thatfis expanded in a power series about the point x = 0. Similarly, if 
(2) converges for J x - a l < R, f is said to be expanded in a power series about 
the point x =a. As a matter of convenience, we shall often take a= 0 without 
any loss of generality. 
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8.1 Theorem Suppose the series 

(3) 
n=O 

cmzve1ges fm I xI < R, and define 
00 

(4) f(x) =I CnXn (lxl < R). 
n=O 

Then (3) converges uniformly on [- R + B, R - e ], no matter which e > 0 
zs chosen. The function f is continuous and differentiable in ( R, R), and 

(5) 
00 

f'(x) = L ncnxn 1 (!xl<R). 
n=l 

Proof Let e > 0 be given. For I xI ~ R - B, we have 

I C nXn I < I en( R - 8 t I ; 
and since 

:f.cn(R -B) n 

converges absolutely (every power series converges absolutely in the 
interior of its interval of convergence, by the root test), Theorem 7.IO 
shows the uniform convergence of (3) on [ -R + B, R- s]. 

Since ~lii .-.. I as n .-.. oo, we have 

lim sup 1nl en!= lim sup 11 cnl, 
n-+ oo n-+ oo 

so that the series (4) and (5) have the same interval of convergence. 
Since (5) is a power series, it converges uniformly in [- R + s, 

R- s], for every e > 0, and we can apply Theorem 7.17 (for series in
stead of sequences). It follows that (5) holds if I xI ::::;; R - B. 

But, given any x such that I xI < R, we can find an e > 0 such that 
I xI < R - B. This shows that (5) holds for I xI < R. 

Continuity of /follows from the existence off' (Theorem 5.2). 

Corollary Under the hypotheses of Theorem 8.I, f has derivatives of all 
orders in (- R, R), which are given by 

00 

(6) J<k>(x) =I n(n- I)··· (n- k + I)cnxn-k. 
n=k 

In particular, 

(7) (k = 0, I, 2, ... ). 

(Here j<0 > means f, and j<k> is the kth derivative off, for k = I, 2, 3, ... ). 
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Proof Equation (6) follows if we apply Theorem 8.1 successively to f, 
f', f", . . . . Putting x = 0 in (6), we obtain (7). 

Formula (7) is very interesting. It shows, on the one hand, that the 
coefficients of the power series development off are determined by the values 
off and of its derivatives at a single point. On the other hand, if the coefficients 
are given, the values of the derivatives off at the center of the interval of con
·.-ergence can be read off immediately from the power series. 

Note, however, that although a function f may have derivatives of all 
orders, the senes l:c,. X", where c,. IS computed by (7), need not converge to j (x) 
for any x #= 0. In this case, fcannot be expanded in a power series about x - 0. 
For if we hadf(x) = Ia,.x", we should have 

n !a,. = J<">(O); 

hence a,. = c,. . An example of this situation is given in Exercise I. 
If the series (3) converges at an endpoint, say at x = R, thenfis continuous 

not only in (- R, R), but also at x = R. This follows from Abel's theorem (for 
simplicity of notation, we takeR= 1): 

8.2 Theorem Suppose Ic,. converges. Put 

co 

f(x) = L c,.x" (-1 <x< 1). 
n=O 

Then 

co 

(8) limf(x) = L c,.. 
x-+1 n=O 

Proof Lets,.= c0 + · · · + c,., s_ 1 = 0. Then 

m m m-1 

L c,.x" = L (s,.- s,._ 1)x" =(I - x) L s,.x" + sm~· 
n=O n=O n=O 

For lxl <I, we let m ~co and obtain 

co 

(9) f(x) = (1 - x) L s,. x". 
n=O 

Suppose s = lim s,.. Let e > 0 be given. Choose N so that n > N 

implies 
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Then, since 

00 

(I- x) L x"- 1 (lxl < 1), 
n=O 

we obtain from (9) 

if(x) sl-1(1 
N 

x)L; jv, 
n=O 

if x > 1 - o, for some suitably chosen o > 0. This implies (8). 

As an application, let us prove Theorem 3.5I, which asserts: lf"i:.an, "f.bn, 
I en, converge to A, B, C, and if en a0 bn + · · · + an b0 , then C 4.B We let 

00 00 00 

f(x) = L an xn, 
n=O 

g(x) = L bnxn, 
n=O 

h(x) = L Cn xn, 
n=O 

for 0 < x ~ I. For x < I, these series converge absolutely and hence may be 
multiplied according to Definition 3.48; when the multiplication is carried out, 
we see that 

(10) f(x) · g(x) = h(x) (0 ~X< I). 

By Theorem 8.2, 

(II) f(x)-+ A, g(x) ~B, h(x) ~ C 

as x -+ I. Equations (I 0) and (I I) imply AB = C. 
We now require a theorem concerning an inversion in the order of sum

mation. (See Exercises 2 and 3.) 

8.3 Theorem Given a double sequence {a1i}, i = I, 2, 3, ... , j = 1, 2, 3, ... , 
suppose that 

(12) (i=I,2,3, ... ) 

and "f.b1 converges. Then 

(13) 

Proof We could establish (13) by a direct procedure similar to (although 
more involved than) the one used in Theorem 3.55. However, the following 
method seems more interesting. 
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I et E be a countable set, consisting of the points x0 , x1, x 2 , ••• , and 
suppose x,. --. x0 as n --. oo. Define 

00 

(14) /j(xo) = L aii (i = 1, 2, 3, ... ). 
j=l 

n 

(I 5) ];(x,.) = L ail (i, n =I, 2, 3, ... ), 
J=l 

00 

(16) g(x) = L /;(x) (x e E). 

Now, (14) and (15), together with (12), show that each f, is con 
tinuous at x 0 • Since l/;(x) I< b; for x e E, (16) converges uniformly, so 
that g is continuous at x 0 (Theorem 7.11). It follows that 

00 00 00 

L L ail = L /;(xo) = g(x0 ) = lim g(x,.) 
i=lj=l i=l n-+oo 

oo oo n 

= lim L /;(x,.) = lim L L ail 
n-+ooi=l n-+oo i=l j=l 

n oo oooo 

=lim L: L: aij =I I a;1 . 
n-+ooj=li=l j=li=l 

8.4 Theorem Suppose 

00 

f(x) = L c,. xn, 
n=O 

the series converging in I xI < R. If - R < a < R, then f can be expanded in a 
power series about the point x = a which converges in I x - a I < R - I a I , and 

oo J<n>(a) 
f(x) = I (x - at 

n=O n! 
(17) (I x - a I < R - I a I). 

This is an extension of Theorem 5.15 and is also known as Taylor's 
theorem. 

Proof We have 

00 

f(x) = L c,.[(x- a) + a]n 
n=O 

oo n (n) =I c,. L an-m(x- a)m 
n=O m=O m 

= I [I (n) c,.an-m] ex- ar. 
m=O n=m m 



(18) 

(19) 
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This is the desired expansion about the point x =a. To prove its validity, 
we have to justify the change which was made in the order of summation. 
Theorem 8.3 shows that this is permissible if 

converges. But (18) is the same as 

00 

L len! (lx al + lal)n, 
n=O 

and (19) converges if lx- al + lal < R. 
Finally, the form of the coefficients in (17) follows from (7). 

It should be noted that (17) may actually converge in a larger interval than 
the one given by I x - a I < R - I a I· 

If two power series converge to the same function in (-R, R), (7) shows 
that the two series must be identical, i.e., they must have the same coefficients. 
It is interesting that the same conclusion can be deduced from much weaker 
hypotheses: 

8.5 Theorem Suppose the series I:an xn and I:bn xn converge in the segment 
S = ( -R, R). Let E be the set of all xeS at which 

00 00 

(20) Lan~=Lbn~· 
n=O n=O 

If E has a limit point inS, then an= bnfor n = 0, 1, 2, .... Hence (20) holds for 
all XES. 

(21) 

Proof Put Cn = an - bn and 

00 

f(x) =Len~ (xES). 
n=O 

Then f(x) = 0 on E. 
Let A be the set of all limit points of E in S, and let B consist of all 

other points of S. It is clear from the definition of "limit point" that B 
is open. Suppose we can prove that A is open. Then A and Bare disjoint 
open sets. Hence they are separated (Definition 2.45). Since S = A u B, 
and Sis connected, one of A and B must be empty. By hypothesis, A is 
not empty. Hence B is empty, and A = S. Since f is continuous in S, 
A c E. Thus E = S, and (7) shows that en = 0 for n = 0, 1, 2, ... , which 
is the desired conclusion. 
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(22) 

(23) 

(24) 

Thus we have to prove that A is open. If x 0 e A, Theorem 8.4 shows 
that 

f(x) = L dn(X - Xot 
n=O 

We claim that dn = 0 for all n. Otherwise, let k be the smallest non-
negative mteger such that dk #= 0. Then 

f(x) - (x - x0)kg(x) (I x - Xo I < R - I Xo I), 

00 

g(x) L dk+m(x Xo)m. 
m=O 

Since g is continuous at x0 and 

g(xo) = dk #= 0, 

there exists a o > 0 such that g(x) #= 0 if I x - x0 I < o. It follows from 
(23) that f(x) #= 0 if 0 < l x - x0 l < o. But this contradicts the fact that 
x 0 is a limit point of E. 

Thus dn = 0 for all n, so thatf(x) = 0 for all x for which (22) holds, 
i.e., in a neighborhood of x 0 • This shows that A is open, and completes 
the proof. 

THE EXPONENTIAL AND LOGARITHMIC FUNCTIONS 

We define 

(25) 
oo z" 

E(z) = L -
n=O n! 

The ratio test shows that this series converges for every complex z. Applying 
Theorem 3.50 on multiplication of absolutely convergent series, we obtain 

00 z" 00 wm 00 n zkwn-k 
E(z)E(w) = L - L - = L L ---

n=o n! m=O m! n=O k=O k!(n- k)! 

_ ~ 1 f (n) k n- k _ ~ (z + W t 
-'---'-- zw -'-- ' n=O n! k=O k n=O n! 

which gives us the important addition formula 

(26) E(z + w) = E(z)E(w) (z, w complex). 

One consequence is that 

(27) E(z)E(- z) = E(z - z) = E(O) = 1 (z complex). 
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This shows that E(z) #= 0 for all z. By (25), E(x) > 0 if x > 0; hence (27) shows 
that E(x) > 0 for all real x. By (25), E(x)--. + oo as x--. + oo; hence (27) shows 
that E(x)...., 0 as x...., oo along the real axis. By (25), 0 < x < y implies that 
E(x) < E(y); by (27), it follows that E(-y) < E(- x); hence E is strictly in-
creasing on the whole real axis. 

The addition formula also shows that 

(28) hm h = E(z) hm h = E(z); 
h=O h=O 

E(z + h) - E(z) EQz) - 1 

the last equality follows directly from (25). 
Iteration of (26) gives 

(29) E{z1 + · + Zn) E(z1) E(zn). 

Let us take z1 = · · · = Zn = 1. Since E(l) = e, where e is the number defined 
in Definition 3.30, we obtain 

(30) E(n) =en (n = 1, 2, 3, ... ). 

If p = nfm, where n, m are positive integers, then 

(31) [E(p)r = E(mp) = E(n) =en, 

so that 

(32) E(p) = eP (p > 0, p rational). 

It follows from (27) that E(-p) = e- P if p is positive and rational. Thus (32) 
holds for all rational p. 

In Exercise 6, Chap. 1, we suggested the definition 

(33) 

where the sup is taken over all rational p such that p < y, for any real y, and 
x > 1. If we thus define, for any real x, 

(34) (p < x, p rational), 

the continuity and monotonicity properties of E, together with (32), show that 

(35) E(x) =ex 

for all real x. Equation (35) explains why E is called the exponential function. 
The notation exp (x) is often used in place of eX, expecially when x is a 

complicated expression. 
Actually one may very well use (35) instead of (34) as the definition of ex; 

(35) is a much more convenient starting point for the investigation of the 
properties of ex. We shall see presently that (33) may also be replaced by a 
more convenient definition [see (43)]. 
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We now revert to the customary notation, ex, in place of E(x), and sum 
marize what we have proved so far. 

8.6 Theorem Let ex be defined on R 1 bv (35) and (25). Then 
(a) ex is continuous and differentiable for all x,· 
(b) (ex)' ex , 
(c) ex is a strictly increasing function of x, and ex> 0; 
(d) ex+y = eXeY; 
(e) ex ~ + 00 as X ~ + 00, ex ~ 0 as X ~ 00 ; 

Proof We have already proved (a) to (e); (25) shows that 

for x > 0, so that 

xn+l 
ex>---

(n + 1)! 

n -x (n + 1)! 
x e < , 

X 

and (f) follows. Part (f) shows that ex tends to + oo "faster" than any 
power of x, as x-+ + oo. 

Since E is strictly increasing and differentiable on R1
, it has an inverse 

function L which is also strictly increasing and differentiable and whose domain 
is E(R1 

), that is, the set of all positive numbers. L is defined by 

(36) E(L(y)) = y (y > 0), 

or, equivalently, by 

(37) L(E(x)) = x (x real). 

Difierentiating (37), we get (compare Theorem 5.5) 

L'(E(x)) · E(x) = 1. 

Writing y = E(x), this gives us 

L'(y) = ~ 
y 

(38) (y > 0). 

Taking x = 0 in (37), we see that L(l) = 0. Hence (38) implies 

(39) f
Ydx 

L(y)= -. 
1 X 
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Quite frequently, (39) is taken as the starting-point of the theory of the logarithm 
and the exponential function. Writing u = E(x), v = E(y), (26) gives 

L(uv) = L(E(x) · E(y)) = L(E(x + y)) = x + y, 

sot a 

(40) L(uv) L(u) + L(v) (u > 0, v > 0). 

This shows that L has the familiar property which makes logarithms useful 
tools for computation. The customary notation for L(x) is of course log x. 

As to the behavior of log x as x--. + oo and as x--. 0, Theorem 8.6(e) 
shows that 

(41) 

log x--. + oo 

log x--.- oo 

It is easily seen that 

as x--. + oo, 

as x--. 0. 

xn = E(nL(x)) 

if x > 0 and n is an integer. Similarly, if m is a positive integer, we have 

(42) x 1
fm = E (~ L(x)), 

since each term of (42), when raised to the mth power, yields the corresponding 
term of (36). Combining (41) and (42), we obtain 

(43) x« = E(lJ.L(x)) = ea.Iogx 

for any rational lJ.. 

We now define x«, for any real lJ. and any x > 0, by (43). The continuity 
and monotonicity of E and L show that this definition leads to the same result 
as the previously suggested one. The facts stated in Exercise 6 of Chap. 1, are 
trivial consequences of ( 43). 

If we differentiate ( 43), we obtain, by Theorem 5.5, 

(44) 

Note that we have previously used (44) only for integral values of lJ., in which 
case (44) follows easily from Theorem 5.3(b). To prove {44) directly from the 
definition of the derivative, if x« is defined by (33) and lJ. is irrational, is quite 
troublesome. 

The well-known integration formula for x« follows from (44) if lJ. =F -1, 
and from (38) if lJ. = -1. We wish to demonstrate one more property of log x, 
namely, 
(45) lim x-«log x = 0 

x-+ + oo 
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for every a > 0. That is, log x --+ + oo "slower" than any positive power of x, 
as x-+ + oo. 

For tf 0 < 8 < tx, and x > I, then 

8 8 

and (45) follows. We could also have used Theorem 8.6U) to denve (45). 

THE TRIGONOMETRIC FUNCTIONS 

Let us define 

(46) 
1 

C(x) = 2 [E(ix) + E(- ix)], 
1 

S(x) = 
2

i [E(ix) - E(- ix)]. 

We shall show that C(x) and S(x) coincide with the functions cos x and sin x, 
whose definition is usually based on geometric considerations. By (25), E(z) = 

E(z). Hence (46) shows that C(x) and S(x) are real for real x. Also, 

(47) E(ix) = C(x) + iS(x). 

Thus C(x) and S(x) are the real and imaginary parts, respectively, of E(ix), if 
x is real. By (27), 

I E(ix) 12 = E(ix)E(ix) = E(ix)E(- ix) = I, 
so that 

(48) \E(ix)\ = 1 (x real). 

From ( 46) we can read off that C(O) = 1, S(O) = 0, and (28) shows that 

(49) C'(x) = - S(x), S'(x) = C(x). 

We assert that there exist positive numbers x such that C(x) = 0. For 
suppose this is not so. Since C(O) = I, it then follows that C(x) > 0 for all 
x > 0, hence S'(x) > 0, by (49), hence Sis strictly increasing; and since S(O) = 0, 
we have S(x) > 0 if x > 0. Hence if 0 < x < y, we have 

(50) S(x)(y- x) < JY S(t) dt = C(x) - C(y) ~ 2. 
X 

The last inequality follows from (48) and (47). Since S(x) > 0, (50) cannot be 
true for large y, and we have a contradiction. 
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Let x 0 be the smallest positive number such that C(x0 ) = 0. This exists, 
smce the set of zeros of a continuous function is closed, and C(O) #= 0. We 
define the number 1t by 

(51) 1t = 2x0 • 

Then C(7t/2) = 0, and (48) shows that S(7t/2) = ± 1. Since C(x) > 0 in 
(0, 7t/2), S is increasing in (0, 7t/2); hence S(7t/2) = 1. Thus 

E(~) = i, 

and the addition formula gives 

(52) E(1ti)- -1, E(21ti)- 1; 

hence 

(53) E(z + 27ri) = E(z) (z complex). 

8.7 Theorem 

(a) The function E is periodic, with period 2TCi. 
(b) The functions C and S are periodic, with period 21t. 
(c) IfO < t < 21r, then E(it) #= 1. 
(d) If z is a complex number with lzl = 1, there is a unique tin [0, 27t) 

such that E(it) = z. 

Proof By (53), (a) holds; and (b) follows from (a) and (46). 
Suppose 0 < t < TC/2 and E(it) = x + iy, with x, y real. Our preceding 

work shows that 0 < x < 1, 0 < y < 1. Note that 

E(4it) = (x + iy)4 = x4
- 6x2y 2 + y4 + 4ixy(x2 - y 2). 

If E(4it) is real, it follows that x 2 - y 2 = 0; since x 2 + y 2 = 1, by (48), 
we have x 2 = y 2 = t, hence E(4it) = -I. This proves (c). 

lfO :S: It< t2 < 21t, then 

E(it2)[E(itt)rt = E(it2- itt) #= 1, 

by (c). This establishes the uniqueness assertion in (d). 
To prove the existence assertion in (d), fix z so that I z I = I. Write 

z = x + iy, with x and y real. Suppose first that x ;;::: 0 and y :2: 0. On 
[0, 7t/2], C decreases from 1 to 0. Hence C(t) = x for some t e [0, 7t/2]. 
Since C 2 + S 2 = 1 and S ;;::: 0 on [0, 7t/2], it follows that z = E(it ). 

If x < 0 and y :2: 0, the preceding conditions are satisfied by - iz. 
Hence - iz = E(it) for some t e [0, 7t/2], and since i = E(TCi/2), we obtain 
z = E(i(t + 7t/2)). Finally, if y < 0, the preceding two cases show that 
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- z = E(it) for some t e (0, n). Hence z = - E(it) = E(i(t + n)). 
This proves (d), and hence the theorem. 

It follows from (d) and ( 48) that the curve y defined by 

(54) y(t) = E(it) (0:::;; t:::;; 2n) 

is a simple closed cuiVe whose range is the unit circle in the plane. Since 
y'(t) = iE(it), the length of y is 

.Jo 

2n 

f I y'(t)l dt = 2n, 

by Theorem 6 27 This is of course the expected result for the circumference of 
a circle of radius 1. It shows that n, defined by (51), has the usual geometric 
significance. 

In the same way we see that the point y(t) describes a circular arc of length 
t0 as t increases from 0 to t0 • Consideration of the triangle whose vertices are 

z1 = 0, z2 = y(t0), z3 = C(t0) 

shows that C(t) and S(t) are indeed identical with cos t and sin t, if the latter 
are defined in the usual way as ratios of the sides of a right triangle. 

It should be stressed that we derived the basic properties of the trigono
metric functions from (46) and (25), without any appeal to the geometric notion 
of angle. There are other nongeometric approaches to these functions. The 
papers by W. F. Eberlein (Amer. Math. Monthly, vol. 74, 1967, pp. 1223-1225) 
and by G. B. Robison (Math. Mag., vol. 41, 1968, pp. 66-70) deal with these 
topics. 

THE ALGEBRAIC COMPLETENESS OF THE COMPLEX FIELD 

We are now in a position to give a simple proof of the fact that the complex 
field is algebraically complete, that is to say, that every nonconstant polynomial 
with complex coefficients has a complex root. 

8.8 Theorem Suppose a0 , ••• , an are complex numbers, n ~ 1, an =I= 0, 
n 

P(z) = L ak zk. 
0 

Then P(z) = 0 for some complex number z. 

Proof Without loss of generality, assume an= 1. Put 

(55) tt = inf I P(z) I (z complex) 

If lzl = R, then 

(56) IP(z)l ~ Rn[l- lan-liR- 1
- "·- lao!R-n]. 



(57) 
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The right side of (56) tends to oo as R--+ oo. Hence there exists R0 such 
that I P(z) I > p, if I z I > R0 • Since I PI is continuo us on the closed disc 
with center at 0 and radius R0 , Theorem 4.16 shows that I P(z0) I = p, for 
some z0 • 

\Ve claim that ll 0. 
If not, put Q(z) = P(z + z0)/P(z0). Then Q is a nonconstant poly-

nomtal, Q(O) - I, and I Q(z) I ;;::: I for all z. I here Is a smallest mteger k, 
1 < k < n, such that 

By Theorem 8.7(d) there is a real() such that 

If r > 0 and rklbkl < 1, (58) implies 

11 + bkrkeikBI = 1- rklbkl, 

so that 

I Q(rei8)1 < 1- rk{lbkl- rlbk+tl- ... - ,n-klbnl}. 

For sufficiently small r, the expression in braces is positive; hence 
I Q(rei8) I < 1, a contradiction. 

Thus p, = 0, that is, P(z0) = 0. 

Exercise 27 contains a more general result. 

FOURIER SERIES 

8.9 Definition A trigonometric polynomial is a finite sum of the form 
N 

(59) f(x) = a0 + I (an cos nx + bn sin nx) (x real), 
n=l 

where a0 , ••• , aN, bb ... , bN are complex numbers. On account of the identities 
( 46), (59) can also be written in the form 

(60) 
N 

f(x) = I en einx 
-N 

(x real), 

which is more convenient for most purposes. It is clear that every trigonometric 
polynomial is periodic, with peribd 2n. 

If n is a nonzero integer, einx is the derivative of einx/in, which also has 
period 2n. Hence 

(61) 1 11: (1 - J einx dx = 
2n -n: 0 

(if n = 0), 
(if n = ± 1, ±2, ... ). 
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Let us multiply (60) by e- imx, where m is an integer; if we integrate the 
product, (61) shows that 

(62) 

for I m I =::;; N. If I m I > N, the integral in (62) is 0. 
The following observation can be read off from (60) and (62): The 

trigonometric polynomial f, given by (60), is real if and only if c n Cn for 
n = 0, ... , N. 

In agreement with (60), we define a trigonometric series to be a series of 

(63) (x real); 
-oo 

the Nth partial sum of (63) is defined to be the right side of (60). 
Iff is an integrable function on [ -n, n], the numbers em defined by (62) 

for all integers m are called the Fourier coefficients off, and the series (63) formed 
with these coefficients is called the Fourier series of f. 

The natural question which now arises is whether the Fourier series off 
converges to f, or, more generally, whether fis determined by its Fourier series. 
That is to say, if we know the Fourier coefficients of a function, can we find 
the function, and if so, how? 

The study of such series, and, in particular, the problem of representing a 
given function by a trigonometric series, originated in physical problems such 
as the theory of oscillations and the theory of heat conduction (Fourier's 
"Theorie analytique de Ia chaleur" was published in 1822). The many difficu h 
and delicate problems which arose during this study caused a thorough revision 
and reformulation of the whole theory of functions of a real variable. Among 
many prominent names, those of Riemann, Cantor, and Lebesgue are intimately 
connected with this field, which nowadays, with all its generalizations and rami
fications, may well be said to occupy a central position in the whole of analysis. 

We shall be content to derive some basic theorems which are easily 
accessible by the methods developed in the preceding chapters. For more 
thorough investigations, the Lebesgue integral is a natural and indispensable 
tool. 

We shall first study more general systems of functions which share a 
property analogous to (61). 

8.10 Definition Let {¢n} (n = 1, 2, 3, ... ) be a sequence of complex functions 
on [a, b ], such that 

(64) Jb ¢n(x)¢m(x) dx = 0 
a 

(n =I= m). 
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Then { cp11} is said to be an orthogonal system of functions on [a, b ]. If, in addition, 

(65) 
b 

( lct>nCx) 12 dx = 1 
"a 

for all n, {cp11} is said to be orthonormal 
For example, the functions (2n)-te'"x form an orthonormal system on 

[ -n, n]. So do the real functions 

1 cos x sin x cos 2x sin 2x 

If {r/> 11} is orthonormal on [a, b] and if 

(66) C11 J f(t )cpn{l) dt 
a 

(n 1, 2, 3, ... ), 

we call c11 the nth Fourier coefficient of /relative to {¢11}. We write 

(67) 

and call this series the Fourier series off (relative to { cp11}). 

Note that the symbol "' used in (67) implies nothing about the conver
gence of the series; it merely says that the coefficients are given by (66). 

The following theorems show that the partial sums of the Fourier series 
off have a certain minimum property. We shall assume here and in the rest of 
this chapter thatfe ~.although this hypothesis can be weakened. 

8.11 Theorem Let { cp11} be orthonormal on [a, b ]. Let 

n 

(68) S11(X) = L Cm ¢m(X) 
m=l 

be the nth partial sum of the Fourier series off, and suppose 

(69) 

Then 

(70) 

n 

tn(x) = L Ym ¢m(x). 
m=l 

b b f If- s"l 2 
dx s; f If- t" 1

2 
dx, 

a a 

and equality holds if and only if 

(71) (m = 1, ... , n). 

That is to say, among all functions t11 , S11 gives the best possible mean 
squ".re approximation to f. 
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(72) 

Proof Let J denote the integral over [a, b ], l: the sum from 1 to n. Then 

by the definition of {em}, 

" " " 
since {d>m} is orthonormal, and so 

f lfl 2 z - z - z -Cm Ym em Ym + 'Ym Ym 
r 

= J IJ 12 
- r I em 1

2 + r IYm - Cm 1
2

' 

which is evidently minimized if and only if Ym = em • 
Putting Ym = em in this calculation, we obtain 

8.12 Theorem If {¢n} is orthonormal on [a, b], and if 
00 

f(x) ,_ L en ¢n(x), 
n=l 

then 

(73) 

In particular, 

(74) lim en= 0. 
n-+oo 

Proof Letting n --+ oo m (72), we obtain (73), the so-called "Bessel 
inequality." 

8.13 Trigonometric series From now on we shall deal only with the trigono
metric system. We shall consider functions f that have period 2n and that are 
Riemann-integrable on [ -n, n] (and hence on every bounded interval). The 
Fourier series off is then the series (63) whose coefficients en are given by the 
integrals (62), and 

(75) 
N 

sN(x) = sN(f; x) = I en einx 
-N 
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is the Nth partial sum of the Fourier series off The inequality (72) now takes 
the form 

(76) 

In order to obtain an expression for s,,. that is more manageable than (75) 
we introduce the Dirichlet kernel 

(77) 
N 

Dr.lx) L einx 
n=-N 

sin (N + !)x 
sin (x/2) 

The first of these equalities is the definition of DN(x). The second follows if 
both sides of the identity 

(eix _ l)DN(x) = ei(N+l)x _ e-iNx 

are multiplied by e- ix/l. 

By (62) and (75), we have 

sN(f; x) = f ~In f(t)e-int dt einx 
-N 2n -n 

1 In N =- f(t) L: ein(x- t> dt, 
2rr -n -N 

so that 

(78) 
1 n 1 1t 

sN(f; x) = -
2 
I f(t)DN(x- t) dt = -

2 
J f(x- t)DN(t) dt. 

1t' -n 1t' -n 

The periodicity of all functions involved shows that it is immaterial over which 
interval we integrate, as long as its length is 2rr. This shows that the two integrals 
in (78) are equal. 

We shall prove just one theorem about the pointwise convergence of 
Fourier series. 

8.14 Theorem If, for some x, there are constants b > 0 and M < oo such that 

(79) 

for all t e (- b, b), then 

(80) 

Proof Ddine 

(81) 

lf(x + t)- f(x)l ~ Ml tl 

lim sN(f; x) = f(x). 
N-+oo 

( ) 
f(x - t) - f(x) g t = ___ ____.:;__ 

sin (t/2) 
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for 0 < I t I ~ rc, and put g(O) = 0. By the definition (77), 

Hence (78) shows that 

By (79) and (81), g(t) cos (t/2) and y(t) sin (£/2) are bounded. The last 
two integrals thus tend to 0 as N--+ oo, by (74). This proves (80). 

Corollary If f(x) = 0 for all x in some segment J, then lim sN(f; x) = 0 for 
every x e J. 

Here is another formulation of this corollary: 

If f(t) = g(t) for all t in some neighborhood of x, then 

sN(f; x)- sN(g; x) = sN(f- g; x)--+ 0 as N--+ oo. 

This is usually called the localization theorem. It shows that the behavior 
of the sequence {sN(f; x)}, as far as convergence is concerned, depends only on 
the values off in some (arbitrarily small) neighborhood of x. Two Fourier 
series may thus have the same behavior in one interval, but may behave in 
entirely different ways in some other interval. We have here a very striking 
contrast between Fourier series and power series (Theorem 8.5). 

We conclude with two other approximation theorems. 

8.15 Theorem Iff is continuous (with period 2rc) and if 8 > 0, then there is a 
trigonometric polynomial P such that 

IP(x)- f(x)l < 8 

for all real x. 

Proof If we identify x and x + 2rc, we may regard the 2n-periodic func· 
tions on R1 as functions on the unit circle T, by means of the mapping 
x--+ eix. The trigonometric polynomials, i.e., the functions of the form 
(60), form a self-adjoint algebra d, which separates points on T, and 
which vanishes at no point ofT. Since Tis compact, Theorem 7.33 tells 
us that d is dense in ~(T). This is exactly what the theorem asserts. 

A more precise form of this theorem appears in Exercise 15. 
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8.16 Parseval's theorem Suppose f and g are Riemann-integrable functions 
with period 2n, and 

(82) 

Then 

(83) 

(84) 

(85) 

(86) 

(87) 

f(x) ,_ L Cn einx, g(x) ,_ L Yn einx. 
-oo 00 

1 ,.rc oo 

27r J -nf(x)g(x) dx =~en Yn, 

2trJ-rc -oo 

Proof Let us use the notation 

llhll2 = (2~ ( lh<xW dx}"'. 
Let e > 0 be given. Since f e ~ and f(n) = /( -n), the construction 

described in Exercise 12 of Chap. 6 yields a continuous 2n-periodic func
tion h with 

II!- hll2 <e. 

By Theorem 8.15, there is a trigonometric polynomial P such that 
I h(x) - P(x) / < e for all x. Hence llh - Pll 2 < e. If P has degree N 0 , 

Theorem 8.11 shows that 

(88) llh- sN(h)ll2 ~ llh- Pll2 < e 

for all N;;:::: N0 • By (72), with h -fin place off, 

(89) llsN(h)- sN(/)112 = llsN(h- /)112 ~ llh- fll2 <e. 

Now the triangle inequality (Exercise 11, Chap. 6), combined with 
(87), (88), and (89), shows that 

(90) II!- sN(f)ll 2 < 3e (N;;:::: No)· 

This proves (83). Next, 

(91) 
1rc N 1n .- N 

-
2 

J sN(f)g dx = L en -
2 

J e'"x g(x) dx = L en Yn, 
1r -rc -N 1t -rc -N 

and the Schwarz inequality shows that 
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which tends to 0. as N--+ oo. by (83). Comparison of (91) and (92) gives 
(84). Finally, (85) is the special case g = f of (84). 

A more general version of Theorem 8.16 appears in Chap. 11. 

THE GAMMA FUNCTION 

This function is closely related to factorials and crops up in many unexpected 
places in analysis. Its origin, history, and development are very well described 
in an interesting article by P. J. Davis (Amer. Math. Monthly, vol. 66, 1959, 
pp. 849-869). Artin's book (cited in the Bibliography) is another good elemen-
tary introduction. 

Our presentation will be very condensed, with only a few comments after 
each theorem. This section may thus be regarded as a large exercise, and as an 
opportunity to apply some of the material that has been presented so far. 

8.17 Definition For 0 < x < oo, 

(93) r(x) = Iooo tx-le-t dt. 

The integral converges for these x. (When x < 1, both 0 and oo have to 
be looked at.) 

8.18 Theorem 
(a) The functional equation 

r(x + 1) = xr(x) 

holds ifO < x < oo. 
(b) r(n + 1) = n!for n = 1, 2, 3, .... 
(c) log r is convex on (0, oo ). 

Proof An integration by parts proves (a). Since r(l) = 1, (a) implies 
(b), by induction. If 1 < p < oo and (lfp) + (lfq) = 1, apply HOlder's 
inequality (Exercise 10, Chap. 6) to (93), and obtain 

rG + ~) :o; r(x)''Pr(y)'1•. 

This is equivalent to (c). 

It is a rather surprising fact, discovered by Bohr and Mollerup, that 
these three properties characterize r completely. 



SOME SPECIAL FUNCTIONS 193 

8.19 Theorem /{{is a positive (unction on (0, oo) such that 
(a) f(x + 1) = xf(x), 
(b) f(l) 1, 
(c) log/ is convex, 

then f(x) = r(x). 

(94) 

(95) 

Proof Smce I satisfies (a), (b), and (c), It Is enough to prove that] (x) Is 
uniquely determined by (a), (b), (c), for all x > 0. By (a), it is enough to 
do this for x e (0, 1 ). 

Put cp logf Then 

f!J(X I 1) f!J(X) + Jog X (0 < x < oo), 

cp(l)- 0, and cp is convex Suppose 0 < x < 1, and n is a positive integer 
By (94), cp(n + 1) = log(n !). Consider the difference quotients of cp on the 
intervals [n, n + 1], [n + 1, n + 1 + x], [n + 1, n + 2]. Since cp is convex 

I 
cp(n + 1 + x) - cp(n + 1) 

1 
( 

1
) 

og n < ::5: og n + . 
X 

Repeated application of (94) gives 

cp(n + 1 + x) = cp(x) +log [x(x + 1) · .. (x + n)]. 

Thus 

[ 
n !nx 1 ( 1) 

0 ::5: cp(x) - log ( 1) ( )J ::5: x log 1 + - . xx+ ... x+n n 

The last expression tends to 0 as n--+ oo. Hence cp(x) is determined, and 
the proof is complete. 

As a by-product we obtain the relation 

. n!nx 
r(x) = hm -----

n--+oo x(x + 1) .. · (x + n) 

at least when 0 < x < 1 ; from this one can deduce that (95) holds for all x > 0, 
since r(x + 1) = X r(x). 

8.20 Theorem If x > 0 andy > 0, then 

(96) f l tx-1(1 - t)Y-l dt = r(x)r(y). 
0 r(x + y) 

This integral is the so-called beta function B(x, y). 
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(97) 

Proof Note that B(l, y) 1/y, that log B(x, y) is a convex function of 
x, for each fixed y, by Holder's inequality, as in Theorem 8.18, and that 

x+y 

X 
B(x + 1. y) = -- B(x. y). 

To prove (97), perform an integration by parts on 

B(x+1,y)-)o1-t (1-tJ~Iy 1dt. 

These three properties of B(x, y) show, for each y, that Theorem 8.19 
applies to the function/defined by 

Hence f(x) = r(x). 

8.21 Some consequences The substitution t = sin2 ()turns (96) into 

(98) 2 frc/2 (sin 8)2x-1 (cos 8)2y-1 d() = r(x)r(y). 
0 r(x+ y) 

The special case x = y = t gives 

(99) r(t) = JTc. 
The substitution t = s2 turns (93) into 

(100) (0 < x < oo). 

The special case x = t gives 

(101) foo e-sz ds = ..j~. 
-oo 

By (99), the identity 

(102) r(x) =:;; rG)r(x; ') 
follows directly from Theorem 8.19. 

8.22 Stirling's formula This provides a simple approximate expression for 
r(x + 1) when xis large (hence for n! when n is large). The formula is 

(103) lim rex+ 1) = 1. 
x-+oo (xfe)x ..j2nx 



(104) 
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Here is a proof. Put t = x(l + u) in (93). This gives 

r(x + 1)- x~+l e 3G J [(I + u)e "t du. 
-1 

Determine h(u) so that h(O) = I and 

(105) 

if -1 < u < oo, u ¥= 0. Then 

(106) h(u) 
u 
2 
2 [u log (1 + u)] 

It follows that h is continuous, and that h(u) decreases monotonically from oo 
to 0 as u increases from - 1 to oo. 

The substitution u = s J2fx turns (104) into 

(107) 

where 

Note the following facts about 1/J x(s): 

( -JXfi < s < oo), 

(s ~ -Jx/2). 

(a) For every s, 1/Jx(s)--+ e-sz as x--+ oo. 
(b) The convergence in (a) is uniform on [-A, A], for every A < oo. 
(c) When s < 0, then 0 < 1/Jx(s) < e- 82

, 

(d) When s > 0 and x > 1, then 0 < 1/JxCs) < 1/11(s). 
(e) So 1/11 (s) ds < oo. 

The convergence theorem stated in Exercise 12 of Chap. 7 can therefore 

be applied to the integral (107), and shows that this integral converges to J; 
as x--+ oo, by (101). This proves (103). 

A more detailed version of this proof may be found in R. C. Buck's 
"Advanced Calculus," pp. 216-218. For two other, entirely different, proofs, 
see W. Feller's article in Amer. Math. Monthly, vol. 74, 1967, pp. 1223-1225 
(with a correction in vol. 75, 1968, p. 518) and pp. 20-24 of Artin's book. 

Exercise 20 gives a simpler proof of a less precise result. 
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EXERCISES 

1. Define 

f(x) = t~-1/xz (x 70), 
(x = 0). 

Prove that f has derivatives of aJJ orders at x - o, and that f<">(O) - 0 for 
n = 1, 2, 3, .... 

2. Let a,1 be the number in the ith row andjth column of the array 

t -1 0 0 
i l -1 0 
i i l -1 

.......................... 

so that 

{

0 (i <j), 
OtJ = -1 . (i = j), 

21-1 (i > j). 

Prove that 

LLOtj= -2, 
I J 

LLOtj=O. 
J I 

3. Prove that 

if a,1 ~ 0 for all i andj (the case + oo = + oo may occur). 
4. Prove the following limit relations: 

bx-1 
(a) lim -- = log b 

x-+0 X 
(b >0). 

(b) lim log (1 + x) = 1. 
x-+0 X 

(c) lim (1 + x)11x = e. 
x-+0 

(d) lim (1 +~)"=ex, 
, .... oo n 
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5. Find the following limits 

e-(l+x)ttx 

x-+0 X 

(b) lim _n_ [n 11n- 1]. 
n-+oo logn 

( 
1 

tan x- x 
C) liD • 

x-+0 x(l - cos x) 

6. Suppose l(x)l(y) = l(x + y) for all real x andy. 
(a) Assuming that I is differentiable and not zero, prove that 

f(x) = ecx 

where c is a constant. 
(b) Prove the same thing, assuming only that I is continuous. 

7T 
7. If 0 < x < 2, prove that 

2 sin x 
1 -<--< . 

7T X 

8. For n = 0, 1, 2, ... , and x real, prove that 

I sin nx I < n I sin x 1. 

Note that this inequality may be false for other values of n. For instance, 

9. (a) Put sN = 1 + (!) + · · · + (1/N). Prove that 

lim (sN -log N) 
N-+oo 

exists. (The limit, often denoted by y, is called Euler's constant. Its numerical 
value is 0.5772. . . . It is not known whether y is rational or not.) 
(b) Roughly how large must m be so that N = tom satisfies sN > 100? 

10. Prove that L 1/p diverges; the sum extends over all primes. 
(This shows that the primes form a fairly substantial subset of the positive 

integers.) 
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Hint: Given N, let p., ... , Pt be those primes that divide at least one in-
teger -s;.N. Then 

N1 "( 1 1 ) .~, ;j -::;, J), 1 + PJ + pj + ... 

lc t 1) -l n 1 -

The last inequality holds because 

if 0-::;, X-::;, f· 
(There are many proofs of this result. See, for instance, the article by 

I. Niven in Amer. Math. Monthly, vol. 78, 1971, pp. 272-273, and the one by 
R. Bellman in Amer. Math. Monthly, vol. SO, 1943, pp. 318-319.) 

11. Suppose f e fJt on [0, A] for all A < oo, and f(x) -+ 1 as x -+ + oo. Prove that 

lim t Joo e-txf(x) dx = 1 
t-+0 0 

(t > 0). 

12. Suppose 0 < 8 < 7T,/(x) = 1 if I xl ~ 8,f(x) = 0 if 8 < lxl -::;. 1r, and f(x + 211") = 

f(x) for all x. 

(a) Compute the Fourier coefficients of f. 
(b) Conclude that 

(c) Deduce from Parseval's theorem that 

(d) Let 8-+ 0 and prove that 

(0 <8 <7T), 

( (si:xr dx=~· 
(e) Put 8 = 1r/2 in (c). What do you get? 

13. Put f(x) = x if 0 -::;, x < 21r, and apply Parseval's theorem to conclude that 
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14. If/(x) = (1r- lxl}2 on [-1r, 1r], prove that 

and deduce that 

(A recent article by E. L. Stark contains many references to series of the form 
I: n ', where sis a positive integex. See Mazh. May., vol. 47, 1974, pp. 197 202.) 

15. With Dn as defined in (77), put 

Prove that 

KN(x) = _1 _ . 1 -cos (N + 1)x 
N+1 1-cosx 

and that 
(a) KN ~0, 

1 fit 
(b) 211" -~r KN(x) dx = 1, 

1 2 
(c) KN(x) ~ N + 1 · 1 - cos 8 

If sN = sN(f; x) is the Nth partial sum of the Fourier series of/, consider 
the arithmetic means 

Prove that 

1 fit 
aN(!; x) = 

2
11" -~r f(x- t)KN(t) dt, 

and hence prove Fejer's theorem: 
Iff is continuous, with period 211", then aN(!; x)-+ f(x) uniformly on [ -11", 1r]. 
Hint: Use properties (a), (b), (c) to proceed as in Theorem 7.26. 

16. Prove a pointwise version of Fejer's theorem: 
If I e fJt and f(x + ), f(x -) exist for some x, then 

lim aN(!; x) = l[f(x +) + f(x- )]. 
N~oo 
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17. Assume I is bounded and monotomc on [ -71', 71'), wtth Founer coeffictents Cn, as 
given by (62). 

(a) Use Exercise 17 of Chap. 6 to prove that {ncn} is a bounded sequence. 
(b) Combine (a) with Exercise 16 and with Exercise 14(e) of Chap. 3, to conclude 

that 

lim sN(I; x) = l[f(x+) + l(x- )] 
N~«> 

for every x. 
(c) Assume only that f e fJt on [ 11, 11] and that f is monotonic in some segment 
(oc, f3)c [ -71', 71']. Prove that the conclusion of (b) holds for every x e (oc, {3). 

(This is an application of the localization theorem.) 
18. Define 

l(x) = x 3 
- sin2 x tan x 

g(x) = 2x2 - sin2 x- x tan x. 

Find out, for each of these two functions, whether it is positive or negative for all 
x e (0, 71'/2), or whether it changes sign. Prove your answer. 

19. Suppose I is a continuous function on R 1
, f(x + 271') = f(x), and oc/71' is irrational. 

Prove that 

1 N 1 J!t 
lim N L l(x + noc) = -

2 
f(t) dt 

N~«> n=-1 71' -It 

for every x. Hint: Do it first for f(x) = e1 ~~x. 

20. The following simple computation yields a good approximation to Stirling's 
formula. 

For m = 1, 2, 3, ... , define 

l(x) = (m + 1 - x) log m + (x- m) log ( m + 1) 

if m ~ x ~ m + 1, and define 

X 
g(x) = - - 1 + log m 

m 

if m -! ~x < m + l. Draw the graphs of/and g. Note thatf(x) <log x <g(x) 
if x ~ 1 and that 

J: l(x) dx =log (n!) -!log n > -i + J: g(x) dx. 

Integrate log x over [1, n]. Conclude that 

t < log (n !) - (n + i) log n + n < 1 

for n = 2, 3, 4, .... (Note: log V271'""' 0.918 .... ) Thus 

7ts n! 
e < (n/e)"v n <e. 
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21. Let 

(n = 1, 2, 3, ... ). 

Prove that there exists a constant C > 0 such that 

Ln > Clogn (n = 1, 2, 3, ... ), 

or, more precisely, that the sequence 

IS bounded. 
22. If rx is real and -1 < x < 1, prove Newton's binomial theorem 

oo rx( rx - 1) · .. ( rx - n + 1) 
(1 + x)~~ = 1 + L x". 

n=-1 n! 

Hint: Denote the right side by f(x). Prove that the series converges. Prove that 

(1 + x)f'(x) = rxf(x) 

and solve this differential equation. 
Show also that 

if -1 < x < 1 and rx > 0. 
23. Let y be a continuously differentiable closed curve in the complex plane, with 

parameter interval [a, b], and assume that y(t) # 0 for every t e [a, b]. Define the 
index of y to be 

1 fb y'(t) 
lnd(y)=-2 . -() dt. 

m11yt 

Prove that lnd (y) is always an integer. 
Hint: There exists rp on [a, b] with rp' = y'/y, rp(a) = 0. Hence y exp( -rp) 

is constant. Since y(a) = y(b) it follows that exp rp(b) = exp rp(a) = 1. Note that 
rp(b) = 271'i Ind (y). 

Compute Ind (y) when y(t) = e1"t, a= 0, b = 271'. 
Explain why Ind (y) is often called the winding number of y around 0. 

24. Let y be as in Exercise 23, and assume in addition that the range of y does not 
intersect the negative real axis. Prove that Ind (y) = 0. Hint: For 0 ::5: c < oo, 
Ind (y +c) is a continuous integer-valued function of c. Also, Ind (y + c)-+ 0 
as c-+ oo. 



101 PRINCIPLES OF MATHEMATICAL ANALYSIS 

25. Suppose Y1 and Y2 are curves as in Exercise 23, and 

I n(t) y1(t)l <I n(t)l (as. t S.b). 

Hint: Put y = y1/Y1· Then II- Yl < 1, hence Ind (y) = 0, by Exercise 24. 

y Yl Y1 

26. Let y be a closed curve in the complex plane (not necessarily differentiable) \Vith 
parameter interval [0, 27T], such that y(t) # 0 for every t e [0, 27T]. 

Choose a > 0 so that I y(t) I > a for all t E [0, 27T]. If p 1 and p l are trigo
nometric polynomials such that I P.J(t) y(t) I < 8/4 for all t E [0, 27T] (their ex is-
tence is assured by Theorem 8.15), prove that 

Ind (P1) = Ind (P2) 

by applying Exercise 25. 
Define this common value to be Ind (y). 
Prove that the statements of Exercises 24 and 25 hold without any differenti

ability assumption. 
27. Let f be a continuous complex function defined in the complex plane. Suppose 

there is a positive integer n and a complex number c # 0 such that 

lim z-"/(z) =c. 
,., ... co 

Prove that /(z) = 0 for at least one complex number z. 
Note that this is a generalization of Theorem 8.8. 
Hint: Assume /(z) # 0 for all z, define 

y,(t) = f(re't) 

for 0 < r < oo, 0:::.;;; t < 27T, and prove the following statements about the curves 
y,: 
(a) Ind (yo)= 0. 
(b) Ind (y,) = n for all sufficiently large r. 
(c) Ind (y,) is a continuous function of r, on [0, oo ). 
[In (b) and (c), use the last part of Exercise 26.] 

Show that (a), (b), and (c) are contradictory, since n > 0. 
28. Let D be the closed unit disc in the complex plane. (Thus 2 e D if and only if 

I z I < 1.) Let g be a continuous mapping of D into the unit circle T. (Thus, 
[g(z)! = 1 for every zeD.) 

Prove that g(z) = -z for at least one 2 e T. 
Hint: For0<rsl,Ost<27T,put 

y,(t) = g(rett), 

and put ljl(t) = e- 11y1(t). If g(z) # -z for every z e T, then ljl(t) # -1 for every 
t e [0, 27T ]. Hence Ind (ljl) = 0, by Exercises 24 and 26. It follows that Ind (yl) = 1. 
But Ind (yo)= 0. Derive a contradiction, as in Exercise 27. 
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29. Prove that every continuous mapping I of D into D has a fixed point in D. 
(This is the 2-dimensional case of Brouwer's fixed-point theorem.) 
Hint: Assume f(z) ~ z for every z c [). Associate to each z c [) the point 

g(z) c T which lies on the ray that starts at l(z) and passes through z. Then g 
maps D into T, g(z) = z if z c T, and g is continuous, because 

g(z) z s(z)[f(z) z], 

where s(z) is the unique nonnegative root of a certain quadratic equation whose 
coefficients are continuous functions of I and z. Apply Exercise 28. 

30 I Tse Stirling's formula to prove that 

r rex+ c) 1 

for every real constant c. 
31. In the proof of Theorem 7.26 it was shown that 

J 1 (1 - x2)n dx > .4r 
-1 3v n 

for n = 1, 2, 3, .... Use Theorem 8.20 and Exercise 30 to show the more precise 
result 

1 

lim v~ f (1 - x 2)n dx = -v;, 
n ... oo _

1 



9 
FUNCTIONS OF SEVERAL \'ARIABLES 

LINEAR TRANSFORMATIONS 

We begin this chapter with a discussion of sets of vectors in euclidean n-space Rn. 
The algebraic facts presented here extend without change to finite-dimensional 
vector spaces over any field of scalars. However, for our purposes it is quite 
sufficient to stay within the familiar framework provided by the euclidean spaces. 

9.1 Definitions 

(a) A nonempty set X c Rn is a vector space if x + y eX and ex eX 
for all x e X, y e X, and for all scalars c. 
(b) If x 1, ... , xk ERn and cb ... , ck are scalars, the vector 

is called a linear combination of x 1, ... , xk . If S c Rn and if E is the set 
of all linear combinations of elements of S, we say that S spans E, or that 
E is the span of S. 

Observe that every span is a vector space. 
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(c) A set consisting of vectors x 1, ... , xk (we shall use the notation 
{x1, ... , xk} for such a set) is said to be independent if the relation 
c1 x1 + · · · + ckxk = 0 implies that c1 = · · · = ck = 0. Otherwise {xl, ... , xk} 
is said to be dependent. 

Observe that no independent set contains the null vector. 
(d) If a vector space X contains an independent set of r vectors but con-
tains no independent set of r + 1 vectors, we say that X has dimension r, 
and write· dim Y - r 

The set consisting of 0 alone is a vector space; its dimension is 0. 
(e) An independent subset of a vector space X which spans X is called 
a basis of X. 

Observe that if B = {xb ... , x,} is a basis of X, then every x eX 
has a unique representation of the form x r.c ix J • Such a representation 
exists since B spans X, and it is unique since B is independent. The 
numbers c1, ... , c, are called the coordinates of x with respect to the 
basis B. 

The most familiar example of a basis is the set {e1, ... , e11}, where 
ei is the vector in R 11 whosejth coordinate is 1 and whose other coordinates 
are all 0. If x e R", x = (x1, ••• , X 11 ), then x = "Lxiei. We shall call 

{e1, ... , e"} 

the standard basis of R11
• 

9.2 Theorem Let r be a positive integer. If a vector space X is spanned by a 
set of r vectors, then dim X~ r. 

Proof If this is false, there is a vector space X which contains an inde
pendent set Q = {y 1, ••• , Yr+ t} and which is spanned by a set S0 consisting 
of r vectors. 

Suppose 0 < i < r, and suppose a set Si has been constructed which 
spans X and which consists of all y i with 1 ~ j ~ i plus a certain collection 
of r- i members of S 0 , say x1, ••• , x,_ i. (In other words, Si is obtained 
from S0 by replacing i of its elements by members of Q, without altering 
the span.) Since Si spans X, Yi+ 1 is in the span of Si; hence there are 
scalars a1, ••• , ai+ 1, b1, ••• , b,_ i, with ai+ 1 = 1, such that 

i+ 1 r-i 
L a i y i + L bk xk = 0. 
j=1 k=1 

If all bk's were 0, the independence of Q would force all a/s to be 0, a 
contradiction. It follows that some xk e Si is a linear combination of the 
other members of Ti = Si u {Yi+ d. Remove this xk from Ti and call the 
remaining set Si+ 1. Then Si+ 1 spans the same set as Ti, namely X, so 
that si+ 1 has the properties postulated for si with i + 1 in place of i. 
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Starting with S0 , we thus construct sets S1, ... , S,. The last of 
these consists of y 1, ... , y,, and out constt action shows that it spans X. 
But Q is independent; hence y, + 1 is not in the span of S,. This contra-
diction establishes the theorem. 

Corollary dim Rn = n. 

Proof Since {e1, ... , en} spans Rn, the theorem shows that dim Rn < n. 
Smce { e1' ... ' en} IS mdependent, dim Rn ~ n. 

9.3 Theorem Suppose X is a vector space, and dim X= n. 

(a) A set E of n vectors in X spans X if and only if E is independent. 
(b) X has a basis, and every basis consists afn vectms. 
(c) If 1 ::;; r::;; n and {y b ... , y,} is an independent set in X, then X has a 

basis containing {y1, ... , y,}. 

Proof Suppose E = {x1, ... , Xn}. Since dim X= n, the set {x1, ... , xn, y} 
is dependent, for every y e X. If E is independent, it follows that y is in 
the span of E; hence E spans X. Conversely, if E is dependent, one of its 
members can be removed without changing the span of E. Hence E 
cannot span X, by Theorem 9.2. This proves (a). 

Since dim X= n, X contains an independent set of n vectors, and 
(a) shows that every such set is a basis of X; (b) now follows from 9.l(d) 
and 9.2. 

To prove (c), let {x1, ... , xn} be a basis of X. The set 

S = {y 1' · · · ' Y r' X1' · · · ' Xn} 

spans X and is dependent, since it contains more than n vectors. The 
argument used in the proof of Theorem 9.2 shows that one of the x/s is 
a linear combination of the other members of S. If we remove this xi from 
S, the remaining set still spans X. This process can be repeated r times 
and leads to a basis of X which contains {y1, ... , y,}, by (a). 

9.4 Definitions A mapping A of a vector space X into a vector space Y is said 
to be a linear transformation if 

A(cx) = cAx 

for all x, xb x2 e X and all scalars c. Note that one often writes Ax instead 
of A(x) if A is linear. 

Observe that AO = 0 if A is linear. Observe also that a linear transforma
tion A of X into Y is completely determined by its action on any basis: If 
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{x1, ••• , X 11 } is a basis of X, then every x E X has a unique representation of the 
form 

and the linearity of A allows us to compute Ax from the vectors Ax1, .•• , Ax
11 

and the coordinates c1 , •.. , en by the formula 

i- 1 

Linear transformations of X into X are often called linear operators on X. 
If A is a linear operator on X which (i) is one-to-one and (ii) maps X onto 
X, we say that A is inveltible. In this case we can define an opetatm A 1 on X 
by requiring that A - 1(Ax) = x for all x e X. It is trivial to verify that we then 
also have A(A- 1x) = x, for all x eX, and that A- 1 is linear. 

An important fact about linear operators on finite-dimensional vector 
spaces is that each of the above conditions (i) and (ii) implies the other: 

9.5 Theorem A linear operator A on a finite-dimensional vector space X is 
one-to-one if and only if the range of A is all of X. 

Proof Let {x1 , ... , xn} be a basis of X. The linearity of A shows that 
its range Bf(A) is the span of the set Q = {Ax1, ••• , Axn}· We therefore 
infer from Theorem 9.3(a) that Bf(A) = X if and only if Q is independent. 
We have to prove that this happens if and only if A is one-to-one. 

Suppose A is one-to-one and r.ciAxi = 0. Then A(l:.cixi) = 0, hence 
r.cixi = 0, hence c1 = · · · =en = 0, and we conclude that Q is independent. 

Conversely, suppose Q is independent and A(l:.cixi) = 0. Then 
r.ciAxi = 0, hence c1 = · · · =en= 0, and we conclude: Ax= 0 only if 
x = 0. If now Ax = Ay, then A(x - y) =Ax - Ay = 0, so that x - y = 0, 
and this says that A is one-to-one. 

9.6 Definitions 

(a) Let L(X, Y) be the set of all linear transformations of the vector space 
X into the vector space Y. Instead of L(X, X), we shall simply write L(X). 
If A 1, A 2 e L(X, Y) and if c1 , c2 are scalars, define c1A 1 + c2 A 2 by 

(c1A 1 + c2 A2)x = c1A 1x + c2 A 2x (x e X). 

It is then clear that c1A 1 + c2 A 2 e L(X, Y). 
(b) If X, Y, Z are vector spaces, and if A e L(X, Y) and Be L(Y, Z), we 
define their product BA to be the composition of A and B: 

(BA)x = B(Ax) (x e X). 

Then BA e L( X, Z). 
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Note that BA need not be the same as AB, even if X= Y = Z. 
(c) For A e L(Rn, Rm), define the norm II All of A to be the sup of all 
numbers I Ax I, where x ranges over all vectors in Rn with I xI < 1. 

Observe that the inequality 

lAx!~ IIAJJixl 
holds for all x eRn. Also, if A is such that I Ax I ~A I xI for all x eRn, 
then II A II s :A. 

9.7 Theorem 

(a) If A E L(Rn, Rm), then IIA II < oo and A is a uniformly continuous 
mapping (}fRn into Rm. 

(b) If A, Be L(Rn, Rm) and c is a scalar, then 

IIA + Bll ~ IIAJJ + IIBJI, IleA II =I cl II All. 
With the distance between A and B defined as IIA- Bll, L(Rn, Rm) is a 
metric space. 

(c) If A e L(Rn, Rm) and Be L(Rm, Rk), then 

IJBAJI ~ IIBII IIAJJ. 
Proof 

(a) Let {e1, ... , en} be the standard basis in Rn and suppose x = l:ciei, 
lxl ~ 1, so that I cd ~ 1 fori= 1, ... , n. Then 

IAxl =IL:ciAed ~L led IAeil ~L !Aed 
so that 

n 

IIAII ~ L IAeil < oo. 
i= 1 

Since lAx- Ayl ~!!All lx- Yl if x, y eRn, we see that A is uniformly 
continuous. 
(b) The inequality in (b) follows from 

!(A+ B)xl = lAx+ Bxl ~lAx!+ IBxl <(!!All+ IIBII) lxl. 

The second part of (b) is proved in the same manner. If 

A, B, C E L(Rn, Rm), 

we have the triangle inequality 

IIA- Cll = II(A -B)+ (B- C)ll ~ llA - Bll + liB- Cll, 
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and it is easily verified that II A - Bll has the other properties of a metric 
(Definition 2.15). 
(c) Finally, (c) follov;s from 

ICBA)xj = IB(Ax)j ~ IIBII lAx!< IIBII IIAII lxl. 

Since we now have metrics in the spaces L(Rn, Rm), the concepts of open 
set, contmmty, etc., make sense for these spaces. Our next theorem utihzes 
these concepts. 

a 8 TJ L a b 1. r u · 'b' 1• R" 7· T1eOtem Let sze tne set u) an mvertz te n:neat opetators on . 

(1) 

(2) 

(a) If A e Q, B e L(Rn), and 

then Be Q. 

(b) n is an open subset of L(Rn), and the mapping A ~A - 1 is continuous 
on n. 
(This mapping is also obviously a 1 - 1 mapping of n onto n, 

which is its own inverse.) 

Proof 

(a) Put IIA- 1
11 =1/rx, put liB-All ={3. ThenfJ<rx. For every xeRn, 

rxlxl = rxiA- 1Axl ~ rx!IA- 1
11 • jAxl 

=lAx!~ !(A- B)xl + IBxl ~ fJixl + !Bxl, 

so that 

( rx - {3) I xI ~ I Bx I 

Since rx - f3 > 0, (1) shows that Bx "# 0 if x :f:. 0. Hence B is 1 - 1. 
By Theorem 9.5, Be Q. This holds for all B with JIB-- All< rx. Thus 
we have (a) and the fact that n is open. 
(b) Next, replace x by B- 1y in (1). The resulting inequality 

(rx- f3)1B- 1YI ~ IBB- 1YI = IYI 

shows that IIB- 1
11 < (rx- /3)- 1

• The identity 

B- 1 - A- 1 = B- 1(A- B)A-1, 

combined with Theorem 9.7(c), implies therefore that 

IIB- 1
- A- 1

11 ~ IIB- 1 IIIIA- BIIIIA- 1
11 ~ f3 

rx(rx - {J) 

This establishes the continuity assertion made in (b), since f3 ~ 0 as B ~A. 
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9.9 Matrices Suppose {x1, ••• , xn} and {y1, ••• , Ym} are bases of vector spaces 
X and f, respectively. 1hen every A e L(X, Y) determmes a set of numbers 
a such that 

(3) (1 '5. j '5. n). 
i= 1 

It is convenient to visualize these numbers in a rectangular array of m rows 
and n columns, called an m by n matrix· 

[A] 

Observe that the coordinates a,1 of the vector Ax1 (with respect to the basis 
{Yb ... , Ym}) appear in the jth column of [A]. The vectors Ax1 are therefore 
sometimes called the column vectors of [A]. With this terminology, the range 
of A is spanned by the column vectors of [A]. 

Ifx =Ic1 x1 , the linearity of A, combined with (3), shows that 

(4) Ax= f (I aiJcJ) Yi· 
i= 1 J= 1 

Thus the coordinates of Ax are I 1 ail c1 . Note that in (3) the summation 
ranges over the first subscript of ail, but that we sum over the second subscript 
when computing coordinates. 

Suppose next that an m by n matrix is given, with real entries ail . If A is 
then defined by (4), it is clear that A e L(X, Y) and that [A] is the given matrix. 
Thus there is a natural 1-1 correspondence between L(X, Y) and the set of all 
realm by n matrices. We emphasize, though, that [A] depends not only on A 
but also on the choice of bases in X and Y. The same A may give rise to many 
different matrices if we change bases, and vice versa. We shall not pursue this 
observation any further, since we shall usually work with fixed bases. (Some 
remarks on this may be found in Sec. 9.37.) 

If Z is a third vector space, with basis {z1, ••• , zp}, if A is given by (3), 
and if 

then A e L(X, Y), Be L(Y, Z), BA e L(X, Z), and since 

B(Ax1) = B "'. at1Yt = "'. aiJByi 
i i 

= L ail L bktzk = L (I bkiatJ) zk' 
k k i 
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the independence of {zh •.. , z11} implies that 

(5) (1 '5. k '5. p, 1 '5. j S n). 

This shows how to compute the p by n matrix [BA] from [B] and [A]. If we 
define the product [B][A] to be [BA], then (5) describes the usual rule of matrix 
multiplication. 

Finally, suppose {x1, , x,.} and {y1, , Ym} are standard bases of R" and 
Rm, and A is given by (4). The Schwarz inequality shows that 

Thus 

(6) IIA II -s. {I a!J} 112
• 

i,j 

If we apply (6) to B- A in place of A, where A, Be L(R", Rm), we see 
that if the matrix elements ail are continuous functions of a parameter, then the 
same is true of A. More precisely: 

If S is a metric space, if a11 , ••• , amn are real continuous functions on S, 
and if, for each peS, AP is the linear transformation of R" into Rm whose matrix 
has entries aii(p), then the mapping p ~ AP is a continuous mapping of S into 
L(R", Rm). 

DIFFERENTIATION 

9.10 Preliminaries In order to arrive at a definition of the derivative of a 
function whose domain is R" (or an open subset of R"), let us take another look 
at the familiar case n = 1, and let us see how to interpret the derivative in that 
case in a way which will naturally extend to n > 1. 

Iff is a real function with domain (a, b) c R1 and if x e (a, b), thenf'(x) 
is usually defined to be the real number 

(7) 
1' f(x +h) - f(x) 
1m h , 

h-+0 

provided, of course, that this limit exists. Thus 

(8) f(x +h) - f(x) = f'(x)h + r(h) 

where the "remainder" r(h) is small, in the sense that 

(9) lim r(h) = 0. 
h-+0 h 
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Note that (8) expresses the difference f(x +h) - f(x) as the sum of the 
linear function that takes h to f'(x)h, plus a small remainder. 

We can therefore regard the derivative off at x, not as a real number, 
but as the linear operator on R1 that takes h to f'(x)h. 

[Observe that every real number IX gtves nse to a hnear operator on R1 ; 

the operator in question is simply multiplication by IX. Conversely, every linear 
function that carries R1 to R1 is multiplication by some real number. It is this 
natural 1-1 correspondence between R 1 and L(R1

) which motivates the pre-
ceding statements.] 

Let us next consider a function f that maps (a, b) c R 1 into Rm. In that 
case, f'(x) was defined to be that vector y e Rm (if there is one) for which 

(f(x +h) f(x) } 

We can again rewrite this in the form 

(11) f(x +h)- f(x) = hy + r(h), 

where r(h)/h ~ 0 as h ~ 0. The main term on the right side of (11) is again a 
linear function of h. Every y e Rm induces a linear transformation of R 1 into 
Rm, by associating to each he R1 the vector hy e Rm. This identification of Rm 
with L(R1

, Rm) allows us to regard f'(x) as a member of L(R\ Rm). 
Thus, iff is a differentiable mapping of(a, b) c R1 into Rm, and if x e (a, b), 

then f'(x) is the linear transformation of R 1 into Rm that satisfies 

(12) 

or, equivalently, 

(13) 

1
. f(x +h)- f(x) - f'(x)h _ 

0 Im h - ' 
h-+0 

1
. lf(x +h)- f(x)- f'(x)hl _ 

0 h~ lhl - . 

We are now ready for the case n > 1. 

9.11 Definition Suppose E is an open set in Rn, f maps E into Rm, and x e E. 
If there exists a linear transformation A of Rn into Rm such that 

(14) 1
. lf(x+h)-f(x)-Ahl_

0 
h
1!!:, I hI - ' 

then we say that f is differentiable at x, and we write 

(15) f'(x) =A. 

If f is differentiable at every x e E, we say that f is differentiable in E. 
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It is of course understood in (14) that h e Rn. If I hI is small enough, then 
x +he E, since E is open. Thus f(x +h) is defined, f(x +h) e Rm, and since 
A e L(Rn, lf1, Ah e Rm. Thus 

f(x I h) f(x) Ah e Rm. 

The norm in the numerator of (14) is that of Rm. In the denominator we have 
the Rn-norm of h. 

There is an obvious uniqueness problem which has to be settled before 
we go any further. 

9 12 Theorem Suppose E and f are as in Definition 9 11 , x e E, and (14) holdv 

(16) 

Proof If B = A 1 - A2 , the inequality 

IBhl ~ lf(x +h)- f(x)- A 1hl + lf(x +h)- f(x)- A 2 hl 

shows that I Bh I I I hI ~ 0 as h ~ 0. For fixed h :1:: 0, it follows that 

I B(th) ~ 0 as t ~ 0. 
I thl 

The linearity of B shows that the left side of (16) is independent of t. 
Thus Bh = 0 for every he Rn. Hence B = 0. 

9.13 Remarks 

(17) 

(18) 

(a) The relation (14) can be rewritten in the form 

f(x +h)- f(x) = f'(x)h + r(h) 

where the remainder r(h) satisfies 

1
. lr(h)l _ 

0 h~n.! lhl - . 

We may interpret (17), as in Sec. 9.10, by saying that for fixed x and small 
h, the left side of (17) is approximately equal to f'(x)h, that is, to the value 
of a linear transformation applied to h. 
(b) Suppose f and E are as in Definition 9.11, and f is differentiable in E. 
For every x e E, f'(x) is then a function, namely, a linear transformation 
of Rn into Rm. But f' is also a function: f' maps E into L(Rn, Rm). 
(c) A glance at (17) shows that f is continuous at any point at which f is 
differentiable. 
(d) The derivative defined by (14) or (17) is often called the differential 
off at x, or the total derivative off at x, to distinguish it from the partial 
derivatives that will occur later. 
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9.14 Example We have defined derivatives of functions carrying Rn to Rm to 
be linear transformations of Rn into Rm. What is the derivative of such a linear 
transformation? The answer is very simple. 

/fA E L(R", Rm) and ifx E R'~, then 

(19) A'(x) - .4 

Note that x appears on the left side of (19), but not on the right. Both 
sides of (19) are members of L(Rn, Rm), whereas Axe Rm. 

The proof of ( 19) is a triviality, since 

(20) A(x + h) - Ax = Ah, 

by the linearity of A. With f(x) =Ax, the numerator in (14) is thus 0 for every 
heR'~. In (17), r(h) - 6. 

We now extend the chain rule (Theorem 5.5) to the present situation. 

9.15 Theorem Suppose E is an open set in Rn, f maps E into Rm, f is differentiable 
at x0 E E, g maps an open set containing f(E) into Rk, and g is differentiable at 
f(x0). Then the mapping F of E into Rk defined by 

F(x) = g(f (x)) 

is differentiable at x0 , and 

(21) F'(x0 ) = g'(f(x0))f'(x0). 

On the right side of (21), we have the product of two linear transforma
tions, as defined in Sec. 9.6. 

(22) 

(23) 

Proof Put Yo = f(x0), A = f'(x0), B = g'(y0), and define 

u(h) = f(x0 +h) - f(x0) - Ah, 

v(k) = g(y0 + k) - g(y0) - Bk, 

for all he Rn and k e Rm for which f(x0 +h) and g(y0 + k) are defined. 
Then 

lu(h)l = e(h)lhl, lv(k)l = '7(k)lkl, 

where e(h) ~ 0 as h ~ 0 and 17(k) ~ 0 as k ~ 0. 

and 

Given h, put k = f(x0 +h)- f(x0). Then 

lkl = I Ah + u(h)l ~[II All + e(h)] I hi, 

F(x0 + h) - F(x0) - BAh = g(y0 + k) - g(y0) - BAh 

= B(k - Ah) + v(k) 

= Bu(h) + v(k). 
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Hence (22) and (23) imply. for h #= 0, that 

IF(xo +h) ~~(Xo)- BAhl S IIBIIe(h) + IIIAII + e(h)]~(k). 

Let h ~ 0. Then e(h) ~ 0. Also, k ~ 0, by (23), so that 17(k) ~ 0. 
It follows that F'(x0 ) BA, which is what (21) asserts. 

9.16 Partial derivatives We again consider a function f that maps an open 
set E c R" into Rm. Let {eb ... , en} and {u1, ... , um} be the standatd bases of 
Rn and Rm. The components off are the real functions / 1, ••• , fm defined by 

m 

(24) f(x) L Ji(x)u, (x ~E), 
t= 1 

or, equivalently, by h(x) = f(x) · u,, 1 s; is; m. 
For x e E, 1 s; is; m, 1 S:j s; n, we define 

(25) (DJfi)(x) = lim fi(x +tel)- fi(x)' 
t-+0 t 

provided the limit exists. Writing fi(x 1 , ••• , xn) in place of h(x), we see that 
D 1fi is the derivative of fi with respect to x 1 , keeping the other variables fixed. 
The notation 

(26) 
ofi 
OXj 

is therefore often used in place of D 1/i, and D 1/i is called a partial derivative. 
In many cases where the existence of a derivative is sufficient when dealing 

with functions of one variable, continuity or at least boundedness of the partial 
derivatives is needed for functions of several variables. For example, the 
functions/and g described in Exercise 7, Chap. 4, are not continuous, although 
their partial derivatives exist at every point of R 2

• Even for continuous functions. 
the existence of all partial derivatives does not imply differentiability in the sense 
of Definition 9.11; see Exercises 6 and 14, and Theorem 9.21. 

However, iff is known to be differentiable at a point x, then its partial 
derivatives exist at x, and they determine the linear transformation f'(x) 
completely: 

9.17 Theorem Suppose f maps an open set E c Rn into Rm, andf is differentiable 
at a point x e E. Then the partial derivatives (D1fi)(x) exist, and 

m 

(27) f'(x)e1 = L (D1ft)(x)u1 
i= 1 

(1 s;j s; n). 
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(29) 

Here, as in Sec. 9.16, {e1 , ••• , e"} and {u, ... , um} are the standard bases 

Proof Fix j. Since f is differentiable at x, 

where I r(te1) lit~ 0 as t ~ 0. I he lmeanty of f '(x) shows therefore that 

If we now represent f in terms of its components, as in (24), then (28) 
becomes 

1. ~ fi(x + te1) - fi(x) f'( ) 
1m '-' u1 = x e1 . 

t-+0 i= 1 t 

It follows that each quotient in this sum has a limit, as t ~ 0 (see Theorem 
4.10), so that each (D1fi)(x) exists, and then (27) follows from (29). 

Here are some consequences of Theorem 9.17 : 
Let [f'(x)] be the matrix that represents f'(x) with respect to our standard 

bases, as in Sec. 9.9. 

Then f'(x)e1 is the jth column vector of [f'(x)], and (27) shows therefore 
that the number (D1fi)(x) occupies the spot in the ith row and jth column of 
[f'(x)]. Thus 

[f'(x)] = [~~~~~~\~). · .".".". · .~~~!.1 ~~~~]. 
(D1fm)(x) · · · (Dnfm)(x) 

If h = '1:.h1e1 is any vector in Rn, then (27) implies that 

(30) f' (x)h =,t, Lt, ( D 1/,)(x)h 1) u1• 

9.18 Example Let y be a differentiable mapping of the segment (a, b) c R1 

into an open set E c Rn, in other words, y is a differentiable curve in E. Let I 
be a real-valued differentiable function with domain E. Thusfis a differentiable 
mapping of E into R1

• Define 

(31) g(t) = f(y(t)) (a< t <b). 

The chain rule asserts then that 

(32) g'(t) = f'(y(t))y'(t) (a< t <b). 
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Since y'(t) e L(R1 , Rn) and f'(y(t)) e L(Rn, R1), (32) defines g'(t) as a linear 
operator on R1• This agrees with the fact that g maps (a, b) into R1 However, 
g'(t) can also be regarded as a real number. (This was discussed in Sec. 9.10.) 
This number can be computed m terms of the partial derivatives off and the 
derivatives of the components of y, as we shall now see. 

With respect to the standard basis {e1, ••• , en} of Rn, [y'(t)] is the n by 1 
mattix (a "column mattix") which has y~ (t) in the ith row, where 1'1> ••• , 'Pn are 
the components ofy. For every x e E, [/'(x)] is the 1 byn matrix(a "row matrix") 
which has (D1f)(x) in thejth column. Hence [g'(t)] is the 1 by 1 matrix whose 
only entry is the real number 

n 

(33) g'(t) - L (Dd)(y(t))yi (t). 
i= 1 

This is a frequently encountered special case of the chain rule. It can be 
rephrased in the following manner. 

Associate with each x e E a vector, the so-called "grariient" off at x, 
defined by 

n 

(34) (V/)(x) = L (D1/)(x)e;. 
i= 1 

Since 
n 

(35) y'(t) = L Yi (t)e;, 
'= 1 

(33) can be written in the form 

(36) g'(t) = (Vf)(y(t)) · y'(t), 

the scalar product of the vectors (Vf)(y(t)) and y'(t). 
Let us now fix an x e E, let u e Rn be a unit vector (that is, I u I = 1 ), and 

specialize y so that 

(37) y(t) = x + tu (- 00 < t < 00 ). 

Then y'(t) = u for every t. Hence (36) shows that 

(38) g'(O) = (V/)(x) · u. 

On the other hand, (37) shows that 

g(t) - g(O) = f(x + tu) - /(x). 

Hence (38) gives 

(39) lim /(x + tu) - /(x) = (V/) (x) . u. 
t-+0 t 



118 PRINCIPLES OF MATHEMATICAL ANALYSIS 

The limit in (39) is usually called the directional derivative off at x, in the 
direction of the unit vector u, and may be denoted by (Duf)(x). 

Iff and x are fixed, but u varies, then (39) shows that (Duf)(x) attains its 
maximum when u is a positive scalar multiple of (Vf)(x). [The case (Vf)(x) = 0 
should be excJuded here ] 

If u = l:.u1 e1, then (39) shows that (Duf)(x) can be expressed in terms of 
the partial derivatives off at x by the formula 

(40) (Duf)(x) = L (Dif)(x)ui. 
i= 1 

Some of these ideas will play a role in the following theorem. 

9.19 Theorem Suppose f maps a connex open vet E c Rn into Rm, f is dijferen-
tiable in E, and there is a real number M such that 

llf'(x)ll < M 

for every x e E. Then 

lf(b)- f(a)l < Mjb- a! 

for all a e E, b e E. 

Proof Fix a e E, b e E. Define 

y(t) = (1 - t)a + tb 

for all t e R 1 such that y(t) e E. Since E is convex, y(t) e E if 0 ~ t < 1. 
Put 

g(t) = f(y(t)). 

Then 

g'(t) = f'(y(t))y'(t) = f'(y(t))(b- a), 

so that 

lg'(t)l ~ llf'(y(t))lllb- al ~ Mlb- al 

for all t e [0, 1 ]. By Theorem 5.19, 

lg(l)- g(O)I ~ Mlb- al. 

But g(O) = f(a) and g(l) = f(b). This completes the proof. 

Corollary If, in addition, f'(x) = 0 for all x e E, then f is constant. 

Proof To prove this, note that the hypotheses of the theorem hold now 
with M=O. 
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9.20 Definition A differentiable mapping f of an open set E c R" into R"' is 
said to be continuously differentiable in E iff' is a continuous mapping of E 
into L(Rn, Rm). 

Mote explicitly, it is required that to every x e E and to every e > 0 
corresponds a l> > 0 such that 

llf'(y) - f'(x)ll < e 

if y e E and I x - y I < l>. 
If this IS so, we also say that f is a rc· -mapping, or that f e rc'(E). 

9.21 Theorem Suppose f maps an open set E c Rn into Rm. Then f e fC'(E) if 
and only if the partial derzvatzves D 1ft ex1st and are continuous on Efor 1 ~ i ~ m, 
1 ~ · <n. 

(41) 

Proof Assume first that f e fC'(E). By (27), 

(D1J;)(x) = (f'(x)e1) • u1 

for all i, j, and for all x e E. Hence 

(D1fi)(y)- (D1J;)(x) = {[f'(y)- f'(x)]e1} • u1 

and since I ui I = I e 1 I = 1, it follows that 

I (D1J;)(y) - (D1J;)(x) I ~ I [f'(y) - f'(x)]e1 I 
~ llf'(y) - f'(x)ll. 

Hence D 1J; is continuous. 
For the converse, it suffices to consider the case m = 1. (Why?) 

Fix x e E and e > 0. Since E is open, there is an open ball S c E, with 
center at x and radius r, and the continuity of the functions D1f shows 
that r can be chosen so that 

(yeS, 1 ~j ~ n). 

Suppose h = I.h1e1, I hi< r, put v 0 = 0, and vk = h1e1 + · · · + hkek, 
for 1 ~ k ~ n. Then 

n 

(42) f(x +h)-f(x) = L [f(x + v1)-f(x + v1- 1)]. 
)= 1 

Since I vk I < r for 1 ~ k ~ n and since S is convex, the segments with end 
points x + v1_ 1 and x + v1 lie in S. Since v1 = v1_ 1 + h1e1 , the mean 
value theorem (5.10) shows that thejth summand in (42) is equal to 

hj(D1f)(x + v1_ 1 + 81h1e1) 
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for some 81 e (0, 1), and this differs from hj(D1f)(x) by less than I h1 I ejn, 
using (41). By (42), it follows that 

n 1 n 

for all h such that I hI < r. 
This says that f is differentiable at x and that /'(x) ts the linear 

function which assigns the number r.h1(D1f)(x) to the vector b - '£h1e1 
The matrix [f'(x)] consists of the row (D1/)(x), ... , (Dnf)(x); and since 
D1j, ... , Dnf are continuous functions on E, the concluding remarks of 
Sec. 9.9 show thatfe fC'(E). 

THE CONTRACTION PRINCIPLE 

We now interrupt our discussion of differentiation to insert a fixed point 
theorem that is valid in arbitrary complete metric spaces. It will be used in the 
proof of the inverse function theorem. 

9.22 Definition Let X be a metric space, with metric d. If cp maps X into X 
and if there is a number c < 1 such that 

(43) d(cp(x), cp(y)) < c d(x, y) 

for all x, y e X, then cp is said to be a contraction of X into X. 

9.23 Theorem If X is a complete metric space, and if cp is a contraction of X 
into X, then there exists one and only one x eX such that cp(x) = x. 

In other words, cp has a unique fixed point. The uniqueness is a triviality, 
for if cp(x) = x and cp(y) = y, then (43) gives d(x, y)::;;; c d(x, y), which can only 
happen when d(x, y) = 0. 

The existence of a fixed point of cp is the essential part of the theorem. 
The proof actually furnishes a constructive method for locating the fixed point. 

(44) 

(45) 

Proof Pick x0 e X arbitrarily, and define {xn} recursively, by setting 

(n = 0, 1, 2, ... ). 

Choose c < 1 so that (43) holds. For n;:::: 1 we then have 

d(xn+ 1' Xn) = d(cp(xn), cp(Xn-1)) ~ C d(xn, Xn-1)· 

Hence induction gives 

(n=0,1,2, ... ). 
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If n < m, it follows that 

m 

d(xn, Xm) < L d(x,, X, J} 
i=n+ 1 

Thus {xn} is a Cauchy sequence Since X is complete, lim xn - x for some 
xeX. 

Since cp is a contraction, cp is continuous (in fact, uniformly con
tinuous) on X. Hence 

cp(x) = lim cp(xn) = lim Xn+ 1 =X. 
n-+oo n-+oo 

THE INVERSE FUNCTION THEOREM 

The inverse function theorem states, roughly speaking, that a continuously 
differentiable mapping f is invertible in a neighborhood of any point x at which 
the linear transformation f'(x) is invertible: 

9.24 Theorem Suppose f is a ri'-mapping of an open set E c Rn into Rn, f'(a) 
is invertible for some a e E, and b = f(a). Then 

(a) there exist open sets U and V in Rn such that a e U, be V, f is one-to
one on U, and f(U) = V; 

(b) if g is the inverse off [which exists, by (a)], defined in V by 

g(f(x)) = x (x e U), 

then g e ri'(V). 

Writing the equation y = f(x) in component form, we arrive at the follow
ing interpretation of the conclusion of the theorem: The system of n equations 

(1 < i < n) 

can be solved for x 1, ••• , xn in terms of y 1, ••• , Yn, if we restrict x andy to small 
enough neighborhoods of a and b; the solutions are unique and continuously 
differentiable. 

(46) 

Proof 

(a) Put f'(a) =A, and choose A. so that 

2A.IIA- 1
11 = 1. 
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Since f' is continuous at a, there is an open ball U c E, with center at a, 
such that 

(47) llf'(x) -A II < J. (x e U). 

We associate to each y e R" a function q>, defined by 

(48) cp(x) - x + d - 1(y f(x)) (x e E). 

(49) 

(50) 

Note that f(x) = y if and only ifx is a .fixed point of q>. 
Since cp'(x) =I- A - 1f'(x) =A - 1(A - f'(x)), (46) and (47) imply 

llcp'(x)ll <! (x e U). 

Hence 

by Theorem 9.19. It follows that q> has at most one fixed point in U, so 
that f (x) = y for at most one x e U. 

Thus f is 1 - 1 in U. 

Next, put V = f(U), and pick Yo e V. Then Yo = f(x0) for some 
x0 e U. Let B be an open ball with center at x0 and radius r > 0, so small 
thatitsclosure .Bliesin U. Wewillshowthaty e Vwhenever IY- Yo I< J.r. 
This proves, of course, that V is open. 

Fix y, I y- Yo I < J.r. With q> as in (48), 

r 
lcp(xo)- Xol = IA- 1(Y- Yo) I< IIA- 1 IIJ.r = 2' 

If x e .B, it therefore follows from (50) that 

I cp(x) - Xo I ::::; I cp(x) - cp(xo) I + I cp(xo) - Xo I 
1 r 

< 2 I x - Xo I + 2 ::::; r; 

hence cp(x) e B. Note that (50) holds if x1 e B, x2 e .B. 
Thus q> is a contraction of B into B. Being a closed subset of Rn, 

B is complete. Theorem 9.23 implies therefore that q> has a fixed point 
x e .B. For this x, f(x) = y. Thus y e f(B) c f(U) = V. 

This proves part (a) of the theorem. 

(b) Pick y e V, y + k e V. Then there exist x e U, x +hE U, so that 
y = f(x), y + k = f(x +h). With q> as in (48), 

cp(x +h)- cp(x) = h + A- 1[f(x)- f(x +h)]= h- A- 1k. 

By (50), lh- A- 1kl::::; !I hi. Hence IA- 1kl;;::: !lhl, and 

(51) lhl < 2IIA- 1 IIIkl =J.- 1 lkl. 
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By (46), (47), and Theorem 9.8, f'(x) has an inverse, say T. Since 

g(y + k)- g(y)- Tk = h- Tk = -T[f(x +h)- f(x)- f'(x)h], 

(51) implies 

lg(y + k)- g(y)- Tkl ~liT II. lf(x +h)- f(x)- f'(x)hl. 

Ask--+ 0, (51) shows that h--+ 0. The right side of the last inequality 
thus tends to 0. Hence the same is true of the left. We have thus proved 
that g'(y) -1'. But Twas chosen to be the mverse of I '(x)- f'(g(Y)). 'Ihus 

g'(y) - {f '(g(y))} 1 (y e V). 

Finally, note that g is a continuous mapping of V onto U (since g 
is differentiable), that f' is a continuous mapping of U into the set n of 
all invertible elements of L(Rn), and that inversion is a continuous mapping 
of n onto n, by Theorem 9.8. If we combine these facts with (52), we see 
that g E C6''( V). 

This completes the proof. 

Remark. The full force of the assumption that f e C6''(E) was only used 
in the last paragraph of the preceding proof. Everything else, down to Eq. (52), 
was derived from the existence of f'(x) for x e E, the invertibility of f'(a), and 
the continuity off' at just the point a. In this connection, we refer to the article 
by A. Nijenhuis in Amer. Math. Monthly, vol. 81, 1974, pp. 969-980. 

The following is an immediate consequence of part (a) of the inverse 
function theorem. 

9.25 Theorem Iff is a C6''-mapping of an open set E c Rn into Rn and iff'(x) 
is invertible for every x e E, then f ( W) is an open subset of Rn for every open set 
WeE. 

In other words, f is an open mapping of E into Rn. 

The hypotheses made in this theorem ensure that each point x e E has a 
neighborhood in which f is 1-1. This may be expressed by saying that f is 
locally one-to-one in E. But f need not be 1-1 in E under these circumstances. 
?or an example, see Exercise 17. 

THE IMPLICIT FUNCTION THEOREM 

Iff is a continuously differentiable real function in the plane, then the equation 
f(x, y) = 0 can be solved for y in terms of x in a neighborhood of any point 
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(a, b) at whichf(a, b) = 0 and offoy :I: 0. Likewise, one can solve for x in terms 
of y near (a, b) if of/ox :I: 0 at (a, b). For a stmple example whtch Illustrates 
the need for assuming 8f18y :# 0, considerf(x, y) - x 2 ± y 2 

- 1 
The preceding very informal statement is the simplest case (the case 

m n- 1 of Theorem 9.28) of the so-called "implicit function theorem." Its 
proof makes strong use of the fact that continuously differentiable transformations 
behave locally very much like their derivatives. Accordingly, we first prove 
Theorem 9.27, the linear version of Theorem 9.28. 

9.26 Notation If x = (x1, .•. , Xn) ERn andy= (y1, ••. , Ym) E Rm, let us wnte 
(x, y) for the point (or vector) 

In what follows, the first entry in (x, y) or in a similar symbol will always be a 
vector in Rn, the second will be a vector in Rm. 

Every A e L(Rn+m, Rn) can be split into two linear transformations Ax and 
Ay , defined by 

(53) Ax h = A(h, 0), 

for any he Rn, k e Rm. Then Axe L(Rn), Aye L(Rm, Rn), and 

(54) A(h, k) = Ax h + Ay k. 

The linear version of the implicit function theorem is now almost obvious. 

9.27 Theorem If A e L(Rn+m, Rn) and if Ax is invertible, then there corresponds 
to every k e Rm a unique h e Rn such that A(h, k) = 0. 

This h can be computed from k by the formula 

(55) h = -(Ax)- 1 Ayk. 

Proof By (54), A(h, k) = 0 if and only if 

Axh + Ayk = 0, 

which is the same as (55) when Ax is invertible. 

The conclusion of Theorem 9.27 is, in other words, that the equation 
A(h, k) = 0 can be solved (uniquely) for h if k is given, and that the solution h 
is a linear function of k. Those who have some acquaintance with linear algebra 
will recognize this as a very familiar statement about systems of linear equations. 

9.28 Theorem Let f be a rc'-mapping of an open set E c Rn+m into Rn, such 

that f(a, b) = 0 for some point (a, b) e E. 
Put A = f'(a, b) and assume that Ax is invertible. 



FUNCTIONS OF SEVERAL VARIABLES 225 

Then the1 e exist open sets U c Rn + m and J¥ c Rm, with (a, b) e U and 
b E W, having the following property: 

To every y E W corresponds a unique x such that 

(56) (x, y) E V and l(x, y) = 0. 

lj thzs x zs defined to be g(y), then g zs a ~·-mappmg of W into R", g(b)- a, 

(57) f(g(y), y) 6 (y E ff'), 

(58) g'(b) 

The function g is "implicitly" defined by (57) Hence the name of the 

theorem. 
The equation f(x, y) = 0 can be written as a system of n equations in 

n + m variables: 

(59) 

fn(xb · · ·' Xn, Yt, · · ·' Ym) = 0. 

The assumption that Ax is invertible means that the n by n matrix 

[~ ~~~ .. ·. ·. · ... ~~~(~] D1fn ··· Dnfn 

evaluated at (a, b) defines an invertible linear operator in Rn; in other words, 
its column vectors should be independent, or, equivalently, its determinant 
should be =FO. (See Theorem 9.36.) If, furthermore, (59) holds when x =a and 
y = b, then the conclusion of the theorem is that (59) can be solved for x 1, .•• , xn 
in terms of y1, ••• , Ym, for every y near b, and that these solutions are continu
ously differentiable functions of y. 

(60) 

Proof Define F by 

F(x, y) = (f(x, y), y) ((x, y) E E). 

Then F is a C6''-mapping of E into Rn+m. We claim that F'(a, b) is an 
invertible element of L(Rn+m): 

Since f(a, b) = 0, we have 

f(a + h, b + k) = A(h, k) + r(h, k), 

where r is the remainder that occurs in the definition of f'(a, b). Since 

F(a + h, b + k)- F{a, b) = (f(a + h, b + k), k) 
= (A(h, k), k) + (r(h, k), 0) 
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(61) 

(62) 

it follows that F'(a, b) is the linear operator on Rn+m that maps (h, k) to 
(A(h, k), k). If this image vector is 0, then A(h, k) = 0 and k = 0, hence 
A(h, 0) = 0, and Theorem 9.27 implies that h = 0. It follows that F'(a, b) 
is 1-1 ; hence it is invertible (Theorem 9 5) 

The inverse function theorem can therefore be applied to F. It shows 
that there exist open sets D and P m R" 1111

, with (a, b) e D, (0, b) e V, such 
that F is a 1-1 mapping of U onto V. 

We let W be the set of all y e Rm such that (0, y) e V. Note that 

It is clear that W is open since V is open. 
Ify e W, then (0, y) = F(x, y) for some (x, y) e U. By (60), f(x, y) = 0 

Suppose, with the same y, that (x', y) e U and f(x', y) = 0. Then 

F(x', y) = (f(x', y), y) = (f(x, y), y) = F(x, y). 

Since F is 1-1 in U, it follows that x' = x. 
This proves the first part of the theorem. 

For the second part, define g(y), for y e W, so that (g(y), y) e U and 
(57) holds. Then 

F(g(y), y) = (0, y) (yEW). 

If G is the mapping of V onto U that inverts F, then G e ~', by the inverse 
function theorem, and (61) gives 

(g(y), y) = G(O, y) (yEW). 

Since G e ~', (62) shows that g e ~'. 
Finally, to compute g'(b), put (g(y), y) = <l>(y). Then 

(63) <l>'(y)k = (g'(y)k, k) (y E W, k E Rm). 

(64) 

(65) 

By (57), f(<l>(y)) = 0 in W. The chain rule shows therefore that 

f'(<l>(y))<l>'(y) = 0. 

When y = b, then <l>(y) =(a, b), and f'(<l>(y)) =A. Thus 

A<l>'(b) = 0. 

It now follows from (64), (63), and (54), that 

Axg'(b)k + A,k = A(g'(b)k, k) = A<l>'(b)k = 0 

for every k e Rm. Thus 

Axg'(b) +A,= 0. 
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This is equivalent to (58), and completes the proof. 

Note. In terms of the components off and g, (65) becomes 

or 

where 1 ~ i ~ n, 1 ~ k ~ m. 
For each k, this is a system of n linear equations in which the derivatives 

og)oyk (1 ~j ~ n) are the unknowns. 

9.29 Example Take n = 2, m = 3, and consider the mapping f = (/1, / 2) of 
R 5 into R 2 given by 

ft(xl, X2, Y1, Y2, YJ) = 2ex1 + X2 Y1 - 4y2 + 3 

f2(x1, X2, Yt' Y2, YJ) = X2 cos X1- 6x1 + 2yl - YJ · 

If a = (0, 1) and b = (3, 2, 7), then f(a, b) = 0. 
With respect to the standard bases, the matrix of the transformation 

A = f'(a, b) is 

[A]= [ -~ 
Hence 

3 
1 

1 
2 

-4 
0 

[
1 -4 0] 

[A,] = 2 0 -1 . 

We see that the column vectors of [Ax] are independent. Hence Ax is invertible 
and the implicit function theorem asserts the existence of a rc' -mapping g, defined 
in a neighborhood of (3, 2, 7), such that g(3, 2, 7) = (0, 1) and f(g(y), y) = 0. 

We can use (58) to compute g'(3, 2, 7): Since 

(58) gives 

1 [1 [g'(3, 2, 7)] = - 20 6 
-4 

0 
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In terms of partial derivatives, the conclusion is that 

3 

at the point (3, 2, 7). 

THE RANK THEOREM 

Although this theorem is not as important as the inverse function theorem or 
the implicit function theorem, we include it as another interesting illustration 
of the genetal ptinciple that the local behaviot of a continuously differentiable 
mapping F near a point x is similar to that of the linear transformation F'(x). 

Before stating it, we need a few more facts about linear transformations. 

9.30 Definitions Suppose X and Y are vector spaces, and A E L( X, Y), as in 
Definition 9.6. The null space of A, .;V(A), is the set of all x E X at which Ax = 0. 
It is clear that .;V(A) is a vector space in X. 

Likewise, the range of A, al(A), is a vector space in Y. 
The rank of A is defined to be the dimension of al(A). 
For example, the invertible elements of L(Rn) are precisely those whose 

rank is n. This follows from Theorem 9.5. 
If A E L(X, Y) and A has rank 0, then Ax = 0 for all x E A, hence.;V(A) = X. 

In this connection, see Exercise 25. 

9.31 Projections Let X be a vector space. An operator P E L(X) is said to be 
a projection in X if P2 = P. 

More explicitly, the requirement is that P(Px) = Px for every x E X. In 
other words, P fixes every vector in its range al(P). 

Here are some elementary properties of projections: 

(a) If Pis a projection in X, then every x E X has a unique representation 
of the form 

where x1 E al(P), x2 E .;V(P). 
To obtain the representation, put x1 = Px, x2 = x - x1• Then 

Px2 = Px - Px1 = Px - P 2x = 0. As regards the uniqueness, apply P to 
the equation x = x 1 + x2 • Since x1 E al(P), Px1 = x1 ; since Px2 = 0, it 
follows that x1 = Px. 
(b) If X is a finite-dimensional vector space and if X 1 is a vector space in 
X, then there is a projection Pin X with fJt(P) = X 1 • 
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If X1 contains only 0, this is trivial: put Px = 0 for all x e X. 
Assume dim X1 k > 0. By Theorem 9.3, X has then a basis 

for arbitrary scalars c1, •.. , cn. 
Then Px = x for every x e X 1, and X 1 - 9t(P). 
Note that {u" 1 1, .•• , U11 } is a basis of .;V(P). Note also that there are 

infinitely many projections in X, with range X1 , if 0 <dim X1 <dim X. 

9.32 Theorem Suppose m, n, r are nonnegative integers, m ~ r, n ~ r, F is a 
rc'-mapping of an open set E c Rn into Rm, and F'(x) has rank r for every x e E. 

Fix a e E, put A F'(a), kt Y1 be the range of 4, and let P be a projection 
in Rm whose range is Y1 . Let Y2 be the null space of P. 

Then there are open sets U and V in Rn, with a e U, U c E, and there is a 
1-1 rc' -mapping H of V onto U (whose inverse is also of class rc') such that 

(66) F(H(x)) = Ax + q>(Ax) (x e V) 

where q> is a rc' -mapping of the open set A(V) c Y1 into Y2 • 

After the proof we shall give a more geometric description of the informa
tion that (66) contains. 

(67) 

(68) 

(69) 

Proof If r = 0, Theorem 9.19 shows that F(x) is constant in a neighbor
hood U of a, and (66) holds trivially, with V = U, H(x) = x, q>(O) = F(a). 

From now on we assume r > 0. Since dim Y1 = r, Y1 has a basis 
{y1 , ... , Yr}. Choose zi eRn so that Azi = Yi (1 ~ i ~ r), and define a linear 
mappingS of Y1 into Rn by setting 

for all scalars c1 , .•. , cr. 
Then ASyi = Azi = Yi for 1 ~ i::;; r. Thus 

ASy =y 

Define a mapping G of E into Rn by setting 

G(x) = x + SP[F(x) - Ax] (x e E). 

Since F'(a) =A, differentiation of (69) shows that G'(a) =I, the identity 
operator on R11

• By the inverse function theorem, there are open sets U 
and V in Rn, with a e U, such that G is a 1-1 mapping of U onto V whose 
inverse His also of class~'. Moreover, by shrinking U and V, if necessary, 
we can arrange it so that Vis convex and H'(x) is invertible for every x e V. 
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(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

Note that ASPA =A, since PA =A and (68) holds. Therefore (69) 

A G(x) - PF(x) (x E E) 

In particular. (70) holds for x e U. If we replace x by H(x). we obtain 

PF(H(x)) = Ax (x e V). 
Define 

1/J(x) = F(H(x)) - Ax (x e V). 

Since PA =A, (71) implies that PI/J(x) = 0 for all x e V. Thus 1/J is a 
<l'-mapping of V into Y2 

Since Vis open, it is clear that A(V) is an open subset of its range 
~(A)- Y1• 

To complete the proof, i.e., to go from (72) to (66), we have to show 
that there is a C6''-mapping q> of A(V) into Y2 which satisfies 

cp(Ax) = 1/J(x) (x e V). 

As a step toward (73), we will first prove that 

1/J(xl) = 1/1Cx2) 

ifx1 e V, x2 e V, Ax1 = Ax2. 
Put <l>(x) = F(H(x)), for x e V. Since H'(x) has rank n for every 

x e V, and F'(x) has rank r for every x e U, it follows that 

rank <l>'(x) =rank F'(H(x))H'(x) = r (x e V). 

Fix x e V. Let M be the range of <l>'(x). Then M c Rm, dim M = r. 
By (71), 

P<l>'(x) =A. 

Thus P maps M onto al(A) = Y1 • Since M and Y1 have the same di
mension, it follows that P (restricted to M) is 1-1. 

Suppose now that Ah = 0. Then P<l>'(x)h = 0, by (76). But 
<l>'(x)h eM, and Pis 1-1 on M. Hence ct>'(x)h = 0. A look at (72) shows 
now that we have proved the following: 

Ifx e V and Ah = 0, then 1/J'(x)h = 0. 
We can now prove (74). Suppose x 1 e V, x2 e V, Ax1 = Ax2. Put 

h = x2 - x1 and define 

g(t) = I/J(x1 + th) (0 :$; t :$; 1). 

The convexity of V shows that x1 + th e V for these t. Hence 

g'(t) = I/J'(x1 + th)h = 0 (0 :$; t :$; 1), 
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so that g(l) = g(O). But g(l) = IJI(x2) and g(O) = IJI(xtJ. This proves (74). 
By (14), 1/L(x) depends only on Ax, for x e V Hence (73) defines cp 

unambiguously in A(V). It only remains to be proved that q> E rc'. 
Fix Yo E A(V), ftx x0 e V so that Ax0 -Yo. Since J<'' is open, Yo has 

a neighborhood W in Y1 such that the vector 

x = X 0 + S(y- Yo) 

lies in V for ally E W. By (68), 

Ax = Ax0 + Y - Yo = Y· 

Thus (73) and (79) give 

(80) q>(y) = I/J(x0 - Sy0 + Sy) (yEW). 

This formula shows that q> E rc' in W, hence in A(V), since Yo was chosen 
arbitrarily in A(V). 

The proof is now complete. 

Here is what the theorem tells us about the geometry of the mapping F. 
If y e F(U) then y = F(H(x)) for some x E V, and (66) shows that Py =Ax. 

Therefore 

(81) y = Py + cp(Py) (y E F(U)). 

This shows that y is determined by its projection Py, and that P, restricted 
to F(U), is a 1-1 mapping of F(U) onto A(V). Thus F(U) is an "r-dimensional 
surface" with precisely one point "over" each point of A(V). We may also 
regard F(U) as the graph of q>. 

If <l>(x) = F(H(x)), as in the proof, then (66) shows that the level sets of <I> 
(these are the sets on which <l> attains a given value) are precisely the level sets of 
A in V. These are "flat" since they are intersections with V of translates of the 
vector space %(A). Note that dim .;V(A) = n - r (Exercise 25). 

The level sets of F in U are the images under H of the fiat level sets of <l> 
in V. They are thus "(n - r )-dimensional surfaces" in U. 

DETERMINANTS 

Determinants are numbers associated to square matrices, and hence to the 
operators represented by such matrices. They are 0 if and only if the corre
sponding operator fails to be invertible. They can therefore be used to decide 
whether the hypotheses of some of the preceding theorems are satisfied. They 
will play an even more important role in Chap. 10. 
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9.33 Definition It (1!, ... ,Jn) IS an ordered n-tuple of mtegers, define 

(82) 

where sgn x = 1 if x > 0, sgn x = -1 if x < 0, sgn x = 0 if x = 0. Then 
sUr, ... , jn) 1, 1, or 0, and it changes sign if any t·.vo of the j' s are inter-
changed. 

Let [A] be the matnx of a hnear operator A on R", relative to the standard 
basis {e1, ... , e,}, with entries a(i,j) in the ith row and jth column The deter-
minant of [A] is defined to be the number 

(83) 

The sum in (83) extends over all ordered n-tuples of integers {}1, •.• ,jn) with 

r 

The column vectors xi of [A] are 

n 

(84) xi = I a(i,j)ei (1 <j ~ n). 
i= 1 

It will be convenient to think of det [A] as a function of the column vectors 
of [A]. If we write 

det (xb ... , xn) = det [A], 

det is now a real function on the set of all ordered n-tuples of vectors in Rn. 

9.34 Theorem 

(a) If I is the identity operator on R", then 

det [I] = det (er, ... ' en) = 1. 

(b) det is a linear function of each of the column vectors xi, if the others are 
held fixed. 

(c) If [A] 1 is obtained from [A] by interchanging two columns, then 
det [A] 1 = -det [A]. 

(d) If[A] has two equal columns, then det [A]= 0. 

Proof If A = I, then a(i, i) = 1 and a(i, j) = 0 for i :1: j. Hence 

det [I] = s(1, 2, ... , n) = 1, 

which proves (a). By (82), s(j r, ... , jn) = 0 if any two of the j' s are equal. 
Each of the remaining n! products in (83) contains exactly one factor 
from each column. This proves (b). Part (c) is an immediate consequence 
of the fact that s(j 1, ••• , in) changes sign if any two of the j's are inter
changed, and (d) is a corollary of (c). 
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9.35 Theorem If [A] and [B] are n by n matrices, then 

det ([BJ[A]) = det [B] det [A]. 

Proof If x1, ... , xn are the columns of [A], define 

(85) 218 (x1, ••• , Xn) - L18 [A] - det ([B] [A]). 

The columns of [:B][A] are the vectors :Bx1, •.. , Bxn. Thus 

(86) ~a(x1, ... , Xn) det (Bx1, ... , Bxn)· 

(87) 

By (86) and Theorem 9.34, A8 also has properties 9.34 (h) to (d). By (jJ) 
and (84), 

Repeating this process with x2 , ••• , xn , we obtain 

~8[A] = L a(i1, 1)a(i2 , 2) · · · a(in, n) ~B(ei 1 , ••• , eiJ, 

the sum being extended over all ordered n-tuples (ib ... , in) with 
1 ~ ir ~ n. By (c) and (d), 

(88) ~a(eit' ... 'eiJ = t(i1, ... ' in) ~a(e1, ... 'en), 

where t = 1, 0, or -1, and since [B][I] = [B], (85) shows that 

(89) ~a(e1 , ... , en) = det [B]. 

Substituting (89) and (88) into (87), we obtain 

det ([B][A]) = { L a(i1 , 1) · · · a(in, n)t(i1 , ••• , in)} det [B], 

for all n by n matrices [A] and [B]. Taking B =I, we see that the above 
sum in braces is det [A]. This proves the theorem. 

9.36 Theorem A linear operator A on Rn is invertible if and only if det [A] :F 0. 

Proof If A is invertible, Theorem 9.35 shows that 

det [A] det [A- 1 ] = det [AA- 1
] = det [I]= 1, 

so that det [A] :1: 0. 

If A is not invertible, the columns x1, ... , xn of [A] are dependent 
(Theorem 9.5); hence there is one, say, xk, such that 

~~ ~+I0~=o 
j¢k 

for certain scalars c1 . By 9.34 (b) and (d), xk can be replaced by xk + c1 x1 
without altering the determinant, if j :1: k. Repeating, we see that xk can 
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be replaced by the left side of (90), i.e., by 0, without altering the deter
minant. But a matrix which has 0 for one column has determinant 0. 
Hence det [A] = 0. 

9.37 Remark Suppose {et> ... , en} and {ub ... , un} are bases in R". 
Every linear operator A on R" determines matrices [A] and [A]u, with entries 
aii and o:li, given by 

and also to 

Thus I.bik o:ki = I.aik bki, or 

(91) [B][A]u = [A][B]. 

Since B is invertible, det [B] :1:0. Hence (91), combined with Theorem 9.35, 
shows that 
(92) det [A lu = det [A]. 

The determinant of the matrix of a linear operator does therefore not 
depend on the basis which is used to construct the matrix. It is thus meaningful 
to speak of the determinant of a linear operator, without having any basis in mind. 

9.38 Jacobians Iff maps an open set E c R" into R", and iff is differen~ 
tiable at a point x e E, the determinant of the linear operator f'(x) is called 
the Jacobian off at x. In symbols, 

(93) 

We shall also use the notation 

(94) 

J1(x) = det f'(x). 

o(y1, · · ·, Yn) 
O(X1, ... , Xn) 

for J1(x), if (y1, .•. , Yn) = f(xl, ... , Xn)· 
In terms of Jacobians, the crucial hypothesis in the inverse function 

theorem is that J 1(a) :F 0 (compare Theorem 9.36). If the implicit function 
theorem is stated in terms of the functions (59), the assumption made there on 
A amounts to 
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DERIVATIVES OF HIGHER ORDER 

9.39 Definition Suppose f is a real function defined in an open set E c R", 
with partial derivatives D1f, ... , Dnf If the functions D1f are themselves 
differentiable, then the second-order partial derivatives off are defined by 

(i,j=l, ... ,n). 

If all these functions DiJfare continuous in E, we say that/is of class ct" in E, 
or that j e fi"(E). 

A mapping f of E into Rm is said to be of class ct" if each component off 
is of class ct". 

It can happen that Di1f¢ D1ifat some point, although both derivatives 
exist (see Exercise 27). However, we shall see below that Duf= D11/whenever 
these derivatives are continuous. 

For simplicity (and without loss of generality) we state our next two 
theorems for real functions of two variables. The first one is a mean value 
theorem. 

9.40 Theorem Suppose f is defined in an open set E c R 2
, and D1/ and D21 / 

exist at every point of E. Suppose Q c E is a closed rectangle with sides parallel 
to the coordinate axes, having (a, b) and (a +h, b + k) as opposite vertices 
(h ¢ 0, k ¢ 0). Put 

(95) 

ll(J, Q) =f(a + h, b + k)- f(a + h, b)- f(a, b + k) + f(a, b). 

Then there is a point (x, y) in the interior of Q such that 

ll(f, Q) = hk(D21/)(x, y). 

Note the analogy between (95) and Theorem 5.10; the area of Q is hk. 

Proof Put u(t) = f(t, b + k) - f(t, b). Two applications of Theorem 5.10 
show that there is an x between a and a + h, and that there is a y between 
b and b + k, such that 

ll(f, Q) = u(a +h) - u(a) 

= hu'(x) 

= h[(D1f)(x, b + k)- (D1[)(x, b)] 

= hk(D21[)(x, y). 

9.41 Theorem Suppose f is defined in an open set E c R 2
, suppose that D1J, 

D21f, and D2/ exist at every point of E, and D21f is continuous at some point 
(a, b) E E. 
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Then D12/ exists at (a, b) and 

(96) (D12/)(a, b) = (D21/)(a, b). 

Corollary D21f = D 12 f iff e CI"(E). 

(97) 

Proof Put A = (D21 f)(a, b). Choose e > 0. If Q is a rectangle as in 
I heorem 9.40, and tf h and k are sufficiently small, we have 

I A - (D21f)(x, y) I < e 

for all (x, y) e Q. Thus 

by (95). Fix h, and let k--. 0. Since D 2f exists in E, the last inequality 
implies that 

I 
1 (D2 /)(a + h, b) - (D2 /)(a, b) 

h -A ~B. 

Since e was arbitrary, and since (97) holds for all sufficiently small 
h =1- 0, it follows that (D12/)(a, b) =A. This gives (96). 

DIFFERENTIATION OF INTEGRALS 

Suppose qJ is a function of two variables which can be integrated with respect 
to one and which can be differentiated with respect to the other. Under what 
conditions will the result be the same if these two limit processes are carried out 
in the opposite order? To state the question more precisely: Under what 
conditions on qJ can one prove that the equation 

d b b 0(/J 

d 
J qJ(x, t) dx = J -;- (x, t) dx 

t a a ut 
(98) 

is true? (A counter example is furnished by Exercise 28.) 
It will be convenient to use the notation 

(99) qJt(x) = qJ(X, t). 

Thus qJt is, for each t, a function of one variable. 

9.42 Theorem Suppose 

(a) qJ(x, t) is defined for a ~ x =::;; b, c ~ t =::;; d; 
(b) IX is an increasing function on [a, b]; 
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(c) qJ' e &l(et) for every t e [c, d]; 
(d) c < s < d, and to eoety E > 0 COli esponds a c5 > 0 suclz that 

I (D2 rp)(x, t) (D2 rp)(x, s) I < e 

for aU x e [a, b] and for aUt € (s "' s + "). 

Define 

(100) f(t) = f cp(x, t) det(x) (c ~ t ~d). 
a 

Then ( 0 2 cp)s e .~(ct), f' (s) exists, and 

(101) f'(s) J (D2 cp)(x, s) drx(x). 
a 

Note that (c) simply asserts the existence of the integrals (100) for all 
t e [c, d]. Note also that (d) certainly holds whenever D 2 qJ is continuous on the 
rectangle on which qJ is defined. 

(102) 

(103) 

Proof Consider the difference quotients 

1/J(x, t) = cp(x, t)- cp(x, s) 
t-s 

for 0 < It- sl <b. By Theorem 5.10 there corresponds to each (x, t) a 
number u between s and t such that 

1/J(x, t) = (D2 cp)(x, u). 

Hence (d) implies that 

I 1/J(x, t)- (D2 cp)(x, s)l < E 

Note that 

(a~ x ~ b, 0 < it- si <b). 

f(t) - /(s) = Jb 1/J(x, t) da(x). 
f- S a 

By (102), 1/J'--.. (D2 cp)s, uniformly on [a, b], as t--.. s. Since each 
1/J' e &l( a), the desired conclusion follows from (1 03) and Theorem 7 .16. 

9.43 Example One can of course prove analogues of Theorem 9.42 with 
(- oo, oo) in place of [a, b]. Instead of doing this, let us simply look at an 
example. Define 

(l04) /(t) = Joo e-x2 cos (xt) dx 
-oo 
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and 

(105) g(t) = - J xe-x
2 sin (xt) dx, 

for - oo < t < oo. Both integrals exist (they converge absolutely) since the 
absolute values of the integrands are at most exp (- x 2

) and I xI exp (- x 2
), 

respectively. 
Note that g is obtained from/by differentiating the integrand with respect 

to t. We clatm that] ts dtfterentJable and that 

(106) j'(t)- g(t) ( oo < t < oo). 

To prove this, let as first examine the difference quotients of the cosine. 
if P > 0, then 

COS (IX + p) -COS IX • 1 f11.+JJ . . 
(107) p + sm IX = p 11. (sm IX - sm t) dt. 

Since I sin IX - sin t I :5:: It - IX I, the right side of (1 07) is at most P/2 in absolute 
value; the case P < 0 is handled similarly. Thus 

(108) cos (IX + p) - cos IX • I p I p + sm IX < 

for all P (if the left side is interpreted to be 0 when P = 0). 
Now fix t, and fix h ::1- 0. Apply (108) with IX = xt, P = xh; it follows from 

(104) and (105) that 

f(t + h1- f(t)- g(t) :5:: I hI J :oo x2e-x2 dx. 

When h-+ 0, we thus obtain (106). 
Let us go a step further: An integration by parts, applied to (1 04), shows 

that 

(109) f(t) = 2Joo xe-x2 sin (xt) dx. 
-oo f 

Thus tf(t) = - 2g(t), and (106) implies now that f satisfies the differential 
equation 

(110) 2/'(t) + tf(t) = 0. 

If we solve this differential equation and use the fact that /(0) = J;, (see Sec. 
8.21), we find that 

(111) f(t) = J1t exp (-
1
:). 

The integral (104) is thus explicitly determined. 
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EXERCISES 

1. If Sis a nonempty subset of a vector space X, prove (as asserted in Sec. 9.1) that 
the span of S is a vector space. 

2. Prove (as asserted m Sec. 9.6) that BA ts linear If A and Bare lmear transformations. 
Prove also that A- 1 is linear and invertible. 

3. Assume A E L(X, Y) and Ax= 0 only when x = 0. Prove that A is then 1-1. 

4. Prove (as asserted in Sec. 9.30) that null spaces and ranges of linear transforma
tions are vector spaces. 

S. Prove that to every A E L(R", R 1
) corresponds a unique y E R" such that Ax= x •y. 

Prove also that IIA II = I y J. 
Hint: Under certain conditions, equality holds in the Schwarz inequality. 

6. If /(0, 0) = 0 and 

xy 
l(x, Y) = x2 + y2 if (x, y) ::/== (0, 0), 

prove that (Dl/)(x, y) and (D2j)(x, y) exist at every point of R 2 , although I is 
not continuous at (0, 0). 

7. Suppose that I is a real-valued function defined in an open set E c R", and that 
the partial derivatives D 1/, ••• , Dnf are bounded in E. Prove that f is continuous 
in E. 

Hint: Proceed as in the proof of Theorem 9.21. 

8. Suppose that f is a differentiable real function in an open set E c R", and that f 
has a local maximum at a point x E E. Prove that /'(x) = 0. 

9. If f is a differentiable mapping of a connected open set E c R" into Rm, and if 
f'(x) = 0 for every x E E, prove that f is constant in E. 

10. If /is a real function defined in a convex open set E c R", such that (D1/)(x) = 0 
for every x E E, prove that /(x) depends only on X2, ••• , Xn. 

Show that the convexity of E can be replaced by a weaker condition, but 
that some condition is required. For example, if n = 2 and E is shaped like a 
horseshoe, the statement may be false. 

11. If /and g are differentiable real functions in R", prove that 

V'(/g) =JV'g + g V'f 

and that V'(l /I) = -1- 2V' f wherever I::/== 0. 

12. Fix two real numbers a and b, 0 <a< b. Define a mapping f = (/t,/2 ,/J) of R 2 

into R 3 by 

.f1(s, t) = (b +a cos s) cost 

l2(s, t) = (b +a cos s) sin t 

/J(s, t) =a sins. 
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Describe the range K of f. (It is a certain compact subset of R 3 
.) 

(a) Show that there are exactly 4 points p E K such that 

Find these points. 
(b) Determine the set of all q E K such that 

(c) Show that one of the points p found in part (a) corresponds to a local maxi 
mum of lh one corresponds to a local minimum, and that the other two are 
neither (they are so-called "saddle pomts"). 

Which of the points g found in part (b) correspond to maxima or minima? 
(d) Let ,\ be an irrational real number, and define g(t) = f(t, At). Prove that g is a 
1-1 mapping of R 1 onto a dense subset of K. Prove that 

I g'(t) 1 2 = a2 + A2(b +a cos t) 2
• 

13. Suppose f is a differentiable mapping of R 1 into R 3 such that I f(t) I= 1 for every t. 
Prove that f'(t) ·f(t) = 0. 

Interpret this result geometrically. 

14. Define 1(0, 0) = 0 and 

x3 
l(x, Y) = 2 + 2 

X y 
if (x, y) ::/== (0, 0). 

(a) Prove that DI}'and Dd are bounded functions in R 2
• (Hence I is continuous.) 

(b) Let u be any unit vector in R 2
• Show that the directional derivative (Du/)(0, 0) 

exists, and that its absolute value is at most 1. 
(c) Let y be a differentiable mapping of R 1 into R 2 (in other words, y is a differ
entiable curve in R 2

), with y(O) = (0, 0) and I y'(O) I> 0. Put g(t) = l(y(t)) and 

prove that g is differentiable for every t E R 1
• 

If y E C6', prove that g E C6'. 
(d) In spite of this, prove that I is not differentiable at (0, 0). 

Hint: Formula (40) fails. 

15. Define 1(0, 0) = 0, and put 

4 6 2 

/( ) 
2 2 2 2 xy 

X, Y = X + Y - X Y- (x4 + y2)2 

if (x, y) ::/== (0, 0). 
(a) Prove, for all (x, y) E R 2

, that 

4x4y2 < (x4 + y2)2. 

Conclude that I is continuous. 
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(b) For 0 < 8:::;;: 27T, - oo < t < oo, define 

g9(t) = f(t cos 8, t sin 8). 

Show that g9(0) = 0, g;(O) = 0, g;(O) = 2. Each g9 has therefore a strict local 
minimum at t - 0. 

In other words, the restriction off to each line through (0, 0) has a strict 
local minimum at (0, 0). 
(c) Show that (0, 0) is nevertheless not a local minimum for/, since f(x, x 2

) x 4
• 

16. Show that the continuity of f' at the point a is needed in the inverse function 
theorem, even in the case n = 1 : If 

f(t) = t + 2t 2 sin (~) 

for t ::/== 0, and /(0) = 0, then /'(0) = 1, /' is bounded in ( -1, 1), but f is not 
one-to-one in any neighborhood of 0. 

17. Let f = (/1,/2) be the mapping of R 2 into R 2 given by 

/1(x, y) =ex cosy, 

(a) What is the range of/? 
(b) Show that the Jacobian of /is not zero at any point of R 2

• Thus every point 
of R 2 has a neighborhood in which f is one-to-one. Nevertheless, f is not one-to
one on R 2

• 

(c) Put a = (0, 77/3), b =/(a), let g be the continuous inverse of f, defined in a 
neighborhood of b, such that g(b) = a. Find an explicit formula for g, compute 
f'(a) and g'(b), and verify the formula (52). 
(d) What are the images under f of lines parallel to the coordinate axes? 

18. Answer analogous questions for the mapping defined by 

v = 2xy. 

19. Show that the system of equations 

3x + y - z + u2 = 0 

x-y+2z+u=0 

2x + 2y - 3z + 2u = 0 

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms 
of x; but not for x, y, z in terms of u. 

20. Take n = m = 1 in the implicit function theorem, and interpret the theorem (as 
well as its proof) graphically. 

21. Define /in R 2 by 

f(x, y) = 2x3 
- 3x2 + 2y3 + 3y2

• 

(a) Find the four points in R 2 at which the gradient off is zero. Show that f has 
exactly one local maximum and one local minimum in R 2 • 
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(b) Let S be the set of alJ (x, y) e R 2 at which f(x, y) = 0. Find those points of 
S that have no neighborhoods in which the equation f(x, y) = 0 can be solved for 
y in terms of x (or for x in terms of y). Describe S as precisely as you can. 

22. Give a similar discussion for 

f(x, y) = 2x3 + 6xy2 - 3x2 + 3y2
• 

23. Define/in R 3 by 

Show that f(O, 1, -1) = 0, (D1/)(0, 1, -1) =F 0, and that there exists therefore a 
differentiable function g in some neighborhood of (1, 1) in R 2 , such that 
g(1, -1) = 0 and 

f(g(yh Y2), Yh Y2) = 0. 

Find (Dlg)(1, -1) and (D2g)(1, -1). 
24. For (x, y) =F (0, 0), define f = ([t,/2) by 

Compute the rank of f'(x, y), and find the range of f. 
25. Suppose A e L(R", Rm), let r be the rank of A. 

(a) Define S as in the proof of Theorem 9.32. Show that SA is a projection in R" 
whose null space is .;V(A) and whose range is af(S). Hint: By (68), SASA =SA. 

(b) Use (a) to show that 

dim .;V(A) + dim at( A)= n. 

26. Show that the existence (and even the continuity) of Duf does not imply the 
existence of D1f. For example, letf(x, y) = g(x), whereg is nowhere differentiable. 

27. Put/(0, 0) = 0, and 

if (x, y) =F (0, 0). Prove that 
(a) /, D1f, D2f are continuous in R 2; 

(b) D12fand D21/exist at every point of R 2
, and are continuous except at (0, O); 

(c) (Duf)(O, 0) = 1, and (D21/)(0, 0) = -1. 
28. For t ~ 0, put 

<p(x, I)= {: x + 2VI 

and put cp(x, t) = -cp(x, It I) if t < 0. 

<o :::::x :::::vi) 
<vi :::::x :::::2vl> 
(otherwise), 
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Show that cp is continuous on R 2
, and 

(D2 p)(x, 0) = 0 

for all x. Define 

f(t)- J 1 

r:p(x, t) dx 
-1 

Show thatf(t) t if It I< 1. Hence 

]'(0) =I= J (Dzcp)(x, 0) dx. 
-1 

29. Let E be an open set in R". The classes ~'(E) and ~H(E) are defined in the text. 
By induction, ~~k>(£) can be defined as follows, for all positive integers k: To say 
that/ e ~<">(£)means that the partial derivatives D1!. ... , Dnfbelong to~<" -1)(£). 

Assume fe ~<">(£)~ and show (by repeated application of Theorem 9.41) 

that the kth-order derivative 

D1112 ... '"f= D,1D12 ... D,"f 

is unchanged if the subscripts i1o •.. , i" are permuted. 
For instance, if n > 3, then 

D1213/ = D3uzf 

for every fe ~<4 >. 

30. Let f e ~<m>(£), where E is an open subset of R". Fix a e E, and suppose x e R" 
is so close to 0 that the points 

p(t) =a+ tx 

lie in E whenever 0 < t ::;;: 1. Define 

h(t) = f(p(t)) 

for all t e R1 for which p(t) e E. 
(a) For 1 ::;;: k ::;;: m, show (by repeated application of the chain rule) that 

h<">(t) = L (D11 ... '"f)(p(t)) X11 ... Xt". 

The sum extends over all ordered k-tuples (i1o ... , i") in which each i, is one of the 
integers 1, ... , n. 
(b) By Taylor's theorem (5.15), 

m -l h<">(O) h<m>(t) 
h(1)= :E--+-

k-0 k! m! 

for some t e (0, 1). Use this to prove Taylor's theorem inn variables by showing 
that the formula 
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represents f(a + x) as the sum of its so-called "Taylor polynomial of degree 
m 1," plus a 1 emainde1 that satisfies 

lim I I m- 1 = o. 
x-+0 X 

Each of the inner sums extends over all ordered k-tuples (ih ... , ik), as in 
part (a); as usual, the zero-order denvahve of j Is simply], so that the constant 
term of the Taylor polynomial off at a is {(a). 

(c) Exercise 29 shows that repetition occurs in the Taylor polynomial as written in 
pa1t (b). For instance, Du3 occun three times, as Du3, Dt3h D3u· The sum of 
the corresponding three terms can be written in the form 

3(D~ DJ/)(a)x~ X3. 

Prove (by calculating how often each derivative occurs) that the Taylor polynomial 
in (b) can be written in the form 

~(D~1 "'D~"/)(a) 51 sn 
"'- I ", I Xt .. , Xn, 

S1. Sn. 

Here the summation extends over all ordered n-tuples (sh ... , sn) such that each 
s, is a nonnegative integer, and s1 + · · · + sn < m - 1 . 

31. Suppose fe ~<J> in some neighborhood of a point a e R 2
, the gradient off is 0 

at a, but not all second-order derivatives of I are 0 at a. Show how one can then 
determine from the Taylor polynomial off at a (of degree 2) whether f has a local 
maximum, or a local minimum, or neither, at the point a. 

Extend this to R" in place of R2
• 



10 
INTEGRATION OF DIFFERENTIAL FORMS 

Integration can be studied on many levels. In Chap. 6, the theory was developed 
for reasonably well-behaved functions on subintervals of the real line. ln 
Chap. 11 we shall encounter a very highly developed theory of integration that 
can be applied to much larger classes of functions, whose domains are more 
or less arbitrary sets, not necessarily subsets of Rn. The present chapter is 
devoted to those aspects of integration theory that are closely related to the 
geometry of euclidean spaces, such as the change of variables formula, line 
integrals, and the machinery of differential forms that is used in the statement 
and proof of then-dimensional analogue of the fundamental theorem of calculus, 
namely Stokes' theorem. 

INTEGRATION 

10.1 Definition Suppose Jk is a k-cell in Rk, consisting of all 

x = (x1, ••• , xk) 
such that 
(1) (i = 1, ... ' k), 
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Ji is the j-cell in R i defined by the fit st j inequalities (1), and f is a 1 cal con-
tinuous function on Jk. 

Putf=ik, and definei'k_ 1 on Jk 1 by 

The uniform continuity of fk on Jk shows that fi 1 is continuous on Jk-t. 
Hence we can repeat this process and obtain functions jj, continuous on Jl, such 
that]j_ 1 Is the integral offj, with respect to x1 , over [a1 , b1]. After k steps we 
arrive at a number fo, which we call the integral off over [k; we write it in the 
form 

(2) JJk f(x) dx or I f. Jk 

A priori, this definition of the integral depends on the order in which the 
k integrations are carried out. However, this dependence is only apparent. To 
prove this, let us introduce the temporary notation L(f) for the integral (2) 
and L'(f) for the result obtained by carrying out the k integrations in some 
other order. 

10.2 Theorem For every f E ~(Jk), L(f) = L'(f). 

Proof If h(x) = h1 (x1) • • • hk(xk), where h1 E ~([a1 , b1]), then 

k fbt 
L(h) = n hi(xJ dxi = L'(h). 

i= 1 Ot 

lf Sll is the set of all finite sums of such functions h, it follows that L(g) = 

L'(g) for all g E Sll. Also, Sll is an algebra of functions on Jk to which the 
Stone-Weierstrass theorem applies. 

k 

Put v = n (bi- aJ lf/E ~(Jk) and B > 0, there exists g Ed such 
1 

that II/- gil < e/ V, where 11!11 is defined as max lf(x) I (x E Jk). Then 
IL(f- g)j < e, IL'(f- g) I < e, and since 

L(f)- L'(f) = L(f- g)+ L'(g- f), 

we conclude that I L(f) - L'(f) I < 2e. 
In this connection, Exercise 2 is relevant. 

10.3 Definition The support of a (real or complex) function f on Rk is the 
closure of the set of all points x E Rk at which f(x) =1: 0. Iff is a continuous 
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function with compact support, let Jk be any k-cell which contains the support 
of J, and define 

(3) I t= J f. 
Rk Jk 

The integral so defined is evidently independent of the choice of Ik, provided 
only that Jk contains the support of f. 

It is now tempting to extend the definition of the integra] over Rk to 

functions which are limits (in some sense) of continuous functions with compact 
support. We do not want to discuss the conditions under which this can be 
done; the proper setting for this question is the Lebesgue integral. We shall 
merely describe one very simple example which will be used in the proof of 
Stokes' theorem. 

10.4 Example Let Qk be the k-simplex which consists of all points x = 
(x1, ... , xk) in Rk for which x 1 + .. · + xk < I and xi~ 0 fOi i = I, ... , k. If 
k = 3, for example, Qk is a tetrahedron, with vertices at 0, eb e2 , e3 • If/ e ~( Qk), 
extend f to a function on Jk by setting f(x) = 0 off Qk, and define 

(4) 

Here Jk is the "unit cube" defined by 

0:::;;; Xt:::;;; I (I < i:::;;; k). 

Since f may be discontinuous on Ik, the existence of the integral on the 
right of ( 4) needs proof. We also wish to show that this integral is independent 
of the order in which the k single integrations are carried out. 

To do this, suppose 0 < D < 1, put 

I (t:::;;; 1 -D) 

(5) () 
(I - t) 

cp t = 
D 

(1 - D < t:::;;; 1) 

0 (1 < t), 
and define 

(6) F(x) = cp(x1 + · · · + xk)f(x) 

Then Fe ~(/k). 
Put y = (x1, ••• , xk_ 1), x = (y, xk). For each y e Jk-1, the set of all xk 

such that F(y, xk) =I= f(y; xk) is either empty or is a segment whose length does 
not exceed tJ. Since 0 :::;;; cp :::;;; 1, it follows that 

(7) 
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where 11/11 has the same meaning as in the proof of Theorem 10.2, and Fk-tt 

h- 1 are as in Definition 10.1. 
As{,--+ 0, (7) exhihits_h 1 as a uniform limit of a sequence of continuous 

functions. Thusfk- 1 e ~(/k- 1 ), and the further integrations present no problem. 
This proves the existence of the integral (4). Moreover, (7) shows that 

(8) I J,fCx) dx - J,JCx) dx I < <lllfll. 

Note that (8) is true, regardless of the order in which the k single integrations 
are carried out. Since Fe ~(/k), JF is unaffected by any change in this order. 
Hence (8) shows that the same is true of Jf 

This completes the proof. 
Our next goal is the change of variables formula stated in Theorem 10.9. 

To facilitate its proof, we first discuss so-called primitive mappings, and parti
tions of unity. Primitive mappings will enable us to get a clearer picture of the 
local action of a ~'-mapping with invertible derivative, and partitions of unity 
are a very useful device that makes it possible to use local information in a 
global setting. 

PRIMITIVE MAPPINGS 

10.5 Definition If G maps an open set E c Rn into Rn, and if there is an 
integer m and a real function g with domain E such that 

(9) G(x) = L xi ei + g(x)em (x e £), 
i;l:m 

then we call G primitive. A primitive mapping is thus one that changes at most 
one coordinate. Note that (9) can also be written in the form 

(10) G(x) = X + [g(x) - xmlem. 

If g is differentiable at some point a e £, so is G. The matrix [ocii] of the 
operator G'(a) has 

(11) (D1g)(a), ... , (Dm g)(a), ... , (Dn g)( a) 

as its mth row. For j #: m, we have ocJi = 1 and ociJ = 0 if i #: j. The Jacobian 
of G at a is thus given by 

(12) JG(a) = det[G'(a)] = (Dm g)(a), 

and we see (by Theorem 9.36) that G'(a) is invertible if and only if(Dm g)(a) #: 0. 
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10.6 Definition A linear operator B on Rn that interchanges some pair of 
members of the standard basis and leaves the others fixed will be called a jl1p. 

For example, the flip B on R4 that interchanges e2 and e4 has the form 

or, equivalently, 

Hence B can also be thought of as interchanging two of the coordinates, rather 
than two basts vectors. 

In the proof that follows, we shall use the projections P 0 , ••• , Pn in Rn. 
defined by P 0 x = 0 and 

(15) 

for 1 :::;; m :::;; n. Thus P m is the projection whose range and null space are 
spanned by {e1, ••• , em} and {em+ 1, ... , en}, respectively. 

10.7 Theorem Suppose F is a CC'-mapping of an open set E c Rn into Rn, 0 E E, 
F(O) = 0, and F'(O) is invertible. 

Then there is a neighborhood of 0 in Rn in which a representation 

(16) F(x) = B .. · B G o • .. o G (x) 1 n-1 n 1 

is valid. 
In (16), each Gi is a primitive CC'-mapping in some neighborhood of 0; 

Gi(O) = 0, G~(O) is invertible, and each Bi is either a flip or the identity operator. 

Briefly, (16) represents F locally as a composition of primitive mappings 
and flips. 

(17) 

(18) 

(19) 

Proof Put F = F 1. Assume 1 :::;; m :::;; n - 1, and make the following 
induction hypothesis (which evidently holds form = 1): 

and 
Vm is a neighborhood ofO, Fm E CC'(Vm) ,Fm(O) = 0, F~(O) is invertible, 

Pm-1Fm(x) = pm-1 X 

By (17), we have 

n 

Fm(x) = Pm_ 1X + L oci(x)ei, 
i=m 

where ocm, ... , ocn are real CC'-functions in Vm. Hence 
n 

F~(O)em = L (Dm oc 1)(0)e1 • 
i=m 
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(20) 

(21) 

(22) 

(23) 

(24) 

Since F:n(O) is invertible, the left side of (19) is not 0, and therefore there 
is a k such that m < k:::;; n and (Dm ock)(O) =I= 0. 

Let Bm be the flip that interchanges m and this k (ifk m, Bm is the 
identity) and define 

Then Gm e ~'(Vm), Gm is primitive, and G~(O) is invertible, since 
(Dm ock)(O) =I= 0. 

The in"Vetse function theorem shows therefore that there is an open 
set um' with 0 E Um c Vm' such that Gm is a 1-1 mapping of um onto a 
neighborhood Vm+ 1 of 0, in which Gm 1 is continuously differentiable. 
Define Fm + 1 by 

Then Fm+ 1 e ~'(Vm+ 1 ), Fm+ 1(0) = 0, and F:n+ 1(0) is invertible (by 
the chain rule). Also, for X E u m' 

so that 

PmFm+ 1(Gm(x)) =PmBmFm(x) 

= Pm[Pm_1X + ock(x)em + · · ·] 
=P m- 1X + ock(x)em 

=PmGm(X) 

Our induction hypothesis holds therefore with m + 1 in place of m. 
[In (22), we first used (21), then (18) and the definition of Bm, then 

the definition of P m, and finally (20).] 
Since Bm Bm =I, (21 ), with y = Gm(x), is equivalent to 

If we apply this with m = 1, ... , n - 1, we successively obtain 

F=F1=B1F2oG1 

= B1B2 F 3 o G2 o G1 = ... 

= B1 · · · Bn-1Fn o Gn-1 o · ·' o G1 

in some neighborhood of 0. By (17), F n is primitive. This completes the 
proof. 
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PARTITIONS OF UNITY 

10.8 Theorem Suppose K is a compact subset of Rn, and {V 11} is an open cover 
of K. Then there exist functions 1/11, ••• , 1/Js e rc(Rn) such that 

(a) 0 =:::; 1/li =:::; 1 for 1 ~ i =:::; s; 
(b) each 1/1 1 has its support in some V11 , and 
(c) 1/11(x) + · · · + 1/Js(x) = 1 for every x e K. 

Because of (c), {1/Ji} is called a partition of unity, and (b) is sometimes 
exp1essed by saying that {r/1 i} is subordinate to the covet { J-r11}. 

Corollary Iff E rc(Rn) and the support off lies in K, then 

(25) 

Each 1/1 if has its support in some V 11 • 

The point of (25) is that it furnishes a representation off as a sum of 
continuous functions 1/1 if with "small" supports. 

(26) 

(27) 

(28) 

(29) 

(30) 

Proof Associate with each x e K an index a(x) so that x e V«(x). The~ 
there are open balls B(x) and W(x), centered at x, with 

B(x) c W(x) c W(x) c V«<x>. 

Since K is compact, there are points x 1, ••• , xs inK such that 

K c B(x1) u · · · u B(xs). 

By (26), there are functions cp 1, ••• , CfJs e rc(Rn), such that cp 1(x) = 1 on 
B(xi), cpi(x) = 0 outside W(xt}, and 0 =:::; cp1(x) =:::; 1 on Rn. Define 1/11 = cp1 

and 

for i = 1, ... , s - 1. 
Properties (a) and (b) are clear. The relation 

"'1 + ... +1/Jt = 1 - (1 - CfJ1) •.. (1 - CfJt) 

is trivial for i = 1. If (29) holds for some i < s, addition of (28) and (29) 
yields (29) with i + 1 in place of i. It follows that 

s s 

I 1/1 ~<x) = 1 - n u - cpt<x)J 
1=1 i=1 

lf x e K, then x e B(x1) for some i, hence cp 1(x) = 1, and the product in 
(30) is 0. This proves (c). 
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CHANGE OF VARIABLES 

We can now describe the effect of a change of variables on a multiple integral. 
For simplicity, we confine outselves hete to continuous functions with compact 
support, although this is too restrictive for many applications. This is illustrated 
by Exercises 9 to 13. 

suez nat JT~Jur an x e. 1. .rzs a contmuous]unctzon on w ose support 
is compact and lies in T(E), then 

(31) f f(y) dy = f f(T (x)) I J T(x) I dx. 
JRk J Rk 

We recall that 'r is the Jacobian of T The assumption JT(x) :f 0 implies, 
by the inverse function theorem, that T -t is continuous on T (E), and this 
ensures that the integrand on the right of (31) has compact support in E 
(Theorem 4.14). 

The appearance of the absolute value of JT(x) in (31) may call for a com
ment. Take the case k = 1, and suppose Tis a 1-1 ctl -mepping of R 1 onto R 1• 

Then JT(x) = T 1(x); and if Tis increasing, we have 

(32) f f(y) dy = J f(T(x))T 1(x) dx, 
Rl Rl 

by Theorems 6.19 and 6.17, for all continuous/with compact support. But if 
T decreases, then T 1(x) < 0; and iff is positive in the interior of its support, 
the left side of (32) is positive and the right side is negative. A correct equation 
is obtained if T I is replaced by I T I I in (32). 

The point is that the integrals we are now considering are integrals of 
functions over subsets of Rk, and we associate no direction or orientation with 
these subsets. We shall adopt a different point of view when we come to inte
gration of differential forms over surfaces. 

Proof It follows from the remarks just made that (31) is true if Tis a 
primitive ct~-mapping (see Definition 10.5), and Theorem 10.2 shows 
that (31) is true if Tis a linear mapping which merely interchanges two 
coordinates. 

then 
If the theorem is true for transformationsP, Q, and if S(x) = P(Q(x)), 

f f(z) dz = f f(P(y)) I J p(y) I dy 

= J /(P(Q(x)))IJp(Q(x))IIJa(x)l dx 

= J f(S(x)) I J5(x) I dx, 
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since 

J p(Q(x))Ja(x) = det P'(Q(x)) det Q'(x) 

= det P'(Q(x))Q'(x) = det S'(x) = J5(x), 

by the multiplication theorem for determinants and the chain.rule. Thus 
the theorem is also true for S 

Each point a E E has a neighborhood U c E in which 

(33) T(x) = T(a) + B1 • • • Bk-tGk o Gk-t o • • • o G1(x-a), 

where Gi and Bi are as in Theorem 10.7. Setting V = T(U), it follows 
that (31) holds If the support off hes m V. Thus: 

Each point y E T(E) lies in an open set V, c T(E) such that (31) holds 
for all continuous functions whose support lies in VY. 

Now letfbe a continuous function with compact support K c T(E). 
Since { Vy} covers K, the Corollary to Theor~m 10.8 shc'VS that f = 'i:.t/1 if, 
where each 1/J i is continuous, and each 1/J i has its support in some V y· 

Thus (31) holds for each 1/Jif, and hence also for their sumf 

DIFFERENTIAL FORMS 

We shall now develop some of the machinery that is needed for the n-dimen
sional version of the fundamental theorem of calculus which is usually called 
Stokes' theorem. The original form of Stokes' theorem arose in applications of 
vector analysis to electromagnetism and was stated in terms of the curl of a 
vector field. Green's theorem and the divergence theorem are other special 
cases. These topics are briefly discussed at the end of the chapter. 

It is a curious feature of Stokes' theorem that the only thing that is difficult 
about it is the elaborate structure of definitions that are needed for its statement. 
These definitions concern differential forms, their derivatives, boundaries, and 
orientation. Once these concepts are understood, the statement of the theorem 
is very brief and succinct, and its proof presents little difficulty. 

Up to now we have considered derivatives of functions of several variables 
only for functions defined in open sets. This was done to avoid difficulties that 
can occur at boundary points. It will now be convenient, however, to discuss 
differentiable functions on compact sets. We therefore adopt the following 
convention: 

To say that f is a ~'-mapping (or a ~"-mapping) of a compact set 
D c Rk into Rn means that there is a ~'-mapping (or a ~"-mapping) g of 
an open set W c Rk into Rn such that D c W and such that g(x) = f(x) for 
all XED. 
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10.10 Definition Suppose E is an open set in Rn. A k-surface in E is a CfJ'-
mapping <I> from a compact set D c Rk into E. 

D is called the parameter domain of <1>. Points of D will be denoted by 

We shall confine ourselves to the simple situatiOn m whtch D is either a 
k-cell or the k-simplex Qk described in Example 10 4. The reason for this is 
that we shall have to integrate over D, and we have not yet discussed integration 
over m01e complicated subsets of Rk. It will be seen that this restriction on D 
(which will be tacitly made from now on) entails no significant loss of generality 
in the resulting theory of differential forms. 

We stress that k-surfaces in E are defined to be mappings into E, not 
subsets of E. This agrees with our earlier definition of curves (Definition 6.26). 
In fact, !-surfaces are precisely the same as contmuously dtfterenttable curves. 

10.11 Definition Suppose E is an open set in Rn. A differentia/form of order 
k;;::: 1 in E (briefly, a k-form in E) is a function w, symbolically represented by 
the sum 

(34) 

(the indices i1, ... , ik range independently from 1 to n), which assigns to each 
k-surface <I> in E a number w(<l>) = Jcp w, according to the rule 

(35) f w = f L ail ••• ;k(<l>(u)) o(xit' ... 'X;k) du, 
lP D O(Ul, ... , Uk) 

where D is the parameter domain of <1>. 
The functions a; 1 ••• ik are assumed to be real and continuous in E. If 

l/>1, ••• , <Pn are the components of <1>, the Jacobian in (35) is the one determined 
by the mapping 

(ub ... , uk)--+ (l/Ji1(u), ... , ¢;k(u)). 

Note that the right side of (35) is an integral over D, as defined in Defini
tion 10.1 (or Example 10.4) and that (35) is the definition of the symbol Jill w. 

A k-form w is said to be of class CfJ' or~" if the functions a it ... ik in (34) 
are all of class ~' or ~". 

A 0-form in E is defined to be a continuous function in E. 

10.12 Examples 
(a) Let y be a 1-surface (a curve of class ~') in R 3 , with parameter 
domain [0, 1]. 

Write (x, y, z) in place of (x1, x 2 , x3), and put 

w = xdy+ydx. 
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Then 

1 f w- f [1'tU)1'~(t) + 1'2(t)v~(t)] dt- 1'1(1)yl(1) Yl(O)yl(O). 
y 0 

Note that m thts example Jy w depends only on the tmtial pomt y(O) 
and on the end point y(l) of y. In particular, JY w = 0 for every closed 
curve y. (As we shall see later, this is true for every 1-form w which is 
exac. 

Integrals of 1-forms are often called line integrals. 
(b) Fix a> 0, b > 0, and define 

y(t) =(a cost, b sin t) (0 ~ t ~ 2n), 

so that y is a closed curve in R 2
• (Its range is an ellipse.) Then 

27t 

J x dy = J ab cos2 t dt = nab, 
y 0 

whereas 
27t J y dx = - J ab sin2 t dt = -nab. 

y 0 

Note that sy X dy is the area of the region bounded by y. This is a 
special case of Green's theorem. 
(c) Let D be the 3-cell defined by 

0 ~ e ~ n, 

Define cl>(r, e, cp) = (x, y, z), where 

Then 

x = r sin e cos cp 
y = r sin e sin cp 
z = r cos e. 

0 ~ cp ~ 2n. 

o(x, y, z) 2 • 

J(J)(r, e, cp) = o(r, e, cp) = r sm e. 

Hence 

Note that ci> maps D onto the closed unit ball of R 3
, that the mapping 

is 1-1 in the interior of D (but certain boundary points are identified by 
cl>), and that the integral (36) is equal to the volume of cl>(D). 
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10.13 Elementary properties Let w, w1 , w2 be k-forms in E. We write w1 - w
2 

if and only if w1(<1>) = w2 (<1>) for every k-surface <I> in E. In particular, w = 0 
means that w(tl>) 0 for every k-sm face <I> in E. If c is a 1 eal numbet, then 
cw is the k-form defined by 

(37) r cw r c J w, 

and w = w1 + w2 means that 

(38) 

for every k-surface <I> in E. As a special case of (37), note that - w is defined so 
that 

(39) J~(-w)=- J~ dw. 

Consider a k-form 

(40) w = a(x) dx. A • • • A dx. II lk 

and let w be the k-form obtained by interchanging some pair of subscripts in 
( 40). If (35) and (39) are combined with the fact that a determinant changes 
sign if two of its rows are interchanged, we see that 

(41) 

(42) 

ii5 = -w. 

As a special case of this, note that the anticommutative relation 

dxi A dxi = -dxi A dxi 

holds for all i and j. In particular, 

(43) (i = 1, ... , n). 

More generally, let us return to (40), and assume that i, =is for some 
r :F s. If these two subscripts are interchanged, then w = w, hence w = 0, by 
(41). 

In other words, if w is given by (40), then w = 0 unless the subscripts 
i1 , ••• , ik are all distinct. 

If w is as in (34), the summands with repeated subscripts can therefore 
be omitted without changing w. 

It follows that 0 is the only k-form in any open subset of Rn, if k > n. 
The anticommutativity expressed by ( 42) is the reason for the inordinate 

amount of attention that has to be paid to minus signs when studying differential 
forms. 
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10.14 Basic k-forms If it, ... , ik are integers such that 1 ~ it < i2 < · · · 
< ik ~ n, and if I is the ordered k-tuple {i1, ••• , ik}, then we call I an increasing 
k-index, and we use the brief notation 

(44) dx-dx A"'Adx I i1 lk 

These forms dx1 are the so-called basic k-forms in Rn 

It is not hard to verify that there are precisely n!/k!(n- k)! basic k-forms 
in Rn, we shall make no use of this, however. 

Much more important is the fact that every k-form can be represented in 
terms of basic k-forms. To see this, note that every k-tuple{h, ... ,A} of distinct 
integers can be converted to an increasing k index J by a finite number of inter 
changes of pairs; each of these amounts to a multiplication by -1, as we saw 
m Sec. 10.13; hence 

(45) 

where e(h, ... ,A) is 1 or -1, depending on the number of interchanges that 
are needed. In fact, it is easy to see that 

(46) 

where sis as in Definition 9.33. 
For example, 

dxt A dx 5 A dx3 A dx2 = -dxt A dx2 A dx3 A dx5 

and 

dx4 A dx2 A dx3 = dx2 A dx3 A dx4 • 

If every k-tuple in (34) is converted to an increasing k-index, then we 
obtain the so-called standard presentation of w: 

(47) 

The summation in (47) extends over all increasing k-indices I. [Of course, every 
increasing k-index arises from many (from k!, to be precise) k-tuples. Each 
b 1 in (47) may thus be a sum of several of the coefficients that occur in (34).] 

For example, 

x1 dx2 A dx1 - x 2 dx 3 A dx2 + x 3 dx2 A dx3 + dxt A dx2 

is a 2-form in R 3 whose standard presentation is 

(I - xt) dxt A dx2 + (x2 + x3) dx2 A dx3 • 

The following uniqueness theorem is one of the main reasons for the 
introduction of the standard presentation of a k-form. 
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10.15 Theorem Suppose 

(48) ro = L b1(x) dx1 

is the standard presentation of a k-form m in an open set E c Rn lf ro - 0 in E, 
then b1(x) = 0 for every increasing k-index I and for every x E E. 

Note that the analogous statement would be false for sums such as (34), 
since, for example, 

(49) 

(50) 

Proof Assume, to reach a contradiction, that b Av) > 0 for some v e E 
and for some mcreasmg k-mdex J = {j1, ••• ,A}. Since bJ is continuous, 
there exists h > 0 such that b.:(x) > 0 for aJJ x e Rn whose coordinates 
satisfy I xi- vi I ~h. Let D be the k-cell in Rk such that u e D if and 
only if I uri ~ h for r = 1, ... , k. Define 

k 

<t>(u) = v + I ureir (u ED). 
r= t 

Then <I> is a k-surface in E, with parameter domain D, and b J(<l>(u)) > 0 
for every u e D. 

We claim that 

Jcp ro = JD bi<l>(u)) du. 

Since the right side of (50) is positive, it follows that ro(<l>) "I= 0. Hence 
(50) gives our contradiction. 

To prove (50), apply (35) to the presentation (48). More specifically, 
compute the Jacobians that occur in (35). By (49), 

o(xh, ... ' xik) = 1. 
o(ut, ... 'uk) 

For any other increasing k-index I :1: J, the Jacobian is 0, since it is the 
determinant of a matrix with at least one row of zeros. 

10.16 Products of basic k-forms Suppose 

(51) I= {it, ... 'ip}, J = Ut, ... ,jq} 

where 1 ~it < · · · < iP < n and 1 ~jt < · · · <jq ~ n. The product of the cor
responding basic forms dx1 and dxJ in Rn is a (p + q)-form in Rn, denoted by 
the symbol dx1 A dxJ, and defined by 

(52) dx1 A dxJ = dxi, A • • • A dx1p A dxh A • • • A dxiq. 
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If I and J have an element in common, then the discussion in Sec. 10.13 
shows that dx1 A dx1 = 0. 

If 1 and .I have no element in common, Jet us write [1, J] for the increasing 
(p + q)-index which is obtained by arranging the members of I u J in increasing 
order. Then dxu. 11 is a basic (p + q)-form. We claim that 

(53) dx1 i\ dx1 ( 1yx dx[l,JJ 

where cc is the number of differences j, i, that are negative. (The number of 
positive differences is thus pq- cc.) 

To prove (53), perform the following operatiOns on the numbers 

(54) 

Move i, to the right, step by step, until its right neighbor is larger than i,. 
The number of steps is the number of subscripts t such that i,<j,. (Note that 
0 steps are a distinct possibility.) Then do the same for i,_ 1, ••• , i1 • The total 
number of steps taken is cc. The final arrangement reached is [I, J]. Each step, 
when applied to the right side of (52), multiplies dx1 A dx1 by -1. Hence (53) 
holds. 

Note that the right side of (53) is the standard presentation of dx1 A dx1 • 

Next, let K = (k1, ••• , k,) be an increasing r-index in {1, ... , n}. We shall 
use (53) to prove that 

(55) 

If any two of the sets I, J, K have an element in common, then each side 
of (55) is 0, hence they are equal. 

So let us assume that I, J, K are pairwise disjoint. Let [/, J, K] denote 
the increasing (p + q + r )-index obtained from their union. Associate p with 
the ordered pair (J, K) and y with the ordered pair(/, K) in the way that cc was 
associated with (/, J) in (53). The left side of (55) is then 

( -1)~ dxr1• 11 A dxK = ( -1)~( -t)P+y dxr1• 1 , KJ 

by two applications of (53), and the right side of (55) is 

( -J)P dx1 A dx[J, K] = ( -t)P( -l)~+y dx[I, J, K]. 

Hence (55) is correct. 

10.17 Multiplication Suppose OJ and A. are p- and q-forms, respectively, in 
some open set E c Rn, with standard presentations 

(56) OJ = L b1(x) dx1 , 
I 

where I and J range over all increasing p-indices and over all increasing q-indices 
taken from the set {1, ... , n}. 
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Their product, denoted by the symbol w A A, is defined to be 

,J 

In this sum, /and !range independently over their possible values, and dx1 A dx3 

is as in Sec. 10.16. Thus w A A is a (p + q)-form in E. 
It Is qmte easy to see (we leave the details as an exercise) that the distribu

tive laws 

and 

hold, with respect to the addition defined in Sec. 10.13. If these distributive 
laws are combined with (55), we obtain the associative law 

(58) (w A A) A a= w A (A. A a) 

for arbitrary forms w, A, a in E. 
In this discussion it was tacitly assumed that p ;;::: 1 and q;;::: 1. The product 

of a 0-formfwith the p-form w given by (56) is simply defined to be the p-form 

fw = wf = 'L.f(x)b1(x) dx1• 
I 

It is customary to writefw, rather than/ A w, whenfis a 0-form. 

10.18 Differentiation We shall now define a differentiation operator d which 
associates a (k + 1)-form dw to each k-form w of class CC' in some open set 
EcRn. 

A 0-form of class CC' in E is just a real function f e CC'(E), and we define 

n 

(59) df= L (Dtf)(x) dxt. 
i= 1 

If w = Ib I(x) dx I is the standard presentation of a k-form w, and b I e CC'(E) 
for each increasing k-index I, then we define 

(60) 

10.19 Example Suppose E is open in Rn, fe CC'(E), and y is a continuously 
differentiable curve in E, with domain [0, 1]. By (59) and (35), 

1 n 

(61) f df= f L (Dtf)(y(t))y{(t) dt. 
y 0 1•1 
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By the chain rule, the last integrand is (f o y)'(t). Hence 

(62) f df- f(y(l )) /(y(O)), 

and we see that J Y dj ts the same for all y wtth the same trutial point and the same 
end point, as in (a) of Examp1e 1 0. 1 2 

Comparison with Example 10.12(b) shows therefore that the 1-form x dy 
is not the detivative of any 0-formf This could also be deduced from part (b) 
of the following theorem, since 

d(x dy) = dx A dy # 0. 

10.20 Theorem 

(63) 

(64) 

(a) If w and A. are k- and m-forms, respectively, of class CfJ' in E, then 

d(w A A.)= (dw) A A.+ ( -1)k w A dA.. 

(b) If w is of class~" in E, then d 2w = 0. 

Here d 2w means, of course, d(dw). 

Proof Because of (57) and (60), (a) follows if (63) is proved for the 
special case 

w =fdxb 

where J, g e CfJ'(E), dx I is a basic k-form, and dxJ is a basic m-form. [If 
k or m or both are 0, simply omit dx I or dxJ in (64); the proof that follows 
is unaffected by this.] Then 

w A A. = fg dx I A dx J. 

Let us assume that I and J have no element in common. [In the other 
case each of the three terms in (63) is 0.] Then, using (53), 

d(w A A.)= d(fg dxi A dxJ) =( -1Y' d(fg dx[l, Jl). 

By (59), d(fg) = f dg + g df Hence (60) gives 

d( w A A) = (- 1 rJ. (f dg + g df) A dxu. J] 

= (gdf + fdg) A dxi A dxJ. 

Since dg is a 1-form and dx I is a k-form, we have 

dg A dxi = (-1)kdxi A dg, 
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by ( 42). Hence 

= (dw) A A:+ (- 1 )"ro A fD., 

whtch proves (a). 
Note that the associative law (58) was used freely. 
Let us prove (b) first for a 0-form f e CC" : 

II 

- L: d(D1f) A dx1 
}= 1 

II 

= I (Dilf)(x) dx1 A dx1 • 
i,j= 1 

Since Duf = D11f (Theorem 9.41) and dx1 A dxJ = -dx1 A dxb we see 
that d 2f= 0. 

If ro = f dx 1 , as in (64), then dw = (df) A dx 1 • By (60), d(dx 1) = 0. 
Hence ( 63) shows that 

10.21 Change of variables Suppose E is an open set in R11
, Tis a CC' -mapping 

of E into an open set V c R"', and ro is a k-form in V, whose standard presenta
tion is 

(65) 

(We use y for points of V, x for points of E.) 
Let t 1, ••• , tm be the components of T: If 

Y = (y1, .. ·' Ym) = T(x) 

then y 1 = t1(x). As in (59), 
II 

(66) dt1 = I (D1 t 1)(x) dx1 (1 < i ~ m). 
J= 1 

Thus each dt1 is a 1-form in E. 
The mapping T transforms w into a k-form roT in E, whose definition is 

(67) roT= L: b J(T(x)) dt1, A • • • A dt1". 
I 

In each summand of (67), I= {i1, ... , ik} is an increasing k-index. 
Our next theorem shows that addition, multiplication, and differentiation 

of forms are defined in such a way that they commute with changes of variables. 



INTEGRATION OF DIFFERENTIAL FORMS 263 

10.22 Theorem Wzth E and 1' as zn Sec. 10.21, let ro and A: be k- and m-jorms 
in V, respectively. Then 

(a) (w + Ah- mr + lr ifk- m; 
(b) (ro A A.)r = Wr A Ar; 
( ) Q( ) (-d ) . " . ,. • ~· I T . ,. ' ~" 

Proof Part (a) follows immediately ftom the definitions. Pat t (b) is 
almost as obvious, once we realize that 

(68) (dyi
1 

A ·'' A dyi,.)r = dti 1 A ''' A dti,. 

(69) 

(70) 

regardless of whether {i1, ••• , ir} is increasing or not; (68) holds because 
the same number of mmus signs are needed on each side of (68) to produce 
increasing rearrangements. 

We turn to the proofof(c). If/is a 0-form of class~, in V, then 

fT(x) = /(T(x)), df = L (Dif)(y) dyi. 

By the chain rule, it follows that 

d(fT) = L (D1fT)(x) dx1 
j 

i 

= L L (Dif)(T(x))(D1 t;)(x) dx1 
J i 

= L (Dif)(T(x)) dti 
i 

= (df)r. 

If dy I= dyit A • • • A dyik, then (dy Ih = dtit A • • • A dtik, and Theorem 
10.20 shows that 

d((dy Ih) = 0. 

(This is where the assumption T e CC" is used.) 
Assume now that ro = f dy I. Then 

roT =fT(x) (dyi)r 

and the preceding calculations lead to 

d(wr) = d(fT) A (dyi)r = (df)r A (dyi)r 

= ((df) A dy Ih = (dro)r. 

The first equality holds by (63) and (70), the second by (69), the third by 
pa.rt (b), and the last by the definition of dw. 

The general case of (c) follows from the special case just proved, if 
we apply (a). This completes the proof. 
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Our next objective is Theorem 10.25. This will follow directly from two 
other important transformation properties of differential forms, which we state 
first. 

19.23 Theorem Suppose Tis a fl' mapping of an open set E c Rn into an open 
set V c R"', S is a CC' -mapping of V into an open set W c RP, and co is a k-form 
in W, so that COs is a k-form in V and both (cosh and cosT are k1orms in E, where 
ST is defined by (ST)(x)- S(T(x)) Then 

(71) (cosh = COsT. 

Proof If co and A are forms in W, Theorem 10.22 shows that 

and 

(co A A)sT =cosT A AsT. 

Thus if(71) holds for co and for A, it follows that (71) also holds for co A J.. 
Since every form can be built up from 0-forms and 1-forms by addition 
and multiplication, and since (71) is trivial for 0-forms, it is enough to 
prove (71) in the case co= dzq, q = 1, ... , p. (We denote the points of 
E, V, W by x, y, z, respectively.) 

Let t1, ••• , tm be the components ofT, let s1, ••• , sP be the compo
nents of S, and let r1, ••• , r P be the components of ST. If co = dzq, then 

cos= dsq = I (D1sq)(y) dy1 , 
j 

so that the chain rule implies 

(cosh= I (D1sq)(T(x)) dt1 
J 

= I (D1sq)(T(x)) I (Di t1)(x) dx1 
J i 

= I (Dirq)(x) dxi = drq =cosT. 
i 

10.24 Theorem Suppose co is a k-form in an open set E c Rn, <I> is a k-surface 
in E, with parameter domain D c Rk, and Ll is the k-surface in Rk, with parameter 
domain D, defined by Ll(u) = u(u e D). Then 

Proof We need only consider the case 

co= a(x) dxit A • • • A dx1k. 



(72) 
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If l/J1, ••• , l/Jn are the components of <I>, then 

The theorem will follow if we can show that 

were 

since (72) implies 

Then 

f w J a(<l>(u))J(u) du 
D 

= fA a(<l>(u))J(u) du1 A • • • A duk =fA ro111 • 

Let [A] be the k by k matrix with entries 

(p,q= 1, ... ,k). 

dl/J 1p = L rx(p, q) duq 
q 

so that 

dl/Ji 1 A • • • A dl/J 1k = L rx(l, q1) • • • rx(k, qk) duq 1 A • • • A duqk. 

In this last sum, q1, ••• , qk range independently over 1, ... , k. The anti
commutative relation ( 42) implies that 

duq 1 A • • • A duqk = s(q1, ••• , qk) du1 A • • • A dub 

where sis as in Definition 9.33; applying this definition, we see that 

dl/J 11 A "' A dl/J 1k = det (A] du1 A "' A duk; 

and since J(u) = det [A], (72) is proved. 

The final result of this section combines the two preceding theorems. 

10.25 Theorem Suppose T is a CC' -mapping of an open set E c Rn into an open 
set V c Rm, <I> is a k-surface in E, and w is a k-form in V. 

Then 



266 PRINCIPLES OF MATHEMATICAL ANALYSIS 

Proof Let D be the parameter domain of <I> (hence also of T<l>) and 
define A as in Theorem 10 24 

Then 

The first of these equalities is Theorem 10 24, applied to T<J> in place of <J> 
The second follows from Theorem 10.23. The third is Theorem 10.24, 
with roT in place of ro. 

SIMPLEXES AND CHAINS 

10.26 Affine simplexes A mapping f that carries a vector space X into a 
vector space Y is said to be affine iff- f(O) is linear. In other words, the require
ment is that 

(73) f(x) = f(O) + Ax 

for some A e L(X, Y). 
An affine mapping of Rk into Rn is thus determined if we know f(O) and 

f(e 1) for 1 ::::;; i::::;; k; as usual, {e1, ... , ek} is the standard basis of Rk. 
We define the standard simplex Qk to be the set of all u e Rk of the form 

k 

(74) u = L cxiei 
i= 1 

such that cx 1 > 0 for i = 1, ... , k and I:cx1 ::::;; 1. 
Assume now that Po, p1, ••• , Pk are points of Rn. The oriented affine 

k-simplex 

(75) u = [Po, Pt, · · ·, Pd 

is defined to be the k-surface in Rn with parameter domain Qk which is given 
by the affine mapping 

k 

(76) u(cx1e1 + · · · + cxk ek) =Po + L cxi(Pi -Po). 
J= 1 

Note that u is characterized by 

(77) u(O) =Po, (for 1 < i ::::;; k), 

and that 

(78) u(u) = Po + Au 

where A E L(Rk, Rn) and Ae1 = p1 - Po for 1 < i < k. 
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We call u oriented to emphasize that the ordering of the vertices p0 , ... , Pk 
is taken into account. If 

(79) 

where {z0 , z1, ••• , zk} ts a permutatiOn of the ordered set {0, 1, ... , k}, we adopt 
the notation 

(80) 

where sis the function defined in Definition 9.33. Thus ii- +u, depending on 
whether s = 1 or s = -1. Strictly speaking, having adopted (75) and (76) as 
the definition of o, we should not write o o unless i0 0, ... , ik k, even 
if s(i0 , ••• , ik) = 1; what we have here is an equivalence relation, not an equality. 
However, for our purposes the notation is justified by Theorem 10.27. 

If ii = 8(1 (using the above convention) and if 8 = 1, we say that ii and u 
have the same orientation; if 8 = -1, ii and u are said to have opposite orienta
tions. Note that we have not defined what we mean by the "orientation of a 
simplex." What we have defined is a relation between pairs of simplexes having 
the same set of vertices, the relation being that of "having the same orientation.'' 

There is, however, one situation where the orientation of a simplex can 
be defined in a natural way. This happens when n = k and when the vectors 
Pi- Po (1 ~ i ~ k) are independent. In that case, the linear transformation A 
that appears in (78) is invertible, and its determinant (which is the same as the 
Jacobian of u) is not 0. Then u is said to be positively (or negatively) oriented if 
det A is positive (or negative). In particular, the simplex [0, e1, ... , ek] in Rk, 
given by the identity mapping, has positive orientation. 

So far we have assumed that k > 1. An oriented 0-simplex is defined to 
be a point with a sign attached. We write u = +p0 or u = -Po. If u = 8p0 

( 8 = + 1) and iff is a 0-form (i.e., a real function), we define 

J f= 8f(Po). 
(I 

10.27 Theorem If u is an oriented rectilinear k-simplex in an open set E c: Rn 
and if ii = 8(1 then 

(81) J_w=8J w 
(I (I 

for every k-form w in E. 

Proof For k = 0, (81) follows from the preceding definition. So we 
assume k ~ 1 and assume that u is given by (75). 
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Suppose 1 < j::::;; k, and suppose a is obtained from u by inter-
changmg Po and p1 . I hen e = -1, and 

u(u) - p1 + Bu (u e Qk), 

whete B is the lineat mapping of Rk into R" defined by Be1 p0 p1 , 

Bei =Pi - P; if i =I= j. If we write Aei =xi (1 ::::;; i::::;; k), where A is given 
by (78), the column vectors of B (that is, the vectors Be;) are 

1 f we subtract the ]th column from each of the others, none of the deter
minants in (35) are affected, and we obtain columns x1, ••• , X: 1 , -x., 

., 01 

x1+1, ... , xk. These differ from those of A only in the sign of the jth 
column. Hence (81) holds for this case. 

Suppose next that 0 < i <j::::;; k and that a is obtained from u by 
interchanging Pi and p1 . Then a(u) =Po+ Cu, where C has the same 
columns as A, except that the ith and jth columns have been inter
changed. This again implies that (81) holds, since e = -1. 

The general case follows, since every permutation of {0, 1, ... , k} is 
a composition of the special cases we have just dealt with. 

10.28 Affine chains An affine k-chain r in an open set E c: Rn is a collection 
of finitely many oriented affine k-simplexes u1, ••• , u r in E. These need not be 
distinct; a simplex may thus occur in r with a certain multiplicity. 

If r is as above, and if w is a k-form in E, we define 

(82) f w =±I w. 
r i=1 a, 

We may view a k-surface <I> in E as a function whose domain is the collec
tion of all k-forms in E and which assigns the number J111 w to w. Since real
valued functions can be added (as in Definition 4.3), this suggests the use of the 
notation 

(83) r = 0'1 + ... + O'r 

or, more compactly, 

(84) 

to state the fact that (82) holds for every k-form w in E. 
To avoid misunderstanding, we point out explicitly that the notations 

introduced by (83) and (80) have to be handled with care. The point is that 
every oriented affine k-simplex a in Rn is a function in two ways, with different 
domains and different ranges, and that therefore two entirely different operations 
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of addition are possible. Originally, a was defined as an Rn-valued function 
with domain Qk; accordingly, a 1 + a2 could be interpreted to be the function 
u that assigns the vector u1(u) + u2 (u) to every u e Qk; note that u is then again 
an oriented affine k-simplex in Rn! This is not what is meant by (83). 

For example, if (1 2 (11 as in (80) (that is to say, if e11 and e12 have the 
same set of vertices but are oppositely oriented) and if r = u1 + u2 , then 
Jr w = 0 for all w, and we may express this by writmg r = 0 or u1 + u2 = 0. 
This does not mean that a 1(n) + a2(u) is the null vector of Rn 

10.29 Boundaries For k ~ 1, the boundary of the oriented affine k-simplex 

IS defined to be the affine (k - I )-cham 

k 

(85) ou = L ( - 1 )i [Po , ... , Pi- 1, Pi+ 1, · · · , Pd · 
j=O 

For example, if u = [p0 , p1, p2 ], then 

ou = [p1, Pzl - [Po, Pzl + [Po, Ptl = [Po, Ptl + [pt, Pzl + [pz, Po], 

which coincides with the usual notion of the oriented boundary of a triangle. 
For 1 ~j ~ k, observe that the simplex ui = [p0 , ••• , Pi- 1, Pi+ 1, ... , pd 

which occurs in (85) has Qk- 1 as its parameter domain and that it is defined by 

(86) uj(u) = Po + Bu 

where B is the linear mapping from Rk- 1 to Rn determined by 

Bei =Pi- Po (if 1 ~ i ~j- 1), 

Bei = Pi+1 -Po (if j ~ i ~ k- 1). 

The simplex 

Uo = [p1, Pz, · · ·, pd, 

which also occurs in (85), is given by the mapping 

u0(u) = p1 + Bu, 

where Bei =Pi+ 1 - p1 for 1 ~ i ~ k- 1. 

10.30 Differentiable simplexes and chains Let T be a ~"-mapping of an open 
set E c Rn into an open set V c Rm; T need not be one-to-one. If u is an oriented 
affine k-simplex in E, then the composite mapping <I>= To u (which we shall 
sometimes write in the simpler form Tu) is a k-surface in V, with parameter 
domain Qk. We call <I> an oriented k-simplex of class~". 
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A finite collection \{' of oriented k-simplexes <1>1, ••. , <l>r of class ri" in V 
IS called a k-chazn o] class C(f" m V. If w IS a k-form m V, we define 

(87) 

and use the corresponding notation \{' = l:<l> i • 
If r = l:ai is an affine chain and if <l>i = To ai, we also write \{' = To r, 

(88) 

The boundary o<l> of the oriented k-simplex <I> = T o a is defined to be the 
(k- 1) chain 

(89) o<I> - T(o(]). 

In justification of (89), observe that if T is affine, then <I> = To (] is an 
oriented affine k-simplex, in which case (89) is not a matter of definition, but is 
seen to be a consequence of (85). Thus (89) generalizes this special case. 

It is immediate that o<l> is of class ri" if this is true of <1>. 

Finally, we define the boundary o\{1 of the k-chain '¥ = l:<l> i to be the 
(k- 1) chain 

(90) o\{1 = L: o<I>i. 

10.31 Positively oriented boundaries So far we have associated boundaries to 
chains, not to subsets of Rn. This notion of boundary is exactly the one that is 
most suitable for the statement and proof of Stokes' theorem. However, in 
applications, especially in R 2 or R3

, it is customary and convenient to talk 
about "oriented boundaries" of certain sets as well. We shall now describe 
this briefly. 

Let Qn be the standard simplex in Rn, let (]0 be the identity mapping with 
domain Qn. As we saw in Sec. 10.26, (]0 may be regarded as a positively oriented 
n-simplex in Rn. Its boundary O(]o is an affine (n - I)-chain. This chain is 
called the positively oriented boundary of the set Qn. 

For example, the positively oriented boundary of Q3 is 

[e1, e2 , e3 ] - [0, e2 , e3 ] + [0, e1 , e3 ] - [0, e1 , e2 ]. 

Now let T be a 1-1 mapping of Qn into Rn, of class ri", whose Jacobian is 
positive (at least in the interior of Qn). Let E = T(Qn). By the inverse function 
theorem, E is the closure of an open subset of Rn. We define the positively 
oriented boundary of the set E to be the (n - 1 )-chain 

oT = T(o(]0 ), 

and we may denote this (n - I)-chain by oE. 
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An obvious question occurs here: If E = TtCQ") = T2(Q"), and if both 
T1 and T2 have positive Jacobians, is it true that oT1 = oT2 ? That is to say, 
does the equality 

r r 

hold for every (n - I)-form w? The answer is yes, but we shall omit the proof. 
(To see an example, compare the end of this section ·Nith Exercise 17.) 

One can go further. Let 

where Ei = Ti(Q"), each Ti has the properties that Thad above, and the interiors 
of the sets Ei are pairwise disjoint. Then the (n - 1)-chain 

oT1 + · · · + oTr = o!l 

is called the positively oriented boundary of n. 
For example, the unit square 12 in R2 is the union of u1(Q2

) and u2(Q 2
), 

where 

Both u1 and u2 have Jacobian 1 > 0. Since 

we have 

OC11 = [e1, e2] - [0, e2] + [0, etJ, 

OC12 = [e2, ed- [e1 + e2, ed + [e1 + e2, e2]; 

The sum of these two boundaries is 

ol 2 = [0, ed + [e1, e1 + e2] + [e1 + e2' e2] + [e2' 0], 

the positively oriented boundary of 12
• Note that [e1, e2] canceled [e2, etJ. 

If <I> is a 2-surface in Rm, with parameter domain 12
, then <I> (regarded as 

a function on 2-forms) is the same as the 2-chain 

<I> o 0'1 +<I> o 0'2. 

Thus 

o<l> = o(<l> o u1) + o(<l> o u2) 

= <l>(oul) + <l>(ou2 ) = <1>(812
). 

In other words, if the parameter domain of <I> is the square 12
, we need 

not refer back to the simplex Q2
' but can obtain o<l> directly from ol2

• 

Other examples may be found in Exercises 17 to 19. 
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10.32 Example For 0 < u < n, 0 < v < 2n, define 

~(u, v) =(sin u cos v, sin u sin v, cos u). 

Then ~ is a 2-surface in R3
, whose parameter domain is a rectangle D c R2

, 

and whose range is the unit sphere in R3
• Its boundary is 

w ere 

8~ = ~(oD) = 1'1 + 'Yz + 1'3 + 1'4 

'}' 1 (u) - ~(u, 0) - (sin u, 0, cos u), 

Yz(v) l:(n, v) (0, 0, 1), 

y3(u) = ~(n - u, 2n) = (sin u, 0, -cos u), 

y4(v) = ~(0, 2n- v) = (0, 0, 1), 

with [0, n] and [0, 2n] as parameter intervals for u and v, respectively. 
Since y2 and y4 are constant, their derivatives are 0, hence the integral of 

any 1-form over '}' 2 or y4 is 0. [See Example 1.12(a).] 
Since y3(u) = y1(n- u), direct application of (35) shows that 

Jw=-Jw 
1'3 )11 

for every 1-form w. Thus Jar w = 0, and we conclude that a~= 0. 
(In geographic terminology, a~ starts at the north pole N, runs to the 

south poleS along a meridian, pauses at S, returns to N along the same meridian, 
and finally pauses at N. The two passages along the meridian are in opposite 
directions. The corresponding two line integrals therefore cancel each other. 
In Exercise 32 there is also one curve which occurs twice in the boundary, but 
without cancellation.) 

STOKES' THEOREM 

10.33 Theorem If 'P is a k-chain of class ~" in an open set V c Rm and if w 
is a (k - 1 )-form of class ~' in V, then 

(91) f. dw = J w. 
'I' o'l' 

The case k = m = 1 is nothing but the fundamental theorem of calculus 
(with an additional differentiability assumption). The case k = m = 2 is Green's 
theorem, and k = m = 3 gives the so-called "divergence theorem" of Gauss. 
The case k = 2, m = 3 is the one originally discovered by Stokes. (Spivak's 
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book describes some of the historical background.) These special cases will be 
discussed further at the end of the present chapter. 

(92) 

(93) 

(94) 

(95) 

(96) 

Proof It is enough to prove that 

f dOJ = f OJ 

for every oriented k-simp1ex <I> of c1ass ~"in V For if (92) is proved and 
if 'P = 1:<1>1, then (87) and (89) imply (91). 

Fix such a <I> and put 

Thus u is the oriented affine k-simplex with parameter domain Qk which 
is defined by the identity mapping. Since <I> is also defined on Qk (see 
Definition 10.30) and <I> e ~", there is an open set E c Rk which contains 
Qk, and there is a ~"-mapping T of E into V such that <I>= To u. By 
Theorems 10.25 and 10.22(c), the left side of (92) is equal to 

J dOJ = J (dOJ)T = J d(OJT)· 
Ta a a 

Another application of Theorem 10.25 shows, by (89), that the right side 
of (92) is 

f OJ = f OJ = f OJT ' 
o(Ta) T(oa) oa 

Since OJT is a (k- I)-form in E, we see that in order to prove (92) 
we merely have to show that 

f d).= f ). 
a oa 

for the special simplex (93) and for every (k - 1 )-form ). of class ~' in E. 

If k = 1, the definition of an oriented 0-simplex shows that (94) 
merely asserts that 

1 

Jo f'(u) du = /{1)- f(O) 

for every continuously differentiable function f on [0, 1 ], which is true 
by the fundamental theorem of calculus. 

From now on we assume that k > 1, fix an integer r (1 ~ r ~ k), 
and choose f e ~'(£). It is then enough to prove (94) for the case 

). = /(x) dx1 1\ • • • 1\ dx,_ 1 1\ dx,+ 1 1\ • · • 1\ dxk 

since every (k- I)-form is a sum of these special ones, for r = 1, ... , k. 
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(97) 

(98) 

(99) 

(100) 

(101) 

(102) 

By (85), the boundary of the simplex (93) is 

k 

au [eu 0 0 0' e,J + E ( 1)1
T, 

i= 1 

were 

fm i 1, ... , k. Put 

Note that To is obtained from [e1, ... , ek] by r 1 successive interchanges 
of e, and its left neighbors. Thus 

k 

8u=(-1)'- 1to+ IC-1)1-ri. 

Each r 1 has Qk- 1 as parameter domain. 
If x = r 0(u) and u e Qk-1, then 

i= 1 

(1 :5.} < r), 
(j = r), 
(r <} :5. k). 

If 1 :5. i :5. k, u e Qk-l, and x = r 1(u), then 

(1:5.j<i), 
U= i), 
(i <} :$. k). 

For 0 ~ i ~ k, let J1 be the Jacobian of the mapping 

induced by r 1• When i = 0 and when i = r, (98) and (99) show that (100) 
is the identity mapping. Thus J0 = 1, J, = 1. For other i, the fact that 
x 1 = 0 in (99) shows that J1 has a row of zeros, hence J1 = 0. Thus 

(i ¥= 0, i ¥= r), 

by (35) and (96). Consequently, (97) gives 

f A= ( -1)'- 1 f A+ ( -1)' f A 
iJa ~o ~,. 

= ( -1)'- 1 J [f( r 0(u))- /( r,(u))] du. 



(103) 
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On the other hand, 

d)c (D,f)(x.)dx, '' dx1 '' • • • '' dx, 1 '' dx,+ 1 /\ • • • A dXJt 

so that 

( l)r-1 J (D,f)(x) dx. 

We evaluate (103) by first integrating with respect to x, over the Interval 

[0, 1 - (x1 + · · · + x,_ 1 + x,+ 1 + · · · + xk)], 

put (x1, •.. , x,_ 1, x,+ 1, ... , xk)- (u1, ... , uk_ 1), and see with the aid of 
(98) that the integral over Qk in (103) is equal to the integral over Qk- 1 

in (102). Thus (94) holds, and the proof is complete. 

CLOSED FORMS AND EXACT FORMS 

10.34 Definition Let w beak-form in an open set E c Rn. If there is a (k- I)
form ;. in E such that w = dA, then w is said to be exact in E. 

If w is of class ~, and dw = 0, then w is said to be closed. 
Theorem 1 0.20(b) shows that every exact form of class ~, is closed. 
In certain sets E, for example in convex ones, the converse is true; this 

is the content of Theorem 10.39 (usually known as Poincare's lemma) and 
Theorem 10.40. However, Examples 10.36 and 10.37 will exhibit closed forms 
that are not exact. 

10.35 Remarks 

(104) 

(105) 

(a) Whether a given k-form w is or is not closed can be verified by 
simply differentiating the coefficients in the standard presentation of w. 
For example, a 1-form 

n 

w = Lfi(x) dxi, 
i= 1 

with fie~'(£) for some open set E c Rn, is closed if and only if the 
equations 

hold for all i, j in {1, ... , n} and for all x e E. 
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Note that (1 05) is a "pointwise" condition,; it does not involve any 
global properties that depend on the shape of E. 

On the other hand, to show that w is exact in E, one has to prove 
the existence of a form A, defined in E, such that dA = ro. This amounts 
to solving a system of partial differential equations, not just locally, but 
in all of E. For example, to shov; that (104) is exact in a set E, one has 
to find a function (or 0-form) g e ct'(E) such that 

(106) (D1g)(x) = f 1(x) (x e E, 1 ~ i ~ n). 

(107) 

(108) 

(109) 

Of course, (105) is a necessary condition for the solvability of (106). 

(b) Let robe an exact k-form in E. Then there is a (k- I)-form A in E 
with dJc ro, and Stokes' theorem asserts that 

i ro = i dA = f A 
'I' 'I' a'l' 

for every k-chain 'P of class ct" in E. 
If 'P 1 and 'P 2 are such chains, and if they have the same boundaries, 

it follows that 

In particular, the integral of an exact k-form in E is 0 over every 
k-chain in E whose boundary is 0. 

As an important special case of this, note that integrals of exact 
1-forms in E are 0 over closed (differentiable) curves in E. 

(c) Let ro be a closed k-form in E. Then dro = 0, and Stokes' theorem 
asserts that 

f ro = J dro = 0 
"'~' 'I' 

for every (k + I)-chain 'P of class ct" in E. 
In other words, integrals of closed k-forms in E are 0 over k-chains 

that are boundaries of (k + 1 )-chains in E. 

(d) Let 'P be a (k + I)-chain in E and let A be a (k- I)-form in E, both 
of class ct". Since d 2 A= 0, two applications of Stokes' theorem show that 

We conclude that 82'P = 0. In other words, the boundary of a 
boundary is 0. 

See Exercise 16 for a more direct proof of this. 
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10.36 Example Let E {0}, the plane with the origin removed. The 
1-form 

(110) 
x dy- y dx 

IS closed m R 2 
- {0}. This IS easily venfied by differentiatiOn. Fix r > 0, and 

define 

(111) y(t) = (r cost, r sin t) (0 < t :s; 2n). 

Then y is a curve (an "oriented 1-simplex") in R 2 
- {0}. Since y(O) = y(2n), 

we have 

(I 12) ay = o. 
Direct computation shows that 

(113) J 11 = 2n =I= 0. 
y 

The discussion in Remarks 10.35(b) and {c) shows that we can draw two 
conclusions from (113): 

First, 17 is not exact in R 2 
- {0}, for otherwise (112) would force the integral 

(113) to be 0. 
Secondly, y is not the boundary of any 2-chain in R 2 

- {0} (of class ~"), 
for otherwise the fact that 17 is closed would force the integral (113) to be 0. 

10.37 Example Let E = R3 
- {0}, 3-space with the origin removed. Define 

(114) 
C = x dy 1\ dz + y dz 1\ dx + z dx 1\ dy 

(xz + yz + z2)3/2 

where we have written (x, y, z) in place of (x1, x 2 , x3). Differentiation shows 
that dC = 0, so that Cis a closed 2-form in R3 

- {0}. 
Let l: be the 2-chain in R3 

- {0} that was constructed in Example 10.32; 
recall that l: is a parametrization of the unit sphere in R3

• Using the rectangle 
D of Example 10.32 as parameter domain, it is easy to compute that 

(115) f C = J sin u du dv = 4n =1= 0. 
:t D 

As in the preceding example, we can now conclude that C is not exact in 
R3 

- {0} (since ol: = 0, as was shown in Example 10.32) and that the sphere l: 
is not the boundary of any 3-chain in R3 

- {0} (of class ~"), although 81: = 0. 
The following result will be used in the proof of Theorem 10.39. 
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10 38 Theorem Suppose E is a convex o-pen set in Rn, f e rt' (E), p is an integer, 
1 <p :S n, and 

(116) (p <j :S n, x e E). 

1hen there exists an Fe CC'(E) such that 

(117) (DpF)(x) f(x), (DiF)(x) 0 (p <j 5, n, X E E). 

Proof \Vrite x (x', xP, x"), 'vVhere 

(When p = 1, x' is absent; when p = n, x" is absent.) Let V be the 
set of all (x', xp) e RP such that (x', xP, x") e E for some x". Being a 
projection of E, V is a convex open set in RP Since E is convex and ( 116) 
holds, f(x) does not depend on x". Hence there is a function <p, with 
domain V, such that 

f(x) = <p(x', xp) 
for all x e E. 

If p = 1, V is a segment in R1 (possibly unbounded). Pick c e V 
and define 

f
X1 

F(x) = <p(t) dt 
c 

(x e E). 

If p > 1, let U be the set of all x' e RP- 1 such that (x', xp) e V for 
some xP. Then U is a convex open set in RP-1, and there is a function 
oc e ~'(U) such that (x', oc(x')) e V for every x' e U; in other words, the 
graph of oc lies in V (Exercise 29). Define 

f
Xp 

F(x) = <p(x', t) dt 
IX( X') 

(x e E). 

In either case, F satisfies (117). 

(Note: Recall the usual convention that f! means - S: if b <a.) 

10.39 Theorem If E c Rn is convex and open, if k ~ I, if w is a k-form of 
class ~' in E, and if dw = 0, then there is a (k - I )-form A. in E such that w = d).. 

(ll8) 

Briefly, closed forms are exact in convex sets. 

Proof For p = I, ... , n, let YP denote the set of all k-forms w, of class 
~' in E, whose standard presentation 

w = If r{x) dx r 
I 

does not involve dx p+ 1, ••• , dxn. In other words, I c {1, ... , p} if/ r{x) i= 0 
for some x e E. 
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We shall proceed by induction on p. 
Assume first that roe Y1• Then ro =f(x) dx1• Since dro = 0, 

(D1f)(x) 0 for 1 <j ~ n, x e E. By Theorem 10.3S there is an Fe rt'(E) 
such that D 1F=fand D1F= 0 for 1 <jS. n. Thus 

dF = (D1F)(x) dx1 = f(x) dx1 = ro. 

Now we take p > I and make the following induction hypothesis: 
£' • 'k,. h b r }' • • £ very cwseu-Jorm t atewnys toP_ 1 zs exact tn. 

Choose ro e Y0 so that dro = 0. By (1I8), 

n 

E E (DJf1)(x) dx1 A dx 1 dm 0. 
I j= 1 

Consider a fixed j, with p <j S. n. Each I that occurs in (118) hes m 
{I, ... , p}. If Ib I2 are two of these k-indices, and if I 1 =I= I2 , then the 
(k + I)-indices (I1,j), (I2 ,j) are distinct. Thus there is no cancellation, 
and we conclude from (119) that every coefficient in (118) satisfies 

(x e E,p <j S. n). 

We now gather those terms in (118) that contain dxP and rewrite ro 
in the form 

ro = oc + IfJCx) dx 10 A dx,, 
Io 

where oc e Y,_ 1, each I0 is an increasing (k- I)-index in {I, ... , p - 1}, 
and I= (I0 , p). By (120), Theorem 10.38 furnishes functions F1 e CI'(E) 
such that 

(p <j S. n). 

Put 

P =I FJCx) dx 10 
lo 

and define y = ro - ( -I)k-t dp. Since pis a (k- I)-form, it follows that 

p 

Y = ro- I I (D1F 1)(x) dx 10 A dx1 
lo }= 1 

p-1 

= oc- I I (D1F1)(x) dx 10 A dx1 , 
lo }= 1 

which is clearly in Yp_ 1• Since dro = 0 and d 2P = 0, we have dy = 0. 
Our induction hypothesis shows therefore that y = dJ.l for some 
(k- I)-form J.l in E. If A.= J.l + ( -l)k-tp, we conclude that ro = dA.. 

By induction, this completes the proof. 
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10.40 Theorem Fix k, I ~ k ~ n. Let E c: Rn be an open set in which every 
closed k-form is exact. Let T be a I-I CC"-mapping of E onto an open set U c: Rn 
whose in12erse S is alm of clau ({(" 

J 

Then every closed k-form in U is exact in U. 

Note that every convex open set E satisfies the present hypothesis, by 
Theorem 10.39. The relation between E and U may be expressed by saying 
that they are CC"-equivalent. 

Thus every closed form is exact in any set which is CC"-equivalent to a convex 
open set. 

Proof Let ro be a k-form in U, witp dro- 0. By Theorem 10.22(c), 
roT is a k-form in E for which d(ror) = 0. Hence ror =d). for some 
(k- I)-form ). in E. By Theorem I0.23, and another application of 
Theorem I0.22(c), 

ro = (roT)s = (dJ.)s = d(J.s)· 

Since As is a (k- I)-form in U, ro is exact in U. 

10.41 Remark In applications, cells (see Definition 2.I7) are often more con
venient parameter domains than simplexes. If our whole development had 
been based on cells rather than simplexes, the computation that occurs in the 
proof of Stokes' theorem would be even simpler. (It is done that way in Spivak's 
book.) The reason for preferring simplexes is that the definition of the boundary 
of an oriented simplex seems easier and more natural than is the case for a cell. 
(See Exercise I9.) Also, the partitioning of sets into simplexes (called "tri~ngu
lation") plays an important role in topology, and there are strong connections 
between certain aspects of topology, on the one hand, and differential forms, 
on the other. These are hinted at in Sec. I0.35. The book by Singer anq Thorpe 
contains a good introduction to this topic. 

Since every cell can be triangulated, we may regard it as a chain. For 
dimension 2, this was done in Example I0.32; for dimension 3, see Exercise 18. 

Poincare's lemma (Theorem I0.39) can be proved in several ways. See, 
for example, page 94 in Spivak's book, or page 280 in Fleming's. Two simple 
proofs for certain special cases are indicated in Exercises 24 and 27. 

VECTOR ANALYSIS 

We conclude this chapter with a few applications of the preceding material to 
theorems concerning vector analysis in R3 • These are special cases of theorems 
about differential forms, but are usually stated in different terminology. We 
are thus faced with the job of translating from one language to another. 
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10.42 Vector fields Let F = F1 e1 + F 2 e2 + F 3 e3 be a continuous mapping of 
an open set E c R3 into R3

• Since F associates a vector to each point of E, F 
is sometimes called a vector field, especially in physics. '.Vith every such F is 
associated a 1-form 

(124) 

and a 2-form 

(125) ro, = F1 dy 1\ dz + F2 dz 1\ dx + F3 dx 1\ dy. 

Here, and in the rest of this chapter, we use the customary notation (x, y, z) 
in place of (x1, x 2 , x3). 

It is clear, conversely, that every 1-form A. in E is A., for some vector field 
FIn E, and that every 2-form ro 1s ro, for some F. In R\ the study of 1-forms 
and 2-forms is thus coextensive with the study of vector fields. 

If u e ~'(£)is a real function, then its gradient 

Vu = (D1u)e1 + (D 2 u)e2 + (D3 u)e3 

is an example of a vector field in E. 
Suppose now that F is a vector field in E, of class~'. Its curl V x F is the 

vector field defined in E by 

V x F = (D 2 F3 - D 3 F2)e1 + (D 3 F1 - D1F3)e2 + (D1F2 - D 2 F1)e3 

and its divergence is the real function V · F defined in E by 

V · F = D1F1 + D2 F2 + D 3 F3 • 

These quantities have various physical interpretations. We refer to the 
book by 0. D. Kellogg for more details. 

Here are some relations between gradients, curls, and divergences. 

10.43 Theorem Suppose E is an open set in R3
, u e ~"(£), and G is a vector 

field in E, of class C". 

(a) IfF= Vu, then V x F = 0. 
(b) IfF = V x G, then V · F = 0. 

Furthermore, if E is ~"-equivalent to a convex set, then (a) and (b) have 
converses, in which we assume that F is a vector field in E, of class ~': 

(a') If V x F = 0, then F = Vu for some u e ~"(£). 
(b') /fV · F = 0, then F = V x Gfor some vector field Gin E, of class~" 

Proof If we compare the definitions of Vu, V x F, and V · F with the 
differential forms A., and ro, given by (124) and (125), we obtain the 
following four statements: 
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F=Vu if and only if A., =du. 

VxF=O if and only if dA., = 0. 

F-VxG tf and only tf m, -dXc. 
V·F-0 if and only if dm, 0. 

Now ifF Vu, then;.., du, hence d).., d 2u 0 (Themem 10.20), 
which means that V x F = 0. Thus (a) is proved. 

As regards (a'), the hypothesis amounts to saying that dA., = 0 in E. 
By Theorem 10 40, A r du for some 0-form u. Hence F Vu. 

The proofs of (b) and (b') follow exactly the same pattern. 

10.44 Volume elements The k-form 

dx1 A • • • A dxk 

is called the volume element in Rk. It is often denoted by dV (or by dVk if it 
seems desirable to indicate the dimension explicitly), and the notation 

(126) I~f(x) dx1 A • • • A dxk = I~ f dV 

is used when <I> is a positively oriented k-surface in Rk and f is a continuous 
function on the range of <1>. 

The reason for using this terminology is very simple: If D is a parameter 
domain in Rk, and if <I> is a 1-1 ~,-mapping of D into Rk, with positive Jacobian 
J~, then the left side of (126) is 

I f(<l>(u))J~(u) du = J f(x) dx, 
D ~(D) 

by (35) and Theorem 10.9. 

In particular, when/= 1, (126) defines the volume of <1>. We already saw 
a special case of this in (36). 

The usual notation for dV2 is dA. 

10.45 Green's theorem Suppose E is an open set in R 2
, a e ~'(E), p e ~'(E), 

and Q is a closed subset of E, with positively oriented boundary oQ, as described 
in Sec. 10.31. Then 

(127) J,n (a dx + P dy) = Jn (:!- :;) dA. 
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Proof Put A.= a dx + p dy. Then 

and (127) is the same as 

which is true by Theorem 10.33. 

With &!(x, y) y and p(x, y) x, (127) becomes 

(128) f J (x dy - y dx) = A(O), 
on 

the area of n. 
With~= 0, P = x, a similar formula is obtained. Example 10.12(b) con

tains a special case of this. 

10.46 Area elements in R3 Let <I> be a 2-surface in R3, of class ~', with pa
rameter domain D c: R2

• Associate with each point (u, v) e D the vector 

(129) 
o(y, z) o(z, x) o(x, y) 

N(u, v) = o(u, v) el + o(u, v) e2 + o(u, v) e3. 

The Jacobians in (129) correspond to the equation 

(130) (x, y, z) = <l>(u, v). 

Iff is a continuous function on <l>(D), the area integral off over <I> is 
defined to be 

(131) f fdA= J f(<l>(u, v))IN(u, v)l dudv. 
II) D 

In particular, whenf = 1 we obtain the area of <1>, namely, 

(132) A(<l>) = JDI N(u, v)l du dv. 

The following discussion will show that (131) and its special case (132) 
are reasonable definitions. It will also describe the geometric features of the 
vector N. 

Write <I>= (,0 1e1 + (,0 2 e2 + (,0 3 e3 , fix a point p0 = (u0 , v0 ) e D, put 
N = N(p0), put 

(133) a,= (D1 (,O,)(po), P1 = (D2 (,0 1)(p0) (i = 1, 2, 3) 
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and let T e L(R2
, R3

) be the linear transformation given by 

3 

(134) T(u, v) E (&!, u + P, v)e1 • 
t= 1 

Note that T = <l>'(p0), m accordance wtth Definition 9.11. 
Let us now assume that the rank ofT is 2 (If it is 1 or 0, then N-o, and 

the tangent plane mentioned below degenerates to a line or to a point.) The 
1 ange of the affine mapping 

(u, v) ......,. Ell(p0) + T(u, v) 

is then a plane n, called the tangent plane to 4> at p0 • [One would like to call 
II the tangent plane at <l>(p0), rather than at p0 ; if <I> is not one-to-one, this runs 
mto dtfficulttes.] 

If we use (133) in (129), we obtain 

(135) N = c~2 p3 - oc3 P2)el + (oc3 pl - ~tP3)e2 + (octP2 - ~2 Pl)e3' 

and (134) shows that 

(136) 
3 

Te1 = L ociei, 
t= 1 

3 

Te2 = L Piei. 
i= 1 

A straightforward computation now leads to 

(137) 

Hence N is perpendicular to II. It is therefore called the normal to <I> at p0 • 

A second property of N, also verified by a direct computation based on 
(135) and (136), is that the determinant of the linear transformation of R3 that 
takes { e1, e2 , e3} to {Te1, Te2 , N} is I N 12 > 0 (Exercise 30). The 3-simplex 

(138) 

is thus positively oriented. 
The third property of N that we shall use is a consequence of the first two: 

The above-mentioned determinant, whose value is IN j 2
, is the volume of the 

parallelepiped with edges [0, Te1], [0, Te2], [0, N]. By (137), [0, N] is perpen
dicular to the other two edges. The area of the parallelogram with vertices 

(139) 

is therefore I N j. 
This parallelogram is the image under T of the unit square in R 2

• If E 
is any rectangle in R2

, it follows (by the linearity of T) that the area of the 
parallelogram T(E) is 

(140) A(T(E)) = INIA(E) = J jN(u0 , v0)! du dv. 
E 
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We conclude that(l32)is correct when <I> is affine. To justify the definition 
(132) in the general case, divide D into small rectangles, pick a point (u0 , v0 ) 

in each, and replace <I> in each rectangle by the corresponding tangent plane 
The sum of the areas of the resulting parallelograms, obtained via (140), is then 
an approximation to A(<I>). Finally, one can justify (131) from (132) by approxi
mating/by step functions. 

10.47 Example Let 0 <a< b be fixed. Let K be the 3-cell determined by 

0 ~ t ~a, 

The equations 

(141) 

0 ~ u ~ 2n, 0 ~ v ~ 2n. 

X= t COS U 

y = (b + t sin u) cos v 

z = (b + t sin u) sin v 

describe a mapping \}1 of R 3 into R 3 which is 1-1 in the interior of K, such that 
\}l(K) is a solid torus. Its Jacobian is 

o(x, y, z) . 
J'¥ = o( ) = t(b + t sm u) t, u, v 

which is positive on K, except on the face t = 0. If we integrate J'¥ over K, we 
obtain 

as the volume of our solid torus. 
Now consider the 2-chain <I>= o\}1. (See Exercise 19.) \}1 maps the faces 

u = 0 and u = 2n of K onto the same cylindrical strip, but with opposite orienta
tions. \}1 maps the faces v = 0 and v = 2n onto the same circular disc, but with 
opposite orientations. \}1 maps the face t = 0 onto a circle, which contributes 0 
to the 2-chain o\}1. (The relevant Jacobians are 0.) Thus <I> is simply the 2-surface 
obtained by setting t =a in (141), with parameter domain D the square defined 
by 0 ~ u ~ 2n, 0 ~ v ~ 2n. 

According to (129) and (141), the normal to <I> at (u, v) E D is thus the 
vector 

N(u, v) = a(b +a sin u)n(u, v) 

where 

n(u, v) =(cos u)e1 + (sin u cos v)e2 + (sin u sin v)e3 • 
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Since ln(u, v)l = 1, we have IN(u, v)l = a(b +a sin u), and if we integrate this 
over D, (131) gives 

as the surface area of our torus. 
If we think of N N(u, v) as a directed line segment, pointing from 

<l>(u, v) to <l>(u, v) + N(u, v), then N points outward, that is to say, away from 
\}l(K). This is so because J'¥ > 0 when t = a. 

For example, take u- v- n/2, t- a This gives the largest value of z on 
\}l(K), and N = a(b + a)e3 points "upward" for this choice of (u, v). 

16.48 Integrals of 1-forms in R3 Let y be a rc· -curve in an open set E c R3 , 

with parameter interval [0, 1 ], let F be a vector field in E, as in Sec. I 0.42, and 
define A., by (124). The integral of A., over y can be rewritten in a certain way 
which we now describe. 

For any u e [0, 1], 

y'(u) = y{(u)e1 + y~(u)e2 + y3(u)e3 

is called the tangent vector to y at u. We define t = t(u) to be the unit vector in 
the direction of y'(u). Thus 

y'(u) = I y'(u) I t(u). 

[If y'(u) = 0 for some u, put t(u) = e1 ; any other choice would do just as well.] 
By (35), 

3 1 J A.,= L J Fi(y(u))y~(u) du 
y i= 1 0 

(142) 
1 

= J F(y(u)) · y'(u) du 
0 

1 

= J F(y(u)) · t(u) I y'(u) I du. 
0 

Theorem 6.27 makes it reasonable to call I y'(u) I du the element of arc 
length along y. A customary notation for it is ds, and (142) is rewritten in the 
form 

(143) J A.,= J (F • t) ds. 
y y 

Since tis a unit tangent vector to y, F ·tis called the tangential component 
ofF along y. 
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The right side of (143) should be regarded as just an abbreviation for the 
last integral in (142). The point is that F is defined on the range of y, butt is 
defined on [0, 1]; thus F · t has to be properly interpreted. Of course, when y 
is one-to-one, then t(u) can be replaced by t(y(u)), and this difficulty disappears. 

10.49 Integrals of 2-forms in R3 Let <I> be a 2-surface in an open set E c: R3
, 

of class ~'. with parameter domain D c: R2
• Let F be a vector field in E, and 

define wF by (125). As in the preceding section, we shall obtain a different 
representation of the integral of wF over$. 

By (35) and (129), 

cJ) cJ) 

= I (cFl 0 <I>) o(y, z) + (F2 0 <I>) o(z, x) + (F3 0 <I>) o(x, y)) du dv 
D o(U, V) o(u, v) O(U, V) 

= J F(<l>(u, v)) · N(u, v) du dv. 
D 

Now let n = n(u, v) be the unit vector in the direction of N(u, v). [If 
N(u, v) = 0 for some (u, v) E D, take n(u, v) = e1.] Then N = IN In, and there
fore the last integral becomes 

JD F(<l>(u, v)) · n(u, v) I N(u, v) I du dv. 

By ( 131 ), we can finally write this in the form 

(144) 

With regard to the meaning ofF· n, the remark made at the end of Sec. 10.48 
applies here as well. 

We can now state the original form of Stokes' theorem. 

10.50 Stokes' formula IfF is a vector field of class~' in an open set E c: R3 , 

and if <I> is a 2-surface of class ~" in E, then 

(145) J (V x F) • n dA = J (F • t) ds. 
cJ> oci> 

Proof Put H = V x F. Then, as in the proof of Theorem 10.43, we have 

(146) Wa = d).F· 



188 PRINCIPLES OF MATHEMATICAL ANAL-Y-51S 

Hence 

f (V x F) • n dA - f (H • n) dA - f w6 

f' f' f' 

Here we used the definition of H, then (144) with H in place ofF, 
then (146), then the main step=Theorem 10.33, and fmally (143), 
extended in the obvious way from curves to 1-chains. 

19.51 The divergenee theorem If F is a vector field of class ~' in an open set 
E c: R 3, and if Q is a closed subset of E with positively oriented boundary o!l 
(as described in Sec. 10.31) then 

(147) I (V ·F) dV = J (F • n) dA. 
n an 

Proof By (125), 

dw, = (V · F) dx A dy A dz = (V · F) dV. 

Hence 

I (V · F) dV = I dw, = J w r = j" (F • n) dA, 
n n an an 

by Theorem 10.33, applied to the 2-form w,, and (144). 

EXERCISES 

1. Let H be a compact convex set in Rk, with nonempty interior. Let f E CC(H), put 
f(x) = 0 in the complement of H, and define f H f as in Definition 10.3. 

Prove that f H f is independent of the order in which the k integrations are 
carried out. 

Hint: Approximate f by functions that are continuous on Rk and whose 
supports are in H, as was done in Example 1 0.4. 

2. Fori= 1, 2, 3, ... , let cp, E CC(R1
) have support in (2 -t, 21

-
1
), such that fcp~ = 1. 

Put 
co 

f(x, y) = 'L [cp,(x)- cp, +t(x)]cp,(y) 
1=1 

Then f has compact support in R 2
, f is continuous except at (0, 0), and 

J dy I f(x, y) dx = 0 but J dx I f(x, y) dy = 1. 

Observe that f is unbounded in every neighborhood of (0, 0). 
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3. (a) IfF is as in Theorem 10.7, put A= F'(O), F 1(x) =A -•F(x). Then FJ.(O) =I. 
Show that 

in some neighbmhood of 0, for cettain primitive mappings 6., ... , On. This 
gives another version of Theorem 10.7: 

F(x) = F'(O)Gn o Gn-t o • • • o G.(x). 

(b) Prove that the mapping (x, y) ~ (y, x) of R 2 onto R 2 is not the composition 
of any two pnmtttve mappmgs, m any netghborhood of the ongm. ( fhts shows 
that the flips B, cannot be omitted from the statement of Theorem 10.7 .) 

4. For (x, y) e R 2
, define 

F(x, y) =(ex cosy- 1, ex sin y). 

Prove that F = Gz o G., where 

G1(x, y) =(ex cosy- 1, y) 

Gz(u, v) = (u, (1 + u) tan v) 

are primitive in some neighborhood of (0, 0). 
Compute the Jacobians of G1, Gz, Fat (0, 0). Define 

Hz(X, y) = (x, ex sin y) 

and find 
H.(u, v) = (h(u, v), v) 

so that F = Ht o Hz is some neighborhood of (0, 0). 
5. Formulate and prove an analogue of Theorem 10.8, in which K is a compact 

subset of an arbitrary metric space. (Replace the functions cp, that occur in the 
proof of Theorem 10.8 by functions of the type constructed in Exercise 22 of 
Chap. 4.) 

6. Strengthen the conclusion of Theorem 10.8 by showing that the functions tfJ, can 
be made differentiable, and even infinitely differentiable. (Use Exercise 1 of 
Chap. 8 in the construction of the auxiliary functions cp, .) 

7. (a) Show that the simplex Qk is the smallest convex subset of Rk that contains 

0, e., ... , ek. 
(b) Show that affine mappings take convex sets to convex sets. 

8. Let H be the parallelogram in R 2 whose vertices are (1, 1), (3, 2), (4, 5), (2, 4). 
Find the affine map T which sends (0, 0) to (1, 1), (1, 0) to (3, 2), (0, 1) to (2, 4). 
Show that Jr = 5. Use T to convert the integral 

ex= JH ex- )I dx dy 

to an integral over J2 and thus compute ex. 
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9. Define (x, y) = T(r, 0) on the rectangle 

0 ~r ~a, 

by the equations 

x = r cos 0, y = r sin 0. 

Show that T maps this rectangle onto the closed disc D with center at (0, 0) and 
radius a, that Tis one-to-one in the interior of the rectangle, and that Jr(r, 0) = r. 

Iff e fi(D), prove the formula for integration in polar coordinates: 

J f(x, y) dx dy = J'' J2

" f(T(r, O))r dr dO. 

Hint: Let Do be the interior of D, minus the interval from (0, 0) to (0, a). 
As it stands, Theorem 10.9 applies to continuous functions f whose support lies in 
Do. To remove this restriction, proceed as in Example 10.4. 

10. Let a ~ oo in Exercise 9 and prove that 

J f(x, y) dx dy = JIX) J2

" f(T(r, O))r dr dO, 
R2 0 0 

for continuous functions f that decrease sufficiently rapidly as I xI + I y I ~ oo. 
(Find a more precise formulation.) Apply this to 

f(x, y) = exp ( -x2
- y 2

) 

to derive formula (101) of Chap. 8. 
11. Define (u, v) = T(s, t) on the strip 

0 <s < oo, 0<t<1 

by setting u =s-st, v =st. Show that Tis a 1-1 mapping of the strip onto the 
positive quadrant Q in R 2

• Show that Jr(s, t) = s. 
For x > 0, y > 0, integrate 

over Q, use Theorem 10.9 to convert the integral to one over the strip, and derive 
formula (96) of Chap. 8 in this way. 

(For this application, Theorem 10.9 has to be extended so as to cover certain 
improper integrals. Provide this extension.) 

12. Let I" be the set of all u = (utt ... , u") e R" with 0 ~ u1 < 1 for all i; let Q" be the 
set of all x = (xtt ... , x") e R" with x, ~ 0, I:x, < 1. (I" is the unit cube; Q" is 
the standard simplex in R".) Define x = T(u) by 

Xt = Ut 

X2 = (1 - Ut)U2 
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Show that 

" " 1~1 Xt = 1 -n (1 - u,). 

Show that T maps I" onto Q". that Tis 1-1 in the interior of I", and that its 
inverseS is defined in the interior of Q" by Ut = Xt and 

for i - 2, , k Show that 

and 

13. Let r~, ... , r11 be nonnegative integers, and prove that 

f 't '" d rd ... '"! Xt "'X11 X= 
o" (k + '• + .. · + r")! 

Hint: Use Exercise 12, Theorems 10.9 and 8.20. 
Note that the special case '• = · • · = r 11 = 0 shows that the volume of Q" 

is 1/k !. 
14. Prove formula (46). 
15. If w and ,\ are k- and m-forms, respectively, prove that 

W 1\ ,\ =( -1)km,\ 1\ W. 

16. If k > 2 and u = [Po, Pt, ... , Pk] is an oriented affine k-simplex, prove that o2 u = 0, 
directly from the definition of the boundary operator o. Deduce from this that 
o2 'Y = 0 for every chain 'Y. 

Hint: For orientation, do it first fork= 2, k = 3. In general, if i <j, let u,1 

be the (k- 2)-simplex obtained by deleting p, and p1 from u. Show that each O'tJ 

occurs twice in o2 u, with opposite sign. 
17. Put J 2 = Tt + T2, where 

Tt = [0, e., e. + ez], 

Explain why it is reasonable to call J 2 the positively oriented unit square in R 2
• 

Show that oJ2 is the sum of 4 oriented affine 1-simplexes. Find these. What is 
O(Tt- Tz)? 

18. Consider the oriented affine 3-simplex 

in R3 • Show that O't (regarded as a linear transformation) has determinant 1. 
Thus u1 is positively oriented. 
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Let a 2 , ••• , a 6 be five other oriented 3-simplexes, obtained as follows: 
There are five permutations (it, i2, i3) of (1, 2, 3), distinct from (1, 2, 3). Associate 
with each (it, h, i3) the simplex 

where s is the sign that occurs in the definition of the determinant (This is how T1 

was obtained from Tt in Exercise 17.) 
Show that a2, ... , a6 are positively onented. 
Put J 3 = a1 + · · · + a6. Then J 3 may be called the positively oriented unit 

cube in R 3 • 

Show that e,P is the sum of 12 oriented affine 2 simplexes. (These 12 tri-
angles cover the surface of the unit cube fl.) 

Show that x = (x1, x2, X3) is in the range of a1 if and only if 0:::;: X a :::;: x 2 

:::::;: Xt:::::;: 1. 
Show that the ranges of a1, ••• , a6 have disjoint interiors, and that their 

union covers J3. (Compare with Exercise 13; note that 3! = 6.) 
19. Let J 2 and J 3 be as in Exercise 17 and 18. Define 

Bot(U, v) = (0, u, v), 

Bo2(u, v) = (u, 0, v), 

Bo3(u, v) = (u, v, 0), 

These are affine, and map R 2 into R 3 • 

Bu(u, v) = (1, u, v), 

Bu(u, v) = (u, 1, v), 

Bta(u, v) = (u, v, 1). 

Put f3,, = B,,(J2
), for r = 0, 1, i = 1, 2, 3. Each f3,, is an affine-oriented 

2-chain. (See Sec. 10.30.) Verify that 

3 

8]3 = L ( -1)'(f3ot- f3u), 
I= 1 

in agreement with Exercise 18. 
20. State conditions under which the formula 

J f dw = J fw - J (df) 1\ w 
• a• • 

is valid, and show that it generalizes the formula for integration by parts. 
Hint: d(fw) = (df) 1\ w + fdw. 

21. As in Example 10.36, consider the 1-form 

in R 2
- {0}. 

xdy-ydx 
7J = xl + yl 

(a) Carry out the computation that leads to formula (113), and prove that d7J = 0. 

(b) Let y(t) = (r cost, r sin t), for some r > 0, and let r be a <tfH-curve in R 2
- {0}, 
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with parameter interval [0, 27T], with r(O) = r(27T), such that the intervals [y(t), 

P(t)] do not contain 9 for any t e [0, 2n ]. Pro~e that 

TJ = 27T. 
r 

Hint: For 0 s;: t < 27T, 0 < u < 1, define 

tll(t, u) = (1- u) r(t) + uy(t). 

Then ttl is a 2-surface in R 2 
- {0} whose parameter domain is the indicated rect-

angle. Because of cancellauons (as m Example 10.32), 

Use Stokes' theorem to deduce that 

because dTJ = 0. 

(c) Take r(t) =(a cost, b sin t) where a> 0, b > 0 are fixed. Use part (b) to 
show that 

(d) Show that 

f
lit ab 

---:-2. --::-2-~b2::---:-.-2:- dt = 27T. 
a cos t + sm t 0 

TJ = d( arc tan~) 
in any convex open set in which x =I= 0, and that 

TJ = d(- arc tan~) 
in any convex open set in which y =1= 0. 

Explain why this justifies the notation TJ =dO, in spite of the fact that TJ is 
not exact in R 2

- {0}. 

(e) Show that (b) can be derived from (d). 

(/) If r is any closed rc'-curve in R 2 
- {0}, prove that 

2~{ TJ = Ind(r). 

(See Exercise 23 of Chap. 8 for the definition of the index of a curve.) 
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22. As in Example 10.37, define' in R 3
- {0} by 

xdy A dz+ydz A dx+zdx A dy 

where r- (x 1 + y 1 + z1
)

111
, let D be the rectangle given by 0::;;: uS: 1r, 0 S: v S: 27T, 

and let :E be the 2-surface in R 3 , with parameter domain D, given by 

x = sin u cos v, y =sin u sin v, z= cos u. 

(a) Prove that d'- 0 in R3 {0}. 

(b) Let S denote the restriction of :E to a parameter domain E c D. Prove that 

J t - J sm u du dv - A(S), 
$ E 

r r 

where A denotes area, as in Sec. 10.43. Note that this contains (115) as a special 
case. 

(c) Suppose g, h1, h,., h3, are <tf"-functions on [0, 1], g > 0. Let (x, y, z) = ttl(s, t) 
define a 2-surface ttl, with parameter domain Jl, by 

x = g(t)h1(s), y = g(t)h,.(s), 

Prove that 

f '=0, 
• 

directly from (35). 
Note the shape of the range of ttl: For fixed s, ttl(s, t) runs over an interval 

on a line through 0. The range of ttl thus lies in a "cone" with vertex at the origin. 

(d) Let E be a closed rectangle in D, with edges parallel to those of D. Suppose 
/E <ti"(D),f> 0. Let n be the 2-surface with parameter domain E, defined by 

O(u, v) = f(u, v) :E (u, v). 

DefineS as in (b) and prove that 

(Since S is the "radial projection" of n into the unit sphere, this result makes it 
reasonable to call J "'the "solid angle" subtended by the range of .0 at the origin.) 

Hint: Consider the 3-surface 'Y given by 

'Y(t, u, v) = [1 - t + tf(u, v)] :E (u, v), 

where (u, v) E E, 0 ::;: t ::;: 1. For fixed v, the mapping (t, u)-+ 'Y(t, u, v) is a 2-sur-
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face fP to which {c) can be applied to show that f ~'- 0. The same thing holds 
when u is fixed. By (a) and Stokes' theorem, 

J~'l' J 'I' 

(e) Put ,\ = - (z/r)TJ, where 

as in Exercise 21. Then,\ is a 1-form in the open set V c R3 in which x 2 + y 2 > 0. 
Show that 'is exact in V by showing that 

(/) Derive (d) from (e), without using (c). 
Hint: To begin with, assume 0 < u < 1T on E. By (e), 

and 

Show that the two integrals of,\ are equal, by using part (d) of Exercise 21, and by 
noting that z/r is the same at ~(u, v) as at O(u, v). 

(g) Is ' exact in the complement of every line through the origin? 
23. Fix n. Define rk = (xf + ... + xD112 for 1 < k < n, let Ek be the set of all X ERn 

at which rk > 0, and let wk be the (k- 1)-form defined in Ek by 
k 

wk = (rk)- k L ( -1 )1
-

1 x 1 dx 1 1\ " · 1\ dx 1- 1 1\ dx 1 + 1 1\ " · 1\ dxk . 
I= 1 

Note that w2 = TJ, w3 = ,, in the terminology of Exercises 21 and 22. Note 
also that 

£1 c £ 2 c · · · cEn = R"- {0}. 

(a) Prove that dwk = 0 in Ek. 
(b) Fork= 2, ... , n, prove that wk is exact in Ek _ 1, by showing that 

Wk = d(fkwk -1) = (dft<) 1\ Wk- t, 

where /k(x) = ( -1)k gk(xk/rk) and 

and 

Uk(t) = Jr (1- s2)<k-3)/2 ds 
-1 

Hint: fk satisfies the differential equations 

x · (V'/k)(x) = 0 

(-1 < t < 1). 
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(c) Is Wn exact in En? 
(d) Note that (b) is a generalization of part (€) of Exercise 22. Try to extend some 
of the other assertions of Exercises 21 and 22 to wn, for arbitrary n. 

24. Let w =~a,(x) dx, be a 1-form of class rc" in a convex open set E c R". Assume 
dw 0 and prove that w is exact in E, by completing the follmving outline: 

Fix p E E. Define 

/(x)- [ w 
J [p,x] 

(x E E) 

Apply Stokes' theorem to affine-onented 2-simplexes [p, x, y] m E. Deduce that 

f(y)- /(x) = ,t (y,- x,) Jo a,((l - t)x + ty) dt 

for x E E, y E E. Hence (D,f)(x) = a,(x). 

25. Assume that w is a 1-form in an open set E c R" such that 

for every closed curve yin E, of class CC'. Prove that w is exact in E, by imitating 
part of the argument sketched in Exercise 24. 

26. Assume w is a 1-form in R3 - {0}, of class CC' and dw =0. Prove that w is exact in 
R 3 - {0}. 

Hint: Every closed continuously differentiable curve in R3 
- {0} is the 

boundary of a 2-surface in R3 - {0}. Apply Stokes' theorem and Exercise 25. 

27. Let E be an open 3-cell in R3 , with edges parallel to the coordinate axes. Suppose 
(a, b, c) E E,f, E CC'(E) fori= 1, 2, 3, 

w =It dy 1\ dz + /2 dz 1\ dx + /J dx 1\ dy, 

and assume that dw = 0 in E. Define 

where 

Ut(X, y, z) = rr: /2(x, y, s) ds- f)' /J(X, t, c) dt 
c b 

U2(X, y, z) = - rr: ft(X, y, s) ds, 
c 

for (x, y, z) E E. Prove that d'A =win E. 
Evaluate these integrals when w = ' and thus find the form 'A that occurs in 

part (e) of Exercise 22. 
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28. Fix b > a > 0, define 

fb(r, 8) (r cos 8, r sin 8) 

for a< r < h, 0 < fJ < 277'. {The range of~ is an annulus in R 2
.) Put w x 3 dy, 

and compute both 

r dw and r w 

to verify that they are equal. 
29. Prove the existence of a function IX with the properties needed in the proof of 

Theorem 10.38, and prove that the resultmg function F Is of class CC'. (Both 
assertions become trivial if E is an open cell or an open ball, since IX can then be 
taken to be a constant. Refer to Theorem 9.42.) 

30. If N is the vector given by (135), prove that 

Also, verify Eq. (137). 
31. Let E c: R3 be open, suppose g E ~"(£),hE rc"(E), and consider the vector field 

F = g "V h. 

(a) Prove that 

"V · F = g "V 2h + ("Vg) · ("Vh) 

where "V 2h = "V · ("Vh) = '"£,8 2h/8xf is the so-called "Laplacian" of h. 
(b) If n is a closed subset of E with positively oriented boundary en (as in 
Theorem 10.51), prove that 

f [g "V 2h + ("Vg). ("Vh)]dV =I g :h dA 
n ~n n 

where (as is customary) we have written 8hf8n in place of ("Vh) · n. (Thus 8hf8n 
is the directional derivative of h in the direction of the outward normal to en, the 
so-called normal derivative of h.) Interchange g and h, subtract the resulting 
formula from the first one, to obtain 

Jn (g "V
2
h- h "V

2
g) dV = J~n (u :~ - h :~) dA. 

These two formulas are usually called Green's identities. 
(c) Assume that h is harmonic in E; this means that "V 2h = 0. Take g = 1 and con
clude that 

f oh 
-dA =0. 

~non 
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Take g = h, and conclude that h = 0 inn if h = 0 on 80. 
(d) Show that Green's identities are also valid in R". 

32, Fjx S, 0 < S < 1 Let D be the set of all (11, t) E R" such that 0 ~ 11 < 1'1', S < t < S. 
Let q> be the 2-surface in R 3

, with parameter domain D, given by 

x = (1 - t sin 0) cos 20 
y (l t sin 8) sin 28 
z = t cos() 

where (x, y, z) = ~((), t). Note that q>(7T, t) = ~(0, - t), and that q> is one-to-one 
on the rest of D. 

The range M- d>( D) of <I> is known as a Mobius band It is the simplest 
example of a nonorientable surface. 

Prove the various assertions made m the followmg descnphon: Put 
Pt = (0, -8), p, = (1r, -8), P3 = (1r, 8), P4 = {0, 8), Ps = Pt· Put y, = [p,, p, +d, 
i = 1, ... , 4, and put r, = q> o y,. Then 

Put a= (1, 0, -8), b = (1, 0, 8). Then 

tll(pt) = tll(pJ) = a, 

and 8~ can be described as follows. 
rt spirals up from a to b; its projection into the (x, y)-plane has winding 

number + 1 around the origin. (See Exercise 23, Chap. 8.) 
r, = [b, a]. 
r 3 spirals up from a to b; its projection into the (x, y) plane has winding 

number - 1 around the origin. 
r4 = [b, a]. 
Thus 8tll = r 1 + r3 + 2r,. 
If we go from a to b along rl and continue along the "edge" of M until we 

return to a, the curve traced out is 

which may also be represented on the parameter interval [0, 27T] by the equations 

x = (1 + 8 sin {)) cos 2() 
y = (1 + 8 sin 0) sin 20 
z = -8 cos(), 

It should be emphasized that r i= 8q>: Let TJ be the 1-form discussed in 
Exercises 21 and 22. Since dTJ = 0, Stokes' theorem shows that 

f TJ = 0. 
~If) 
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But although r is the "geometric" boundary of M, we have 

TJ = 47T. 

In order to avoid this possible source of confusion. Stokes' formula (Theorem 
10.50) is frequently stated only for orientable surfaces ttl. 



11 
THE LEBESGUE THEORY 

It is the purpose of this chapter to present the fundamental concepts of the 
Lebesgue theory of measure and integration and to prove some of the crucial 
theorems in a rather general setting, without obscuring the main lines of the 
development by a mass of comparatively trivial detail. Therefore proofs are 
only sketched in some cases, and some of the easier propositions are stated 
without proof. However, the reader who has become familiar with the tech
niques used in the preceding chapters will certainly find no difficulty in supply
ing the missing steps. 

The theory of the Lebesgue integral can be developed in several distinct 
ways. Only one of these methods will be discussed her~. For alternative 
procedures we refer to the more specialized treatises on integration listed in 
the Bibliography. 

SET FUNCTIONS 

If A and B are any two sets, we write A - B for the set of all elements x such 
that x e A, x ¢B. The notation A- B does not imply that B cA. We denote 
the empty set by 0, and say that A and B are disjoint if A n B = 0. 
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11.1 Definition A family f7t of sets is called a ring if A e f7t and Be f7t implies 

(1) Au BE f7i, A-Be f7t. 

Since A n B = A - (A - B), we also have A n B e f7t if f7t is a ring. 
A ring f7t is called a a-ring if 

n 1 

. whenever An e §t (n 1, 2, 3, ... ). Since 

we also have 

if PA is a a-ring. 

11.2 Definition We say that cjJ is a set function defined on PA if cjJ assigns to 
every A e f7t a number c/>(A) of the extended real number system. cjJ is additive 
if A n B = 0 implies 

(3) c/>(A u B) = c/>(A) + cjJ(B), 

and cjJ is count ably additive if A i n A i = 0 (i =F }) implies 

(4) 

We shall always assume that the range of cjJ does not contain both + oo 
and - oo; for if it did, the right side of (3) could become meaningless. Also, 
we exclude set functions whose only value is + oo or - oo. 

It is interesting to note that the left side of ( 4) is independent of the order 
in which the An's are arranged. Hence the rearrangement theorem shows that 
the right side of (4) converges absolutely if it converges at all; if it does not 
converge, the partial sums tend to + oo, or to - oo. 

(5) 

(6) 

If cjJ is additive, the following properties are easily verified: 

c/>(0) = 0. 

cjJ(A1 u · · · uAn) = c/>(At) + · · · + c/>(An) 

if Ai n Ai = 0 whenever i =F }. 
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If <f>(A) > 0 for all A, and At c A2 , then 

Because of (8), nonnegative additive set functions are often called 
monotonic. 

(9) </>(A - B) - </>(A) </>(B) 

if B c A, and I (</>B) I < + oo. 

11.3 Theorem Suppose </> is countably additive on a ring 91. Suppose An e 91 
(n 1, 2, 3, ... ), At c A 2 c A 3 c ···,A e Bl, and 

Then, as n-+ oo, 

Proof Put Bt = At, and 

Bn=An-An-t 

n 

(n = 2, 3, ... ). 

</>(An) = I </>(Bi) 
i= t 

and 

00 

</>(A) = I </>(BJ 
i= 1 

CONSTRUCTION OF THE LEBESGUE MEASURE 

11.4 Definition Let RP denote p-dimensional euclidean space. By an interval 
in RP we mean the set of points x = (xt, ... , xp) such that 

(10) a·<X·<b· 1- 1- I (i = 1, ... 'p), 

or the set of points which is characterized by (1 0) with any or all of the ~ 
signs replaced by <. The possibility that ai = b1 for any value of i is not ruled 
out; in particular, the empty set is included among the intervals. 
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If A is the union of a finite number of intervals, A is said to be an elemen-
tary set. 

If I is an interval, we define 

no matter whether equality is included or excluded in any of the inequalities (10). 
If A -11 u · · · u In, and If these mtervals are pairwise diSJOint, we set 

(11) 

We let tff denote the family of all elementary subsets of R". 
At this point, the following properties should be verified: 

(12) 8 is a ring, but not a a-ring. 
(13) If A e 8, then A is the union of a finite number of disjoint intervals. 
(14) If A e 8, m(A) is well defined by (11); that is, if two different decompo-

sitions of A into disjoint intervals are used, each gives rise to the same 
value of m(A). 

(15) m is additive on 8. 

Note that if p = 1, 2, 3, then m is length, area, and volume, respectively. 

11.5 Definition A nonnegative additive set function </>defined on 8 is said to 
be regular if the following is true: To every A e 8 and to every e > 0 there 
exist sets Fe 8, G e 8 such that F is closed, G is open, F c A c G, and 

(16) ¢(G) - 8 ~ </>(A) < </>(F) +B. 

11.6 Examples 

(a) The set function m is regular. 
If A is an interval, it is trivial that the requirements of Definition 

11.5 are satisfied. The general case follows from (13). 
(b) Take RP = R1, and let ~ be a monotonically increasing func
tion, defined for all real x. Put 

~([a, b))= ~(b-)- ~ca- ), 

~([a, b]) = ~(b+)- ~ca- ), 

~((a, b]) = ~(b+)- ~(a+), 

J.l({a, b))= ~(b-)- ~(a+). 

Here [a, b) is the set a < x < b, etc. Because of the possible discon
tinuities of ~, these cases have to be distinguished. If J.l is defined for 
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elementary sets as in (11), tl is regu1ar on I. The proof is just Jike that 
of (a). 

Our next objective is to show that every re~ular set function on tf can be 
extended to a countably additive set function on a a-ring which contains G. 

11.7 Definition Let J.l be additive, regular, nonnegative, and finite on 8. 
Consider countable coverings of any set E c RP by open elementary sets An: 

Define 
00 

(17) J.I,*(E) = inf I J.~,(An), 
n= 1 

the inf being taken over all countable coverings of E by open elementary sets. 
J.l*(E) is called the outer measure of E, corresponding to J.l· 

It is clear that J.l*(E) ~ 0 for all E and that 

(18) J.l,*(£1) < J.l,*(£2) 

if £1 c £2. 

11.8 Theorem 

(a) For every A E ~, J.l*(A) = J.l(A). 
00 

(b) If E = U En, then 
1 

00 

(19) J.l*(£) ~ I J.l*(£n)• 
n=l 

Note that (a) asserts that J.l* is an extension of J.l from I to the family of 
all subsets of RP. The property (19) is called subadditivity. 

(20) 

Proof Choose A e 8 and B > 0. 

The regularity of J.l shows that A is contained in an open elementary 
set G such that J.l(G) ~ J.l(A) +B. Since J.l*(A) ~ J.l(G) and since B was 
arbitrary, we have 

J.l*(A) ~ J.l(A). 

The definition of J.l* shows that there is a sequence {An} of open 
elementary sets whose union contains A, such that 

00 

L J.l(An) ~ J.l*(A) + B. 
n=l 
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The regularity of 11 shows that A contains a dosed elementary set F such 
that JJ-(F) ~ JJ-(A) - e; and since F is compact, we have 

for some N. Hence 

In conjunction with (20), this proves (a). 
Next, suppose E = UEn, and assume that JJ-*(En) < + oo for all n. 

Given e > 0, thete ate covetings {Ank}, k 1, 2, 3, ... , of En by open 
elementary sets such that 

00 

L JJ-(Ank) ~ JJ-*(En) + 2 -nB. 
k=l 

Then 

00 00 00 

JJ-*(E) ~ I I JJ-(Ank) ~ L JJ-*(En) + B, 
n=lk=l n=l 

and (19) follows. In the excluded case, i.e., if JJ-*(En) = + oo for some n, 
(19) is of course trivial. 

11.9 Definition For any A c RP, B c RP, we define 

(22) 

(23) 

S(A, B)= (A- B) u (B- A), 

d(A, B)= JJ-*(S(A, B)). 

We write An-+ A if 

lim d(A, An)= 0. 
n-+ oo 

If there is a sequence {An} of elementary sets such that An -+A, we say 
that A is finitely J.~,-measurable and write A e IDlp{JJ-). 

If A is the union of a countable collection of finitely wmeasurable sets, 
we say that A is J.~,-measurable and write A e IDl(JJ-). 

S(A, B) is the so-called "symmetric difference" of A and B. We shall see 
that d(A, B) is essentially a distance function. 

The following theorem will enable us to obtain the desired extension of J.l· 

11.10 Theorem IDl(JJ-) is a u-ring, and JJ-* is countably additive on IDl(JJ-). 

Before we turn to the proof of this theorem, we develop some of the 
properties of S(A, B) and d(A, B). We have 
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(24) S(A, B)- S(B, A), S(A, A)- 0 

(25) S(A, B) c S(A, C) u S(C, B). 

(24) is clear, and (25) follows from 

(A - B) c (A - C) u ( C - B), (B - A) c ( C - A) u (B - C). 

The first formula of (26) is obtained from 

Next, writing Ec for the complement of E, we have 

S(A1 n A 2 , B1 n B2 ) = S(A~ u A2, Bf u B~) 

c S(A~, Bf) u S(A2, B~) = S(A1 , B1) u S(A 2 , B2 ); 

and the last formula of (26) is obtained if we note that 

A1 - A 2 = A1 n A2. 

By (23), (19), and (18), these properties of S(A, B) imply 

(27) d(A, B)= d(B, A), d(A, A) = 0, 

(28) d(A, B):::; d(A, C)+ d(C, B), 

d(A 1 u A 2 , B1 u B2)} 

(29) d(A 1 n A 2 , B1 n B2 ) ::5: d(Ab B1) + d(A 2 , B2 ). 

d(A 1 - A 2 , B1 - B2 ) 

The relations (27) and (28) show that d(A, B) satisfies the requirements 
of Definition 2.15, except that d(A, B)= 0 does not imply A= B. For instance, 
if J.l = m, A is countable, and B is empty, we have 

d(A, B)= m*(A) = 0; 

to see this, cover the nth point of A by an interval In such that 

m(ln) < 2 -nB. 

But if we define two sets A and B to be equivalent, provided 

d(A, B)= 0, 

we divide the subsets of RP into equivalence classes, and d(A, B) makes the set 
of these equivalence classes into a metric space. 9Jlp(J..t) is then obtained as the 
closure of 8. This interpretation is not essential for the proof, but it explains 
the underlying idea. 
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We need one more property of d(A, B), namely, 

(30) I u*(A)- u*(B)l < d(A, B), 

if at least one of p.*(A), p.*(B) is finite. For suppose 0 ~ p.*(B) ~ p.*(A). 
Then (28) shows that 

d(A,O) ~ d(A, B)+ d(B, 0), 

p.*(A) ~ d(A, B)+ p.*(B). 

Since p.*(B) is finite, it follows that 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

p.*(A) - p.*(B) ~ d(A, B). 

Proof of Theorem 11.10 Suppose A e 9.llp(p.), Be 9Jlp(J.t). Choose {An}, 
{Bn} such that An E 8. Bn E 8, An-+ A, Bn-+ B. Then (29) and (30) show 
that 

An u B11 -+A u B, 

An n Bn -+A n B, 

An - Bn -+A - B, 

p.*(An) -+ p.*(A), 

and p.*(A) < + oo since d(An, A)-+ 0. By (31) and (33), IDlp(p.) is a ring. 
By (7), 

p.(An) + p.(Bn) = p.(An u Bn) + p.(An n Bn). 

Letting n-+ oo, we obtain, by (34) and Theorem 11.8(a), 

J.t*(A) + p.*(B) = p.*(A u B) + p.*(A n B). 

If A n B = 0, then p.*(A n B) = 0. 
It follows that p.* is additive on 9Jlp(p.). 
Now let A e 9Jl(p.). Then A can be represented as the union of a 

countable collection of disjoint sets of IDlp(p.). For if A = U A~ with 
A~ e rolp(p.), write A1 =A{, and 

A =(A I u ... u A')- (A' u ... u A' ) n 1 n n n-1 (n = 2, 3, 4, ... ). 

Then 
00 

A= UAn 
n= 1 

is the required representation. By (19) 

00 

p.*(A) ~ L p.*(An)• 
n= 1 
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(38) 

On the other hand, A 3 A1 u · u A,; and by the additivity of 

Equations (36) and (37) imply 

00 

p*(A) = I p*(A,). 
n=l 

Suppose p*(A) is finite. Put B, A1 u .. · u A,. Then (38) shows 
that 

00 00 

ft*( U A,) E f,L*(A,) • 0 
i=n+ 1 i=n+ 1 

as n-+ oo. Hence B,-+ A; and since B, e 9J1p(u), it is easily seen that 
A E 9J1p{Jl). 

We have thus shown that A e 9Jlp(Jl) if A e 9J1(Jl) and Jl*(A) < + oo. 
It is now clear that Jl* is countably additive on 9Jl(Jl). For if 

where {A,} is a sequence of disjoint sets of 9Jl(Jl), we have shown that (38) 
holds if Jl*(A,) < + oo for every n, and in the other case (38) is trivial. 

Finally, we have to show that IDl(Jl) is a a-ring. If A, e 9Jl(Jl), n = 1, 
2, 3, ... , it is clear that U A, e 9Jl(Jl) (Theorem 2.12). Suppose A e 9Jl(f1), 
B e IDl{Jl), and 

00 

B = U B,, 
n=1 

where A,, B, e IDlp{Jl). Then the identity 

00 

A, n B = U (A, n B i) 
i= 1 

shows that A, n B e 9J1(Jl); and since 

Jl*(A, n B) :s; Jl*(A,) < + oo, 

A, n B E IDlp{Jl). Hence A, - B e IDlp(Jl), and A - B e IDl(Jl) since 
A- B = U:':.t (A,- B). 

We now replace Jl*(A) by Jl(A) if A e IDl(Jl). Thus Jl, originally only de
fined on 8, is extended to a countably additive set function on the a-ring 
IDl(u). This extended set function is called a measure. The special case Jl = m 
is called the Lebesgue measure on RP. 
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11.11 Remarks 

(39) 

(40) 

(a) If A is open, then A e 9Jl(u). For every open set in RP is the union 
of a countable collection of open intervals. To see this, it is sufficient to 
constiuct a countable base whose members are open intervals. 

By taking complements, it follows that every closed set is in 9Jl(y). 
(b) If A e 9Jl(Jl) and e > 0, there exist sets F and G such that 

Fe A c G, 

' ' 

Jl(G- A)< e, Jl(A- F)< B. 

The first inequality holds since Jl* was defined by means of coverings 
by open elementary sets. The second inequality then follows by taking 
complements. 
(c) We say that E is a Borel set if E can be obtained by a countable 
number of operations, starting from open sets, each operation consisting 
in taking unions, intersections, or complements. The collection PJ of all 
Borel sets in RP is a u-ring; in fact, it is the smallest u-ring which contains 
all open sets. By Remark (a), E e IDl(Jl) if E e PJ. 
(d) If A e 9Jl(Jl), there exist Borel sets F and G such that F c A c G, 
and 

Jl( G - A) = Jl( A - F) = 0. 

This follows from (b) if we take e = 1/n and let n--+ oo. 
Since A = F u (A - F), we see that every A e IDl(Jl) is the union of a 

Borel set and a set of measure zero. 
The Borel sets are jl-measurable for every Jl. But the sets of measure 

zero [that is, the sets E for which Jl*(E) = 0] may be different for different 
Jl'S. 
(e) For every Jl, the sets of measure zero form a u-ring. 
(/) In case of the Lebesgue measure, every countable set has measure 
zero. But there are uncountable (in fact, perfect) sets of measure zero. 
The Cantor set may be taken as an example : Using the notation of Sec. 
2.44, it is easily seen that 

(n=l,2,3, ... ); 

and since P = n En, P c En for every n, so that m(P) = 0. 



310 PRINCIPLES OF MATHEMATICAL ANALYSIS 

MEASURE SPACES 

11.12 Definition Suppose X is a set, not necessarily a subset of a euclidean 
space, or indeed of any metric space. X is said to be a measure space if there 
exists a a-ring 9Jl of subsets of X (which are called measurable sets) and a non-
negative countably additiVe set functiOn J.l (whtch Is called a measure), defined 
on 9Jl. 

If, in addition, X e rol, then X is said to be a measurable space. 
Fm instance, we can take X R", 9Jl the collection of all Lebesgue-

measurable subsets of RP, and J.l Lebesgue measure. 
Or, let X be the set of all positive integers, IDt the collection of all subsets 

of X, and tl(E) the number of elements of E. 
Another example is provided by probability theory, where events may be 

considered as sets, and the probability of the occurrence of events is an additive 
(or countably additive) set function. 

In the following sections we shall always deal with measurable spaces. 
It should be emphasized that the integration theory which we shall soon discuss 
would not become simpler in any respect if we sacrificed the generality we have 
now attained and restricted ourselves to Lebesgue measure, say, on an interval 
of the real line. In fact, the essential features of the theory are brought out 
with much greater clarity in the more general situation, where it is seen that 
everything depends only on the countable additivity of J.l on a a-ring. 

It will be convenient to introduce the notation 

(41) {xiP} 

for the set of all elements x which have the property P. 

MEASURABLE FUNCTIONS 

11.13 Definition Let f be a function defined on the measurable space <X, with 
values in the extended real number system. The function/is said to be measur
able if the set 

(42) {xif(x) >a} 

is measurable for every real a. 

11.14 Example If X= RP and 9Jl = 9Jl (J.l) as defined in Definition 11.9, 
every continuous f is measurable, since then ( 42) is an open set. 
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11.15 Theorem Each of the following four conditions implies the other three: 

(43) {xlf(x) >a} is measurable for every real a. 

(44) 

(45) 

(46) 

{xiJ(x) ~a} zs measurable/or every real a. 

{x lf(x) < a} is measurable for every real a. 

{x lf(x) ~ a} is measurable for every real a. 

Proof The relations 

{xif(x)~a} n {xif(x)>a M· 
n=l 

{xlf(x) <a}= X- {xlf(x) ~a}, 

{xif(x) ~a}= .IJ, {xif(x) <a+ M • 
{xlf(x) >a}= X- {xlf(x) ~a} 

show successively that (43) implies (44), (44) implies (45), (45) implies 
(46), and (46) implies (43). 

Hence any of these conditions may be used instead of ( 42) to define 
measurability. 

11.16 Theorem Iff is measurable, then Ill is measurable. 

Proof 

{xllf(x)l <a}= {xlf(x) <a} t1 {xlf(x) > -a}. 

11.17 Theorem Let (j~} be a sequence of measurable functions. For x e X, put 

g(x) = sup/,.(x) 

h(x) = lim sup /,(x). 
n-+oo 

Then g and hare measurable. 

(n = 1, 2, 3, ... ), 

The same is of course true of the inf and lim inf. 

Proof 
00 

{xlg(x) >a}= U {xl/,(x) >a}, 
n=l 

h(x) = inf 9m(x), 

wheregm(x) = sup/,.(x) (n ~ m). 
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Corollaries 

(a) Iff and g are measurable, then max(/, g) and min(/, g) are measurable. 

(47) f + max (f, 0), ) min (f, 0), 

• r. 11 • • 1 1 f+ d r- h' tt JOuows, m parttCUtal, Mat an r are measu1 a re. 
(b) The limit of a convergent sequence of measurable/unctions is measurable. 

11.18 Theorem T et f and g he measurable real-valued functions defined on 1', 
let F be real and continuous on R2

, and put 

h(x) = F(f(x), g(x)) (x eX). 

Then his measurable. 
In particular, f + g and.fg are measurable. 

Proof Let 

Ga = {(u, v) I F(u, v) >a}. 

Then Ga is an open subset of R2
, and we can write 

where {Jn} is a sequence of open intervals: 

In= {(u, v)!an < u < bn, Cn < v < dn}. 

Since 

{xl an <f(x) < bn} = {xlf(x) >an} n {xjf(x) < bn} 

is measurable, it follows that the set 

{xI (f(x), g(x)) E In}= {xI an <f(x) < bn} n {xI Cn < g(x) < dn} 

is measurable. Hence the same is true of 

{xI h(x) >a}= {xI (f(x), g(x)) e G0 } 

00 

= U {xI (f(x), g(x)) E In}. 
n=l 

Summing up, we may say that all ordinary operations of analysis, includ
ing limit operations, when applied to measurable functions, lead to measurable 
functions; in other words, all functions that are ordinarily met with are measur
able. 

That this is, however, only a rough statement is shown by the following 
example (based on Lebesgue measure, on the real line): If h(x) = f(g(x)), where 
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f is measurable and g is continuous, then h is not necessarily measurable. 
(For the details, we refer to McShane, page 241.) 

The reader may have noticed that measure has not been mentioned in 
our discussion of measurable functions. In fact, the class of measurable func-
uons on X depends only on the u-ring rot (using the notation of Definition 11.12). 
For instance, we may speak of Borel-measurable {unctions on RP, that Is, of 
function f for which 

{x!J(x) >a} 

is always a Borel set, without reference to any particular measure. 

SIMPLE FUNCTIONS 

11.19 Definition Let s be a real-valued function defined on X. If the range 
of s is finite, we say that s is a simple function. 

Let E c X, and put 

(48) 
(x e E), 
(x¢ E). 

K8 is called the characteristic function of E. 
Suppose the range of s consists of the distinct numbers c1, ••• , cn. Let 

E1 = {x!s(x) = c1} (i = 1, ... , n). 

Then 

(49) 

that is, every simple function is a finite linear combination of characteristic 
functions. It is clear that sis measurable if and only if the sets E1, ••• , En are 
measurable. 

It is of interest that every function can be approximated by simple 
functions: 

11.20 Theorem Let f be a real function on X. There exists a sequence {sn} of 
simple functions such that sn(x) -+f(x) as n-+ oo,for every x eX. Iff is measur
able, {sn} may be chosen to be a sequence of measurable functions. If!~ 0, {sn} 
may be chosen to be a monotonically increasing sequence. 

Proof If/~ 0, define 

( 
i-1 i) 

Eni = X ln ~f(x) < 2n ' Fn = {x!f(x) ~ n} 
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(50) 

for n - 1, 2, 3, . . , i = 1 , 2, .. , n2n Put 

In the general case, let/= J+ - f , and apply the preceding construction 
to r+ and to r-

J J 

It may be noted that the sequence {sn} given by (50) converges 
uniformly to .f if/ is bounded. 

INTEGRATION 

We shall define integration on a measurable space X, m which IDl is the a-ring 
of measurable sets, and J.l is the measure. The reader who wishes to visualize 
a more concrete situation may think of X as the real line, or an interval, and of 
J.l as the Lebesgue measure m. 

11.21 DefinitioD Suppose 
n 

(51) s(x) = L c i KE,(x) (x EX, ci > 0) 
I= 1 

is measurable, and suppose E e rot We define 
n 

(52) IE(s) = L CiJ.l(E n E1). 
i= 1 

If/is measurable and nonnegative, we define 

(53) JE f dJ.l = sup lis), 

where the sup is taken over all measurable simple functions s such that 0 :::;; s :::;;f 
The left member of (53) is called the Lebesgue integral off, with respect 

to the measure J.l, over the set E. It should be noted that the integral may have 
the value + oo. 

It is easily verified that 

(54) 

for every nonnegative simple measurable functions. 

11.22 Definition Let/be measurable, and consider the two integrals 

(55) 

where/+ and/- are defined as in (47). 



(56) 
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If at least one of the integrals (55) is finite, we define 

f r+ df.l J J 
E 

f r-d 

If both integrals in (55) are finite, then (56) is finite, and we say that f is 
integrable (or summable) on E in the Lebesgue sense, with respect to f.l; we 'llrite 
f e !l'(p.) on E. If JJ. = m, the usual notation is: f e !l' on E. 

This termmology may be a httle confusmg: If (56) Is + oo or - oo, then 
the integral of f over E is defined, although f is not integrable in the above 
sense of the word; .f is integrable on E only if its integral over E is finite. 

VIe shall be mainly interested in integrable functions, although in some 
cases it is desirable to deal with the more general situation. 

11.23 Remarks The following properties are evident: . 
(a) Iff is measurable and bounded on E, and if JJ.(E) < + oo, then 

I e !l'(p.) on E. 
(b) If a ~f(x) < b for x e E, and JJ.(E) < + oo, then 

aJ,t(E) ~ J f dJJ. ~ bJ,t(E). 
E 

(c) Iff and g e !l'(p.) on E, and if f(x) ~ g(x) for x e E, then 

JE I dJ,t ~ JE g dJ,t. 

(d) If/ e !l'(JJ.) onE, then cf e !l'(p.) onE, for every finite constant c, and 

I cf dJJ. = c I I dJ,t. 
E E 

(e) If Jt(E) = 0, andfis measurable, then 

fEJ dJ,t = 0. 

(/) Iff e !l'(JJ.) on E, A e rot, and A c E, then/ e !l'(p.) on A. 

11.24 Theorem 

(a) Suppose f is measurable and nonnegative on X. For A e IDl, define 

(57) 
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(58) 

(59) 

(60) 

Then 4> is countably additive on IDl. 
(b) The same conclusion holds iff e !l'(p) on X. 

Proof It is clear that (b) follows from (a) if we write f = j+ - f- and 
apply (a) tof+ and tof-. 

To prove (a), we have to show that 

cp(A) - L i/>(An) 
n=l 

if An e IDl (n = 1, 2, 3, ... ), Ai n A1 = 0 for i '# }, and A = Ui' An. 
If j ts a charactensttc functiOn, then the countable addttivtty of if> Is 

precisely the same as the countable additivity of y,, since 

Iff is simple, then f is of the form (51), and the conclusion again 
holds. 

In the general case, we have, for every measurable simple functions 
such that 0 ~ s ~/, 

Therefore, by (53), 

00 

l/J(A) S L l/J(An)• 
n= 1 

Now if cp(An) = + oo for some n, (58) is trivial, since c/>(A) ~ cp(An)· 
Suppose cp(An) < + oo for every n. 

Given B > 0, we can choose a measurable function s such that 
0 s s sf, and such that 

Hence 

so that 
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It follows that we have, for every n, 

(61) 

Since A ::::> A1 u · · · u An, (61) implies 

(62) c/>(A) ~ L c/>(An), 
n=l 

and (58) follows from (59) and (62). 

Corollary If A e IDl, B e ffil, 8 c A, and 11(A - B) - o, then 

Since A = B u (A -B), this follows from Remark 11.23(e). 

11.25 Remarks The preceding corollary shows that sets of itleasure zero are 
negligible in integration. 

Let us write/""" g on E if the set 

{xlf(x) #: g(x)} n E 

has measure zero. 
Then f""" f; f""" g implies g """f; and f""" g, g""" h implies f""" h. That is, 

the relation """ is an equivalence relation. 
Iff""" g on E, we clearly have 

provided the integrals exist, for every measurable subset A of E. 
If a property P holds for every x e E - A, and if JJ.(A) = 0, it is customary 

to say that P holds for almost all x e E, or that P holds almost everywhere on 
E. (This concept of "almost everywhere" depends of course on the particular 
measure under consideration. In the literature, unless something is said to the 
contrary, it usually refers to Lebesgue measure.) 

If/ e !l'(JJ.) onE, it is clear thatf(x) must be finite almost everywhere on E. 
In most cases we therefore do not lose any generality if we assume the given 
functions to be finite-valued from the outset. 

11.26 Theorem Iff e !l'(JJ.) on E, then If I e !l'(JJ.) on E, and 

(63) 
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Proof Write E = A u B, where f(x) ~ 0 on A and f(x) < 0 on B. 
By Theorem 11.24, 

so that If I e !l'(J.t). Since I~ If I and - f ~ If I, we see that 

E E 

and (63) follows. 

Since the integrability off implies that of lfl, the Lebesgue integral is 
often called an absolutely convergent integral. It is of course possible to define 
nonabsolutely convergent integrals, and in the treatment of some problems it is 
essential to do so. But these integrals lack some of the most useful properties 
of the Lebesgue integral and play a somewhat less important role in analysis. 

11.27 Theorem Suppose f is measurable on E, 1!1 ~ g, and g e !l'(J.t) on E. 
Then f e !l'(J.l) on E. 

Proof We have/+ ~ g andf- ~g. 

11.28 Lebesgue's monotone convergence theorem Suppose E e IDl. Let {fn} be 
a sequence of measurable functions such that 

(64) 

(65) 

0 ~/1(x) ~/2(x) ~ · · · 

Let f be defined by 

(x e E). 

fn(X) ~f(x) (x eE) 

as n -+ oo. Then 

(66) (n-+ oo). 

Proof By (64) it is clear that, as n-+ oo, 

(67) f fn dJ.t-+ (1. 
E 

for some r:x; and since J/,. ~ Jf, we have 

(68) (1. :$; fEJdJ.l. 
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(70) 

(71) 
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Choose c such that 0 < c < 1, and Jet s be a simp]e measnrab]e 
function such that 0 ~ s ~~ Put 

En= {x!fn(x) ~ cs(x)} (n = 1, 2, 3, ... ). 

By (64), E1 c E2 c £ 3 c ···;and by (65), 

n-

For every n, 

We let n--+ oo in (70). Since the integral is a countably additive set function 
(Theorem 11.24), (69) shows that we may apply Theorem 11.3 to the last 
integral in (70), and we obtain 

IX > C JE S dJ.l. 

Letting c --+ 1, we see that 

and (53) implies 

(72) IX ~ JE f dJ.l. 

The theorem follows from (67), (68), and (72). 

11.29 Theorem Suppose f = / 1 + / 2 , where /; e !l'(J.l) on E (i = 1, 2). Then 
f e !l'(J.l) on E, and 

(73) 

Proof First, suppose II > 0, / 2 ~ 0. If II and / 2 are simple, (73) follows 
trivially from (52) and (54). Otherwise, choose monotonically increasing 
sequences {s~}, {s:} of nonnegative measurable simple functions which 
converge to / 1,/2 • Theorem 11.20 shows that this is possible. Put 
Sn = s~ + s:. Then 

and (73) follows if we let n --+ oo and appeal to Theorem 11.28. 
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(74) 

(75) 

Next, suppose/1 ~ 0,/1 < 0. Put 

.4. - {x lf(x) ;;::; 0}, R- {xlf(x) < 0} 

ThenJ:.h, and -f2 are nonnegative on A. Hence 

r "'' r c c)d f fdp r _(' d 

Similarly, -f,ft, and -f2 are nonnegative on B, so that 

or 

JBh dJ1 = fBfdJ1- fBf2 dJ1, 

and (73) follows if we add (74) and (75). 
In the general case, E can be decomposed into four sets Ei on each 

ofwhichft(x) andf2(x) are of constant sign. The two cases we have proved 
so far imply 

J 1 d11 = J f1 d11 + I f2 d11 (i = 1, 2, 3, 4), 
E1 E1 E1 

and (73) follows by adding these four equations. 

We are now in a position to reformulate Theorem 11.28 for series. 

11.30 Theorem Suppose E e IDl. If{fn} is a sequence of nonnegative measurable 
functions and 

00 

(76) f(x) = I f,(x) (x e E), 
n=l 

then 

Proof The partial sums of (76) form a monotonically increasing sequence. 

11.31 Fatou's theorem Suppose E e IDl. If{/,} is a sequence of nonnegative 
measurable functions and 

f(x) =lim inffn(x) (x e E), 
n-+ oo 

then 

(77) J f dp :::;; lim inf I fn dJl. 
E n-+oo E 
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Strict inequality may hold in (77). An example is given in Exercise 5. 

Proof For n = 1, 2, 3, ... and x e E, put 

gn(x) = inffi(x) (i ~ n). 

Then Un is measurable on E, and 

(78) 

(79) Un(x) ~f,(x), 

(80) Un(x) -+ f(x) (n-+ oo ). 

By (78), (80), and Theorem 11.28, 

(81) 

so that (77) follows from (79) and (81 ). 

11.32 Lebesgue's dominated convergence theorem Suppose E e IDl. Let {fn} be 
a sequence of measurable functions such that 

(82) f,(x) -+ f(x) (x eE) 

as n -+ oo. If there exists a function g e !l'(JJ.) on E, such that 

(83) ifn(x) I =:;; g(x) (n = 1, 2, 3, ... , x e E), 

then 

(84) 

Because of (83), {fn} is said to be dominated by g, and we talk about 
dominated convergence. By Remark 11.25, the conclusion is the same if (82) 
holds almost everywhere on E. 

(85) 

Proof First, (83) and Theorem 11.27 imply that fn e !l'(JJ.) and f e !l'(JJ.) 
onE. 

Since f, + g > 0, Fatou's theorem shows that 

J (f + g) dJJ. S lim inf J (f, + g) dJJ., 
E n~oo E 

or 

J f dJJ. ~ lim inf J fn dJJ.. 
E n~oo E 
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Since g -/, ~ 0, we see similarly that 

f (g -f) dp ~ lim inf [ (g - /,) dp, 
"E n->oo "E 

so that 

which is the same as 

(86) [ fdu >lim sup [ [dy. 

The existence of the limit in (84) and the equality asserted by (84) 
now follow from (85) and (86). 

Corollary If p,(E) < + oo, {/,}is uniformly bounded onE, andf,(x)-+ f(x) onE, 
then (84) holds. 

A uniformly bounded convergent sequence is often said to be boundedly 
convergent. 

COMPARISON WITH THE RIEMANN INTEGRAL 

Our next theorem will show that every function which is Riemann-integrable 
on an interval is also Lebesgue-integrable, and that Riemann-integrable func
tions are subject to rather stringent continuity conditions. Quite apart from the 
fact that the Lebesgue theory therefore enables us to integrate a much larger 
class of functions, its greatest advantage lies perhaps in the ease with which 
many limit operations can be handled; from this point of view, Lebesgue's 
convergence theorems may well be regarded as the core of the Lebesgue theory. 

One of the difficulties which is encountered in the Riemann theory is 
that limits of Riemann-integrable functions (or even continuous functions) 
may fail to be Riemann-integrable. This difficulty is now almost eliminated, 
since limits of measurable functions are always measurable. 

Let the measure space X be the interval [a, b] of the real line, with Jl = m 
(the Lebesgue measure), and ID1 the family of Lebesgue-measurable subsets 
of [a, b ]. Instead of 

J fdm 
X 

it is customary to use the familiar notation 
b J fdx 

a 
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for the Lebesgue integral off over [a, b ]. To distinguish Riemann integrals 
from Lebesgue integrals, we shall now denote the fotmer by 

9l I fdx. 
a 

, 

11.33 Theorem 

(87) 

(88) 

(89) 

(90) 

(91) 

(92) 

(a) /ffe ?A on [a, b], thenfe !eon [a, b], and 
, , 

J fdx=al I fdx. 

(b) Suppose [is bounded on [a, b]. Then [e 9l on [a, b] i[and only if[ is 
continuous almost everywhere on [a, b]. 

Proof Suppose f is bounded. By Definition 6.1 and Theorem 6.4 there 
is a sequence {Pk} of partitions of [a, b], such that Pk+t is a refinement 
of Pk, such that the distance between adjacent points of Pk is less than 
1/k, and such that 

lim L(Pk ,f)= 9l I fdx, 
k-+oo _ 

lim U(P" ,f)= 9l I fdx. 
k-+ 00 

(In this proof, all integrals are taken over [a, b].) 
If Pk = {x0 , x 1, ••• , x,}, with x 0 =a, x, = b, define 

put Uk(x) = M i and L"(x) = mi for x 1_ 1 < x ~ Xt, 1 ~ i < n, using the 
notation introduced in Definition 6.1. Then 

L(Pk ,f) = I L" dx, U(Pk ,f) =I uk dx, 

and 

for all x e [a, b], since Pk+t refines P". By (90), there exist 

L(x) = lim Lk(x), U(x) = lim Uk(x). 
k-+oo k-+ 00 

Observe that L and U are bounded measurable functions on [a, b ], 
that 

L(x) ~f(x) ~ U(x) (a~ x ~b), 
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(93) 

(94) 

(95) 

and that 

[L dx = 81 [ [dx, [ U dx = 9l [ [dx, 
J :!._ J J 

by (88), (90), and the monotone convergence theorem. 
So far, nothing bas been assumed aboutfexcept tbatfis a bounded 

real function on [a, b ]. 
To complete the proof, note that .f e ?A if and only if its upper and 

lower Riemann integrals are equal, hence if and only if 

JLdx- Judx; 

since L ~ U, (94) happens if and only if L(x) = U(x) for almost all 
x e [a, b 1 (Exercise 1 ). 

In that case, (92) implies that 

L(x) = f(x) = U(x) 

almost everywhere on [a, b 1, so that f is measurable, and (87) follows 
from (93) and (95). 

Furthermore, if x belongs to no Pk, it is quite easy to see that U(x) = 
L(x) if and only if/is continuous at x. Since the union of the sets Pk is count
able, its measure is 0, and we conclude that/is continuous almost every
where on [a, b 1 if and only if L(x) = U(x) almost everywhere, hence 
(as we saw above) if and only iff e fH. 

This completes the proof. 

The familiar connection between integration and differentiation is to a 
large degree carried over into the Lebesgue theory. Iff e !t' on [a, b], and 

(96) F(x) = Ix fdt 
a 

(a~ x ~b), 

then F'(x) =f(x) almost everywhere on [a, b1. 
Conversely, ifF is differentiable at every point of [a, b] ("almost every

where" is not good enough here!) and ifF' e !t' on [a, b 1, then 

F(x) - F(a) = Ix F'(t) 
a 

(a~ x 5. b). 

For the proofs of these two theorems, we refer the reader to any of the 
works on integration cited in the Bibliography. 
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INTEGRATION OF COMPLEX FUNCTIONS 

Suppose f is a complex-valued function defined on a measure space X, and 
f = u + iv, where u and v are real. We say that f is measurable if and only if 
both u and v are measurable. 

It is easy to verify that sums and products of complex measurable functions 
are again measurable. Smce 

Theorem 11.18 shows that 1!1 is measurable for every complex measurable f 
Suppose f.l is a measure on X, E is a measurable subset of X, and f is a 

complex function on X. We say that/ e !t'(J.l) onE provided thatfis measurable 

(97) I Ill df.l < + oo, 
E 

and we define 

if (97) holds. Since I u I ~ Ill, I vI ~ Ill, and Ill ~ I u I + I vI, it is clear that 
(97) holds if and only if u e !l'(f.l) and v e !l' (f.l) on E. 

Theorems 11.23(a), (d), (e), (f), 11.24(b), 11.26, 11.27, 11.29, and 11.32 
can now be extended to Lebesgue integrals of complex functions. The proofs 
are quite straightforward. That of Theorem 11.26 is the only one that offers 
anything of interest: 

Iff e !t'(f.l) on E, there is a complex number c, I cl = 1, such that 

C fEJ dfJ, ~ 0. 

Put g = cf = u + iv, u and v real. Then 

The third of the above equalities holds since the preceding ones show that 
Jg df.1 is real. 

FUNCTIONS OF CLASS I£ 2 

As an application of the Lebesgue theory, we shall now extend the Parseval 
theorem (which we proved only for Riemann-integrable functions in Chap. 8) 
and prove the Riesz-Fischer theorem for orthonormal sets of functions. 
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11.34 Definition Let X be a measurable space. We say that a complex 
function f e !t'2(p) on X iff is measurable and if 

If u is Lebesgue measure, we say fe !t'2
• For fe !t'2(u) (we shall omit the 

phrase "on X" from now on) we define 

I )112 
11/11 = \Jx l/1 2 

djl 

and call 11!11 the !i'2(J,t) norm of f. 

11.35 Theorem Suppose f e !t'2(ji) and g e !t'2(JJ). Then jg e !t'(JJ), and 

(98) 

This is the Schwarz inequality, which we have already encountered for 
series and for Riemann integrals. It follows from the inequality 

0 =:;; fx Cl/1 + Alul)2 dJJ = 11/11 2 + 2A fx l!ul dJJ + A2 llull 2
, 

which holds for every real A. 

11.36 Theorem Iff e !t'2(JJ) and g e !t'2(JJ), then f + g e !t'2(JJ), and 

II!+ ull =:;; 11/11 + llull. 
Proof The Schwarz inequality shows that 

llf+ull 2
= fl/1 2 + ftu+ flu+ flul 2 

~ 11!11 2 + 211/11 llull + llull 2 

= Cll/11 + lluiD2
• 

11.37 Remark If we define the distance between two functions f and g in 
!t'2(JJ) to be II!- ull, we see that the conditions of Definition 2.15 are satisfied, 
except for the fact that II/- ull = 0 does not imply that f(x) = g(x) for all x, 
but only for almost all x. Thus, if we identify functions which differ only on a 
set of measure zero, !t'2(JJ) is a metric space. 

We now consider !t'2 on an interval of the real line, with respect to 
Lebesgue measure. 

11.38 Theorem The continuous functions form a dense subset of !t'2 on [a, b]. 
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More explicitly, this means that for any j e Jl'2 on [a, b], and any a > 0, 
there is a function g, continuous on [a, h], such that 

Proof We shall say that f is approximated in !l'2 by a sequence {g,} if 

IIJ". II (\ .. ~ g, • v as n • oo. 
Let A be a closed subset of [a, b], and KA its characteristic function. 

Put 

t(x) - mf I x - y I (yeA) 

1 
(n I, 2, 3, ... ).~·, 

1 + nt(x) 

Then g, is continuous on [a, b], g,(x) = 1 on A, and g,(x) -+0 on B, 
where B = [a, b]- A. Hence 

11u.- KAII = (f.u; dxf'
2 

-+0 

by Theorem 11.32. Thus characteristic functions of closed sets can be 
approximated in !!' 2 by continuous functions. 

By (39) the same is true for the characteristic function of any 
measurable set, and hence also for simple measurable functions. 

Iff~ 0 and f e !l' 2
, let {s,} be a monotonically increasing sequence 

of simple nonnegative measurable functions such that s,(x) -+ f(x). 
Since If- s,l 2 ~/ 2 , Theorem 11.32 shows that Ill- s,ll -+0. 

The general case follows. 

11.39 Definition We say that a sequence of complex functions { ¢,} is an 
orthonormal set of functions on a measurable space X if 

(n ¥= m), 
(n = m). 

In particular, we must have ¢, e !l'2(/.l). Iff e !l'2(p,) and if 

(n=l,2,3, ... ), 

we write 

as in Definition 8.10. 
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I he definitiOn of a tngonometnc Founer senes ts extended m the same 
way to !!'2 (or even to !t') on [ -n, n]. Theorems 8.1 1 and 8 1 2 (the Bessel 
inequality) hold for any f e !t'2 (y,). The proofs are the same, word for word. 

VIe can now prove the Patseval themem. 

11.40 Theorem Suppose 

00 

(99) J(x) "' I c,ei"x, 
-oo 

where f e !!'2 on [ -n, n]. Lets, be the nth partial sum of (99). Then 

(IOU) 

(101) 

hm 117- s,ll = 0, 
n-+oo 

Proof Let e > 0 be given. By Theorem 11.38, there is a continuous 
function g such that 

e 
II! -ull <-· 2 

Moreover, it is easy to see that we can arrange it so that g(n) = g( -n). 
Then g can be extended to a periodic continuous function. By Theorem 
8.16, there is a trigonometric polynomial T, of degree N, say, such that 

e 
llg- Til <2· 

Hence, by Theorem 8.11 (extended to !!'2
), n ~ N implies 

lis,-/II~ liT-!II< e, 

and (100) follows. Equation (101) is deduced from (100) as in the proof of 
Theorem 8.16. 

Coronary Jffe !l'2 on [ -n, n], and if 

Jn f(x)e-inx dx = 0 (n = 0, ± 1, ±2, ... ), 
-n 

then 11!11 = 0. 

Thus if two functions in !l'2 have the same Fourier series, they differ at 
most on a set of measure zero. 
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11.41 Definition Let f and fn e !t'2 (fJ.) (n = 1, 2, 3, ... ). We say that {f,.} 
converges to fin !i'2(ti) if llf,. fll ....,. 0. We say that {/,} is a Cauchy sequence 
in !t'2{f1.) if for every e > 0 there is an integer N such that n ~ N, m > N implies 
II/,.- J~ll ~e. 

11.42 Theorem If {fn} is a Cauchy sequence in !t' 2(p), then there exiszs a 
function f e !t'2 (fJ.) such that {f,.} converges to .fin !t'2 (f.J.). 

(102) 

(103) 

(104) 

This says, in other words, that !t'2 (fJ.) is a complete metric space. 

Proof Since {/11} is a Cauchy sequence, we ~an find a sequence {nk}, 
k- 1, 2, 3, ... , such that 

(k = 1, 2, 3, ... ). 

Choose a function g e !l' 2 (fJ.). By the Schwarz inequality, 

Hence 

By Theorem 11.30, we may interchange the summation and integration in 
(102). It follows that 

00 

lg(x)i L lfnk(x)- f,.k+t(x)l < + 00 
k=l 

almost everywhere on X. Therefore 

00 

L lfnk+l(x) -.fnk(x)i < + oo 
k=l 

almost everywhere on X. For if the series in (104) were divergent on a 
set E of positive measure, we could take g(x) to be nonzero on a subset of 
E of positive measure, thus obtaining a contradiction to (103). 

Since the kth partial sum of the series 

which converges almost everywhere on X, is 

Ink+ 1(x) - fn~(x), 
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(105) 

we see that the equation 

j(x) = hm ],Jx) 
k-+ 00 

defines f(x) for almost all x e X, and it does not matter how we define 
j (x.) at the remammg pomts of X. 

We shall now show that this function f has the desired properties. 
Let e > 0 be given, and choose N as indicated in Definition 11.41. If 
nk > N, Fatou's themern shows that 

II! J:kll s tim inf 111:, f,.kll s e. 
i-+ 00 

Thus f- /,k e fi' 2(p,), and since f = (f- /,) + /,k, we see that f e !t'2 (fJ.). 
Also, since e is arbitrary, 

lim II/-/,kll = o. 
k-+oo 

Finally, the inequality 

shows that {/,} converges to fin .fi'2(f.J.); for if we take n and nk large 
enough, each of the two terms on the right of (105) can be made arbi
trarily small. 

11.43 The Riesz-Fischer theorem Let {cp,} be orthonormal on X. Suppose 
I. I c, 1 2 converges, and put s, = c1 c/> 1 + · · · + c,cp,. Then there exists a function 
f e .ft'2 (fJ.) such that {s,} converges to fin !t'2(f.J.), and such that 

00 

1~ I c,cp,. 
n=l 

Proof For n > m, 

lis,- smll 2 = lcm+1l 2 + · · · + lc,l 2
, 

so that {s,} is a Cauchy sequence in !t'2 (fJ.). By Theorem 11.42, there is 
a function f e !t'2 (fJ.) such that 

lim II/- s,ll = 0. 
n-+ oo 

Now, for n > k, 
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so that 

Letting n ~ oo, we see that 

(k 1, 2, 3, ... ), 

and the proof ts complete. 

11.44 Definition An orthonormal set { c/>,} is said to be complete if, for 
f e !t'2(JJ,), the equations 

(n = 1, 2, 3, ... ) 

imply that 11!11 = 0. 
In the Corollary to Theorem 11.40 we deduced the completeness of the 

trigonometric system from the Parseval equation (101). Conversely, the Parseval 
equation holds for every complete orthonormal set: 

11.45 Theorem Let {c/>,} be a complete orthonormal set. Iff e !t'2{J-t) and if 

(106) 

then 

(107) 

(108) 

(109) 

00 

f ~I c,cJ>,, 
n=l 

Proof By the Bessel inequality, 1: I c, 1
2 converges. Putting 

s, = Ct cPt + ... + c,cJ>,' 
the Riesz-Fischer theorem shows that there is a function g e !t'2 (~-t) such 
that 

00 

g ~ I c,c/>,' 
n=l 

and such that llg- s,ll ~o. Hence lls,ll ~ llull. Since 

lls,ll 2 = lctl 2 + ... + lc,l 2
, 

we have 
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Now (106), (108), and the completeness of {l/>n} show that II/- gil = 0, 
so that (109) implies (107). 

Combmmg Theorems 11.43 and 11.45, we arnve at the very interesting 
conclusion that every complete orthonormal set induces a 1-1 correspondence 
between the functions f e !l'2(p,) (identifying those which are equal almost 
e~etywhere) on the one hand and the sequences {en} for which E I en 1 2 converges, 
on the other. The representation 

n=l 

together with the Parseval equation, shows that !l'2 (J.1,) may be regarded as an 
infinite-dimensional euclidean space (the so-called "Hilbet t space"), in which 
the point f has coordinates c", and the functions 4>n are the coordinate vectors. 

EXERCISES 

1. Iff;:::_ 0 and JEfdp. = 0, prove thatf(x) = 0 almost everywhere on E. Hint: Let E,. 
be the subset of Eon whichf(x) > 1/n. Write A = UE,.. Then p.(A) = 0 if and only 
if p.(E,.) = 0 for every n. 

2. If J_. f dp. = 0 for every measurable subset A of a measurable set E, thenf(x) = 0 
almost everywhere on E. 

3. If {f,.} is a sequence of measurable functions, prove that the set of points x at 
which {f,.(x)} converges is measurable. 

4. Iff e !l'(p.) on E and g is bounded and measurable on E, then fg e !l'(p.) on E. 

5. Put 

Show that 

but 

[Compare with (77).] 

g(x) = ~~ 
!2~c(x) = g(x) 

!2~cu(x) = g(1- x) 

lim inf f,.(x) = 0 
,. .... 00 

(O<x<i), 
(t <X< 1), 
(0 <X< 1), 
(0 <X::;;: 1). 
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6. Let 

/.(x) {~ (lxl < n), 

(lxl >n). 

Then f,.(x) ~ 0 uniformly on R 1
, but 

(CXl f,. dx = 2 (n = 1, 2, 3, ... ). 
J -CXl 

(We write J~CXl in place of JRl) Thus uniform convergence does not imply domi-
nated convergence in the sense of Theorem 11.32. However, on sets of finite 
measure, umformly convergent sequences of bounded functions do satisfy I heo
rem 11.32. 

7. Find a necessary and sufficient condition that f E gf(o:) on [a, b]. Hint: Consider 
Example 11.6(b) and Theorem 11.33. 

8. If fe g£ on [a, b] and if F(x) = S: f(t) dt, prove that F'(x) =f(x) almost every
where on [a, b ]. 

9. Prove that the function F given by (96) is continuous on [a, b]. 

10. If ~J-(X) < +oo and/E !l' 2(~J-) on X, provethat/E .P(~J-) on X. If 

~J-(X) = + oo, 

this is false. For instance, if 

1 
f(x)=1+lxl' 

then/E !l' 2 on R1
, but/¢ .P on R 1

• 

11. Iff, g E .P(~J-) on X, define the distance between f and g by 

fxlf-uid~J-. 

Prove that .P(~J-) is a complete metric space. 
12. Suppose 

(a) lf(x,y)! <1 if0<x<1,0<y<1, 
(b) for fixed x,f(x, y) is a continuous function of y, 

(c) for fixed y,f(x, y) is a continuous function of x. 
Put 

g(x) = J
0

1 

f(x, y) dy (0 <X< 1). 

Is g continuous? 

13. Consider the functions 

f,.(x) = sin nx (n = 1, 2, 3, ... , -7T < x < 7T) 
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as points of !1' 2
• Prove that the set of these points is closed and bounded, but 

not compact. 
14. Prove that a complex function f is measurable if and only if (- 1(V) is measurable 

for every open set V in the plane. 
15. Let~ be the ring of all elementaty subsets of (0, 1]. If 0 <a< b < 1, define 

<fo([a, b]) <fo([a, b)) <P ((a, b]) <fo((a, b)) b a, 

but define 

cp((O, b)) - cp((O, b]) - 1 + b 

if 0 < b < 1. Show that this gives an additive set function p on f!l, which is not 
regular and which cannot be extended to a countably additive set function on a 

16. Suppose {n~c} is an increasing sequence of positive integers and E is the set of all 
x E ( -71', 7T) at which {sin n~cx} converges. Prove that m(E) = 0. Hint: For every 
AcE, 

and 

2 I~~. (sin n~cx) 2 dx =I~~. (1 -cos 2n~cx) dx-+ m(A) ask-+ oo. 

17. Suppose E c ( -71', 7T), m(E) > 0, S > 0. Use the Bessel inequality to prove that 
there are at most finitely many integers n such that sin nx > S for all x E E. 

18. Suppose/E !£ 2(p.),g E .!R 2(p.). Prove that 

lito dp.l
2 =I I 11 2 

dp. I lul 2 
dp. 

if and only if there is a constant c such that g(x) = cf(x) almost everywhere. 
(Compare Theorem 11.35.) 
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Absolute convergence, 71 

of integral, 138 
Absolute value, 14 
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Addition formula, 178 
Additivity, 30 I 
Affine chain, 268 
Affine mapping, 266 
Affine simplex. 266 
Algebra, 161 

self-adjoint, 165 
uniformly closed, 161 

Algebraic numbers, 43 
Almost everywhere, 317 
Alternating series, 71 
Analytic function, 172 
Anticommutative law, 256 
Arc, 136 
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Arithmetic means, 80, 199 
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Axioms, 5 

Baire's theorem, 46, 82 
Ball, 31 
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Basic form, 257 
Basis, 205 
Bellman, R .• 198 
Bessel inequality, 188, 328 
Beta function, 193 
Binomial series, 20 I 
Bohr-Mollerup theorem, 193 
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Borel set, 309 
Boundary, 269 
Bounded convergence, 322 
Bounded function, 89 
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Bounded set, 32 
Brouwer's theorem, 203 
Buck, R. C., 195 

Cantor, G .• 21, 30, 186 
Cantor set, 41, 81. 138, 168, 309 
Cardinal number, 25 
Cauchy criterion, 54, 59, 147 
Cauchy sequence, 21, 52, 82, 329 
Cauchy's condensation test, 61 
Cell, 31 
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affine, 268 
differentiable, 270 

Chain rule, 105, 214 
Change of variables. 132, 252, 262 
Characteristic function, 313 
Circle of convergence, 69 
Closed curve, 136 
Closed form, 275 
Closed set. 32 
Closure, 35 

uniform, 151, 161 
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Column matrix, 217 
Column vector, 21 0 
Common refinement. 123 
Commutative law, 5. 28 
Compact metric space, 36 
Compact set. 36 
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Complete metric space, 54, 82, 

151, 329 
Complete orthonormal set, 331 
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Complex field, 12, 184 
Complex number, 12 
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Component of a function, 87, 215 
Composition, 86, 105, 127, 207 
Condensation point, 45 
Conjugate, 14 
Connected set, 42 
Constant function, 85 
Continuity, 85 

uniform. 90 
Continuous functions, space of, 

150 
Continuous mapping. 85 
Continuously differentiable curve, 

136 
Continuously differentiable map

ping, 219 
Contraction, 220 
Convergence, 47 

absolute, 71 
bounded, 322 
dominated, 321 
of integral, 138 
pointwise, 144 
radius of, 69, 79 
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uniform, 147 

Convex function, 101 
Convex set. 3 I 
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Coordinates, 16, 20.5 
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Cunningham, F., 167 
Curl, 281 
Curve, 136 

closed, 136 
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rectifiable, 136 
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Davis, P.J., 192 
Decimals, II 
Dedekind, R., 21 
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Dependent set, 20.5 
Derivative, 104 

directional, 218 
of a form, 260 
of higher order, 110 
of an integral, 133, 236, 324 
integration of, 134, 324 
partial, 21.5 
of power series, 17 3 
total, 213 
of a transformation, 214 
of a vector-valued function, 112 

Determinant, 232 
of an operator, 234 
product of, 233 

Diagonal process, 30, 1.57 
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Differentiable function, I 04, 212 
Differential, 213 
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Differentiation (see Derivative) 
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Directional derivative, 218 
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Divergent series, .59 
Domain, 24 
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Fatou's theorem, 320 
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derivative of, 260 
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product of, 2.58, 260 
sum of. 2.56 

Fourier, J. B., 186 
Fourier coefficients, 186, 187 
Fourier series, 186, 187, 328 
Function, 24 
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analytic, 172 
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bounded, 89 
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from right, 97 

continuously differentiable, 219 
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exponential, 178 
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inverse, 90 
Lebesgue-integrable, 31.5 
limit, 144 
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Infinity, II 
Initial-value problem, 119, 170 
Inner product, 16 
Integrable functions, spaces of, 
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Integral: 
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differentiation of, 133, 236, 324 
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lower, 121, 122 
Riemann, 121 
Stieltjes, 122 
upper, 121. 122 

Integral test, 139 
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Inverse function theorem, 221 
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Inverse of linear operator, 207 
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Linear transformation, 206 
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(See also Function) 

Matrix, 210 
ptoduct, 211 

Maximum, 90 
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Measurable function, 310 
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Measure, 398 
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Measure space, 310 
Measure zero, set of, 309, 317 
Mertens, F., 74 
Metric space, 30 
Minimum, 90 
Mobius band, 298 
Monotone convergence theorem, 
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Transforq~ation (see Function; 

Mapping) 
Transitivity, 25 
Triangle inequality, 14, 16, 30, 140 
Trigonometric functions, 182 
Trigonometric polynomial, 185 
Trigonometric series, 186 

Uncountable set, 25, 30, 41 
Uniform boundedness, 155 
Uniform closure, 151 
Uniform continuity, 90 
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Unit cube, 247 
Unit vector, 217 
Upper bound, 3 
Upper integral, 121, 122 
Upper limit, 56 

Value, 24 
Variable of integration, 122 
Vector, 16 
Vector field, 281 
Vector space, 16, 204 
Vector-valued function, 85 

derivative of, 112 
Volume, 255, 282 

Weierstrass test, 148 
Weierstrass theorem, 40, 159 
Winding number, 20 I 

Zero set, 98, 117 
Zeta function. 141 
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Chapter 1 

The Real and Complex 
Number Systen1s 

Exercise 1.1 If r is rational (r =f. 0) and x is irrational, prove that r + x and 
rx are irrational. 

Solutio.n. If r and r + x were both rational, then x = r + x - r would also be 
rational. Similarly if rx were rational, then x = r: would also be rational. 

Exercise 1.2 Prove that there is no rational number whose square is 12. 

First Solution. Since v'i2 = 2v'3, we can inv~ke the previous problem and 
prove that .J3 is irrational. If m and n are integers having no common factor 
and such that m2 ....:. 3n2, then m is divisible by 3 (since if m2 is divisible by 3, 
so is m). Let m = 3k. Then m2 = 9k2, and we have 3k2 = n2 . It then follows 
that n is also divisible by 3 contradicting the assumption that m and n have no 
common factor. 

Second Solution. Suppose m2 = 12n2, where m and n have no common factor. 
It follows that m must be even, and therefore n must be odd. Let m = 2r. 
Then we have r 2 = 3n2 , so that r is also odd. Let r = 28 + 1 and n = 2t + 1. 
Then 

482 + 48 + 1 = 3( 4t2 + 4t + 1) = 12t2 + 12t + 3, 

so that 

4( 8 2 + 8 - 3t2 - 3t) = 2. 

But this is absurd, since 2 cannot be a multiple of 4. 
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Exercise 1.3 Prove Proposition 1.15, i.e., prove the following statements: 
(a) If x =/:- 0 and xy = xz, then y = z. 
(b) If x =/:- 0 and xy = x, then y = 1. 
(c) If x =/:- 0 and xy = 1, then y = ljx. 
(d) If x =/:- 0, then 1/(1/x) = x. 

Solution. (a) Suppose x # 0 and xy = xz. By Axiom (M5) there exists an 
element ljx such that ljx = 1. By (M3) and (M4) we have (ljx)(xy) = 
((ljx)x)y = 1y = y, and similarly (1/x)(xz) = z. Hence y = z. 

(b) Apply (a) with z = 1. 

(c) Apply (a) with z = ljx. 

(d) Apply (a) with x replaced by 1/x, y = 1/(1/x), and z = x. 

Exercise L4 Let E be a nonempty subset of an ordered set; suppose a is a 
lower bound of E, and f3 is an upper bound of E. Prove that a< [3. 

Solution. Since E is nonempty, there exists x E E. Then by definition of lower 
and upper bounds we have a :::; x :::; (3, and hence by property ii in the definition 
of an ordering, we have a< f3 unless a= x = (3. 

Exercise 1.5 Let A be a nonempty set of real numbers which is bounded below. 
Let -A be the set of all numbers -x, where x EA. Prove that 

inf A=- sup( -A). 

Solution: We need to prove that -sup( -A) is the greatest lower bound of A. 
For brevity, let a= -sup( -A). We need to show that a:::; x for all x E A and 
a ~ f3 if f3 is any lower bound of A. 

Suppose x EA. Then, -x E -A, and, hence -x:::; sup(-A). It follows that 
x ~ -sup( -A), i.e., aS x. Thus a is a lower bound of A. 

Now let f3 be any lower bound of A. This means f3 :::; x for all x in A. 
Hence -x:::; -(3 for all x E A, which says y:::; -(3 for ally E -A. This means 
-(3 is an upper bound of -A. Hence -(3 ~ sup( -A) by definition of sup, i.e., 
(3:::; -sup( -A), and so- sup( -A) is the greatest lower bound of A. 

Exercise 1.6 Fix b > 1. 
(a) If m, n, p, q are integers, n > 0, q > 0, and r = mjn = pjq, prove that 

Hence it makes sense to define br = (bm) l/n. 

(b) Prove that br+s = brbs if r and s are rational. 
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(c) If x is real, define B ( x) to be the set of all numbers bt, where t is rational 
and t :$ x. Prove that 

br = supB(r) 

when r is rational. Hence it makes sense to define 

bx =sup B(x) 

for every real x. 

(d) Prove that bx+y = bxby for all real x and y. 

Solution. (a) Let k = mq == np. Since there is only one positive real number c 
such that cnq = bk (Theorem 1.21), if we prove that both (bm)lfn and (bP) 1fq 
have this property, it will follow that they are equal. The proof is then a routine 
computation: ((bm)lfntq == (bm)q = bmq = bk, and similarly for (lJP)lfq. 

(b) Let r = r;: and s = ~· Then r + s = m~~vn, and 

by the laws of exponents for integer exponents. By the corollary to Theorem 
1.21 we then have 

where the last equality follows from part (a). 

(c) It will simplify things later on if we amend the definition of B(x) slightly, 
by defining it as {bt : t rational, t < x }. It is then slightly more difficult to 
prove that br = sup B ( r) if r is rational, but the technique of Problem 7 comes 
to our rescue. Here is how: It is obvious that br is an upper bound of B(r). 
We need to show that it is the least upper bound. The inequality b11n < t if 
n > (b - 1)/(t - 1) is proved just as in Problem 7 below. It follows that if 
0 < x < br, there exists an integer n with b1fn < br jx, i.e., x < br-l/n E B(r). 
Hence x is not an upper bound of B(r), and so br is the least upper bound. 

(d) By definition bx+y = supB(x + y), where B(x + y) is the set of all 
numbers bt with t rational and t < x + y. Now any rational number t that is 
less than x + y can be written as r + s, where r and s are rational, r < x, and 
s < y. To do this, let r be any rational number satisfying t- y < r < x, and 
let s = t- r. Conversely any pair of rational numbers r, s with r < x, s < y 
gives a rational sum t = r + s < x + y. Hence B(x + y) can be described as the 
set of all numbers brbs with r ·< x, s < y, and rands rational, i.e., B(x + y) is 
the set of all products uv, where u E B(x) and v E B(y). 

Since any such product is less than supB(x)supB(y), we see that the num
ber M = supB(x)supB(y) is an upper bound for B(x + y). On the other 
hand, suppose 0 < c < supB(x)supB(y). Then c/(supB(x)) < supB(y). Let 
m = (1/2)(c/(supB(x)) + supB(y)). Then cfsupB(x) < m < supB(y), and 
there exist u E B(x), v E B(y) such that cjm < u and m < v. Hence we have 
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c = (cjm)m < uv E B(x + y), and soc is not an upper bound for B(x + y). It 
follows that supB(x) supB(y) is the least upper bound of B(x + y), i.e., 

as required. 

Exercise 1. 7 Fix b > 1, y > 0, and prove that there is a unique real x such 
that bx = y, by completing the following outline. (This xis called the logarithm 
of y to the base b.) 

(a) For any positive integer n, bn- 1 ~ n(b- 1). 

(b) Hence b- 1 ~ n(b1 fn- 1). 

(c) If t > 1 and n > (b- 1)/(t- 1), then b1fn < t. 
(d) If w is such that bw < y, then bw+(l/n) < y for sufficiently large n; to see 

this apply part (c) with t = y · b-w. 

(e) If bw > y, then bw-(l/n) > y for sufficiently large n. 

(f) Let A be the set of all w such that bw < y, and show that x = sup A 
satisfies bw = y. 

(g) Prove that this x is unique. 

Solution. (a) The inequality bn - 1 ~ n(b- 1) is equality if n = 1. Then, by 
induction bn+l -1 = bn+1 -b+ (b-1) = b(bn -1) + (b-1) ~ bn(b-1) + (b-1) = 
(bn + 1)(b- 1) ~ (n + 1)(b- 1). 

(b) Replace b by b1fn in part (a). 

(c) The inequality n > (b -1)/(t -1) can be rewritten as n(t -1) > (b -1), 
and since b- 1 ~ n(b1fn - 1), we have n(t- 1) > n(b1fn - 1), which implies 
t > blfn. 

(d) The application of part (c) with t = y · b-w > 1 is immediate. 

(e) The application of part (c) with t = bw · (1/y) yields the result, as in 
part (d) above. 

(f) There are only three possibilities for the number x =sup A: 1) bx < y; 2) 
bx > y; 3) bx = y. The first assumption, by part (d), implies that x + (1/n) E A 
for large n, contradicting the assumption that x is an upper bound for A. The 
second, by part (e), implies that x- (1/n) is an upper bound for A if n is large, 
contradicting the assumption that x is the smallest upper bound. Hence the 
only remaining possibility is that bx = y. 

(g) Suppose z =f:. x, say z > X. Then bz = bx+(z-x) = bxbz-x > bx = y. 
Hence x is unique. (It is easy to see that bw > 1 if w > 0, since there is a 
positive rational number r = ":: with 0 < r < w, and br = ( bm) 1 In. Then 
bm > 1 since b > 1, and (bm)lfn > 1 since 1n = 1 < bm.) 
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Exercise 1.8 Prove that no order can be defined in the complex field that turns 
it into an ordered field. Hint: -1 is a square. 

Solution. By Part (a) of Proposition 1.18, either i or -i must be positive. Hence 
-1 = i 2 = ( -i)2 must be positive. But then 1 = ( -1)2, must also be positive, 
and this contradicts Part (a) of Proposition 1.18, since 1 and -1 cannot both 
be positive. 

Exercise 1.9 Suppose z = a+ bi, w = c + di. Define z < w if a < c, and 
also if a = c but b < d. Prove that this turns the set of all complex numbers 
into an ordered set. (This type of order relation is called a dictionary order, or 
lexicographic order, for obvious reasons.) Does this ordered set have the least 
upper bound property? 

Solution. We need to show that either z < w or z = w, or w < z. Now since 
the real numbers are ordered, we have a < c or a = c, or c < a. In the first 
case z < w; in the third case w < z. Now consider the second case. We must 
have b < d or b = d or d < b. In the first of these cases z < w, in the third case 
w < z, and in the second case z = w. 

We also need to show that if z <wand w < u, then z < u. Let u = e + fi. 
Since z < w, we have either a < cor a= c and b < d. Since w < u we have 
either c < for c = f and d <g. Hence there are four possible cases: 

Case 1: a< c and c <f. Then a< f and so z < u, as required. 
Case 2: a < c and c = f and d < g. Again a < f, and z < u. 
Case 3: a = c and b < d and c < f. Once again. a < f and so z < u. 
Case 4: a = c and b < d and c = f, and d < g. Then a = f and b < g, and 

so z < u. 

Exercise 1.10 Suppose z =a+ bi, w = u + iv, and 

a= ('wl2+ ur/2, b = cwl2- ur/2. 

Prove that z2 = w if v 2: 0 and that (z)2 = w if v :::; 0. Conclude that every 
complex number (with one exception) has two complex square roots. 

Solution. 

Now 
a2 _ b2 = lwl + u _ lwl - u = u 

2 2 ' 

and, since ( xy) 112 = x 112y112, 

( jwj+ujwj-u)l/2 (jwj2-u2)I/2 
2ab = 2 = 2 2 2 4 . 
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Hence 

2ab = 2( (~) 2r12 

Now (x2)112 = x if x 2: 0 and (x2)112 = -x if x:::; 0. We conclude that 2ab = v 
if v 2: 0 and 2ab = -v if v :::; 0. Hence z2 = w if v 2: 0. Replacing b by -b, we 
find that (z) 2 = w if v :::; 0. . 

Hence every non-zero complex number has (at least) two complex square 
roots. 

Exercise 1.11 If z is a complex number, prove that there exists an r > 0 and a 
complex number w with lwl = 1 such that z = rw. Are wand r always uniquely 
determined by z? 

Solution. If z = 0, we take r = 0, w = 1. (In this case w is not unique.) 
Otherwise we taker= !zl and w = z/lzl, and these choices are unique, since if 
z = rw, we must haver= r!wl = !rw! = !z!, zjr. 

Exercise 1.12 If z1 , ... , Zn are complex, prove that 

Solution. The case n = 2 is Part (e) of Theorem 1.33. We can then apply this 
result and induction on n to get 

l(z1 + Z2 + · · · + Zn-1) + Znl 

< lz1 + Z2 + · · · + Zn-11 + !zn I 
< lz1! + !z2! + · · · + lzn-11 + !znl· 

Exercise 1.13 If x, yare complex, prove that 

!lxi-IYI! :::; !x- Yl· 

Solution. Since x = x- y + y, the triangle inequality gives 

ixl :::; !x- Yl + IYI, 

so that lxi-IYI :::; !x- yj. Similarly IY!-Ix! :::; !x- Yl· Since !xl- IYI is a real 
number we have either jlxi-IYI! = lxi-IYI or l!xi-IYI! = IY!-!x!. In either 
case, we have shown that llxl -!ylj :::; !x- Yl· 
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Exercise 1.14 If z is a complex number such that \z\ = 1, that is, such that 
zz = 1, compute 

Solution. \1 + zj 2 = (1 + z)(1 + z) = 1 + z + z + zz = 2 + z + z. Similarly 
\1- z\ 2 = (1- z)(1- z) = 1- z- z + zz = 2- z- z. Hence 

\1 + z\ 2 + \1- z\ 2 = 4. 

Exercise 1.15 Under what conditions does equality hold in the Schwarz in
equality? 

Solution. The proof of Theorem 1.35 shows that equality can hold if B = 0 or 
if Baj- Cb_1 = 0 for all j, i.e., the numbers aj are proportional to the numbers 
bj. (In terms of linear algebra this means the vectors a= (a1, a2, ... , an) and 
b = (bll b2 , ... , bn) in complex n-dimensional space are linearly dependent. Con
versely, if these vectors are linearly independent, then strict inequality holds.) 

Exercise 1.16 Suppose k 2: 3, x, y E Rk, \x - y\ = d > 0, and r > 0. Prove: 

(a) If 2r > d, there are infinitely many z E Rk such that 

\z - x\ = \z - y\ = r. 

(b) If 2r = d, there is exactly one such z. 

(c) If 2r < d, there is no such z. 

How must these statements be modified if k is 2 or 1? 

Solution. (a) Let w be any vector satisfying the following two equations: 

w·(x-y) 

\w\2 

From linear algebra it is known that all but one of the components of a solution 
w of the first equation can be arbitrary. The remaining component is then 
uniquely determined. Also, if w is any non-zero solution of the first equation, 
there is a unique positive number t such that tw satisfies both equations. (For 
example, if x1 =/:. y1 , the first equation is satisfied whenever 

Z2(X2 - Y2) + ... + Zk(Xk- Yk) 
Zl = . 

Yl- Xl 

If (z1, z2, ... , zk) satisfies this equation, so does (tz1 , tz2, ... , tzk) for any real 
number t.) Since at least two of these components can vary independently, we 
can find a solution with these components having any prescribed ratio. This 
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ratio does not change when we multiply by the positive number t to obtain 
a solution of both equations. Since there are infinitely many ratios, there are 
infinitely many distinct solutions. For each such solution w the vector z = 

~x + ~y + w is a solution of the required equation. For 

and a similar relation holds for jz - yj 2 . 

(b) The proof of the triangle inequality shows that equality can hold in this 
inequality only if it holds in the Schwarz inequality, i.e., one of the two vectors 
is a scalar multiple of the other. Further examination of the proof shows that 
the scalar must be nonnegative. Now the conditions of this part of the problem 
show that 

jx- yj = d = jx- zj + jz - yj. 

Hence it follows that there is a nonnegative scalar t such that 

x- z = t(z- y). 

However, the hypothesis also shows immediately that t = 1, and so z is uniquely 
determined as 

x+y 
Z= -2-. 

(c) If z were to satisfy this condition, the triangle inequality would be vio
lated, i.e., we would have 

jx- yj = d > 2r = jx- zj + jz- yj. 

When k = 2, there are precisely 2 solutions in case (a). When k = 1, there 
are no solutions in case (a). The conclusions in cases (b) and (c) do not require 
modification. 

Exercise 1.17 Prove that 

if x E Rk and y E Rk. Interpret this geometrically as a statement about 
parallelograms. 

Solution. The proof is a routine computation, using the relation 

jx±yj2 = (x±y) · (x±y) = jxj2 ±2x·y+ jyj 2 . 
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If x and y are the sides of a parallelogram, then x + y and x - y are its 
diagonals. Hence this result says that the sum of the squares on the diagonals 
of a parallelogram equals the sum of the squares on the sides. 

Exercise 1.18 If k 2:: 2 and x E Rk, prove that there exists y E Rk such that 
y =I= 0 but x · y = 0. Is this also true if k = 1? 

Solution. If x has any components equal to 0, then y can be taken to have 
the corresponding components. equal to 1 and all others equal to 0. If all the 
components of x are nonzero, y can be taken as ( -x2, x1, 0, ... , 0). This is, of 
course, not true when k = 1, since the product of two nonzero real numbers is 
nonzero. 

Exercise 1.19 Suppose a E Rk, bE Rk. Find c E Rk and r > 0 such that 

lx - ai = 2jx- hi 

if and only if lx- cl = r. (Solution: 3c = 4b- a, 3r = 2lb- a!.) 

Solution. Since the solution is given to us, all we have to do is verify it, i.e., we 
need to show that the equation 

lx-al = 2lx- bl 

is equivalent to lx - cl = r, which says 

If we square both sides of both equations, we an equivalent pair of equations, 
the first of which reduces to 

3lxl 2 + 2a · x- 8b · x- lal2 + 4lbl 2 = 0, 

and the second of which reduces to this equation divided by 3. Hence these 
equations are indeed equivalent. 

Exercise 1.20 With reference to the Appendix, suppose that property (III) 
were omitted from the definition of a cut. Keep the same definitions of order 
and addition. Show that the resulting ordered set has the least-upper-bound 
property, that addition satisfies axioms (A1) to (A4) (with a slightly different 
zero element!) but that (A5) fails. 

Solution. We are now defining a cut to be a proper subset of the rational 
numbers that contains, along with each of its elements, all smaller rational 
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numbers. Order is defined by containment. Now given a set A of cuts having an 
upper bound {3, let a be the union of all the cuts in A. Obviously a is properly 
contained in (3, and so is a proper subset of the rationals. It also obviously 
satisfies the property that if p E a and q < p, then q E a; hence a is a cut. It is 
further obvious that a contains each elements of A, and so is an upper bound 
for A. It remains to prove that there is no smaller upper bound. 

To that end, suppose, "/ < a, then a contains an element x not in "Y· By 
definition of a, x must belong to some cut b in A. But then "Y < b, and so "Y is 
not an upper bound for A. Thus a is the least upper bound. 

The proof given in the text goes over without any change to show that (Al), 
(A2), and (A3) hold. As for (A4) let 0 = {r : r ::; 0}. We claim 0 +a = a. 
The proof is easy. First, we obviously have 0 +a ~ a. For r + s ::; s if r ::; 0. 
Hence r + s E a if s E a. Conversely a ~ 0 +a, since each s in a can be written 
as 0 + s. 

Unfortunately, if 0' = {r : r < 0}, there is no element a such that a+ 0' = 

0. For a + 0' has no largest element. If x = r + s E a + 0', where r E a and 
s E 0', there is an element t E 0' with t > s, and so r+t E a+O' and r+t > s. 
Since 0 has a largest element (namely 0), these two sets cannot be equal. 



Chapter 2 

Basic Topology 

Exercise 2.1 Prove that the empty set is a subset of every set. 

Solution. Let 0 denote the empty set, and let E be any set. The statement 
0 C E is equivalent to the statement, "If x E 0, then x E E." Since the 
hypothesis of this if-then statement is false, the implication is true, and we are 
done. 

Exercise 2.2 A complex number z is said to be algebraic if there are integers 
ao, ... , an, not all zero, such that 

Prove that the set of all algebraic numbers is countable. Hint: For every positive 
integer N there are only finitely many equations with 

n+laol + la1l + .. · + lanl = N. 

Solution. Following the hint, we let AN be the set of numbers satisfying one of 
the equations just listed with n+laol+la1l+· · ·+lanl = N. The set AN is finite, 
since each equation has only a finite set of solutions and there are only finitely 
many equations satisfying this condition. By the corollary to Theorem 2.12 the 

00 
set of algebraic numbers, which is the union U AN, is at most countable. Since 

N=2 
all rational numbers are algebraic, it follows that the set of algebraic numbers 
is exactly countable. 

Exercise 2.3 Prove that there exist real numbers which are not algebraic. 

Solution. By the previous exercise, the set of real algebraic numbers is countable. 
If every real number were algebraic, the entire set of real numbers would be 
countable, contradicting the remark after Theorem 2.14. 
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Exercise 2.4 Is the set of irrational real numbers countable? 

Answer. No. If it were, the set of all real numbers, being the union of the 
rational and irrational numbers, would be countable. 

Exercise 2.5 Construct a bounded set of real numbers with exactly three limit 
points. 

Solution. Let E be the set of numbers of the form a+ ~' where a E {1, 2, 3} 
and n E {2, 3, 4, 5, ... , }. It is clear that {1, 2, 3} ~ E', since every deleted 
neighborhood of 1, 2, or 3, contains a point in E. Conversely, if x rt. {1, 2, 3}, 
let 8 = min{lx -11, lx- 21, lx- 31}. Then the set U of y such that jx- Yi < 8/2 
contains at most a finite number of points of E, since the set V = (1, 1 + ~) U 
(2, 2 + ~) U (3, 3 + ~) is disjoint from U, and V contains all the points of the set 
E except possibly the finite set of points a + ~ for which n :::; t. If p 1 , ... , Pr 
are the points of E in U, let 'TJ be the minimum of ~ and the lx- Pj I for which 
x =I= p1·. Then the set W of points y such that IY- xi < 'TJ contains no points of 
E except possibly x. Hence x ~ E'. Thus E' = {1, 2, 3}. 

Exercise 2.6 Let E' be the set of all limit points of a set E. Prove that 
E' is closed. Prove that E and E have the same limit points. (Recall that 
E = E U E'.) Do E and E' always have the same limit points? 

Solution. To show that E' is closed, we shall show that (E')' ~ E'. In fact, we 
shall show the even stronger statement that (E)' ~ E'. To do this let x E (E) 1

, 

and let r > 0. We need to show that x E E'; that is, since r > 0 is arbitrary, 
we need to find a point z E E with 0 < d(z,x) < r. There certainly is a 
pointy of E such that 0 < d(y,x) < r. If y E E, we can take z = y, and we 
are done. If y rt. E, then y E E'. Let s = min ( d(x, y), r - d(x, y)), so that 
s > 0. Since y E E', there exists z E E with 0 < d(x, z) < s. But it then 
follows that d(z, x) 2: d(x, y) - d(x, z) > 0 and d(z, x) S d(x, y) + d(y, z) < 
d(x, y) + r- d(x, y) = r, and we are done in any case. 

To show that E and E have the same limit points, we need only show the 
converse of the preceding containment. But this is easy. Suppose x E E'. Since 
every deleted neighborhood of x contains a point of E, a fortiori every deleted 
neighborhood of x contains a point of E. Hence E' ~ (E)'. 

Certainly E and E' may have different sets of limit points. For example if 
E = {0, 1, ~' ~' ... , ~' ... },then E' = {0}, while (E')' = 0. 

Exercise 2. 7 Let A1, A2, A3, ... be subsets of a metric space. 

(a) If Bn = Uf=1Ai, prove that Bn = Uf=1Ai, for n = 1,2,3, .... 

(b) If B = U~1 Ai, prove that B :J U~1 Ai. 
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Show, by an example, that this inclusion can be proper. 

Solution. We first show that E U F = E U F, which follows from the stronger 
fact that ( E U F)' = E' U F'; To show this, in turn, we note that if x E E', then 
certainly x E (E U F)', and similarly if x E F'. Hence E' U F' ~ (E U F)'. To 
show the converse, suppose x ~ E' U F'. Then there is a positive number r such 
that there is no element y of E with 0 < d(x, y) < r, and a positive number s 
such that there is no element y ofF with 0 < d(x, y) < s. Hence if t = min(r, s), 
then t > 0, and there is no element y of E U F with 0 < d(x, y) < t. Therefore 
x ~ (E U F)'. 

The general result of (a) now follows easily by induction on n, since 

Bn - Uf,;,1Ai 

- A1 U Uf=2Ai 

- A1 U Uf=2Ai 

- A1 U Uf=2Ai 

- Uf=1Ai. 

Part (b) amounts to the trivial observation that, since B ~ Ai for all i, then 
B 2 Ai for all i, and so 

B 2 U~1 Ai· 

If we let Ai = {ri}, where {r1, r2, ... , rn, .. . } is an enumeration of the ratio
nal numbers, then B is the full set of rational numbers. Hence B = R1, while 
Ai = Ai for each i, i.e., UAi is the set of rational numbers. 

Exercise 2.8 Is every point of every open set E c R2 a limit point of E. 
Answer the same question for closed sets in R2. 

Answer. Yes. Every point of an open set E is a limit point of E. To see this, 
let E be an open set in R2, let (x1,x2) E E, lets be such that (y1,y2) E E if 
J(Yl - x1)2 + (Y2- x2) 2 < s, and let r > 0. Then the point (zll z2) = (x1 + 
~ min(r, s), x2) belongs toE and satisfies 0 < j(z1 - x1)2 + (z2- x2) 2 < r. 

There are closed sets for which this statement is not true. For example, any 
finite set E is closed, yet E' = 0 for a finite set. 

Exercise 2.9 Let E 0 denote the set of all interior points of a set E. 

(a) Prove that E 0 is always open. 

(b) Prove that E is open if and only if E 0 = E. 

(c) If G C E and G is open, prove that G C E 0 • 

(d) Prove that the complement of E 0 is the closure of the complement of E. 

(e) Do E and E always have the same interiors? 
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(f) DoE and E 0 always have the same closures? 

Solution. (a) Let x E E 0 • Then there exists r :> 0 such that y E E if d(x, y) < r. 
We claim that in fact y E E 0 if d(x, y) < r, so that x E (E0 ) 0 • Indeed if 
d(x, y) < r, let s = r - d(x, y), so that s > 0. Then if d(z, y) < s, we have 
(by the triangle inequality) d(x, z) < r, and so z E E. By definition this means 
y E E 0 . Since y was any point with d(x, y) < r, it follows that all such points 
are in E 0 , and so X E (E0 ) 0 • 

(b) By definition E is open if and only if each of its points is an interior 
point, which says precisely that E = E 0 • 

(c) If G C E and G is open, then G = G0 ~ E 0 • 

(d) Part (c) shows that E 0 is the largest open set contained in E, i.e., the 
union of all open sets contained in E. Hence its complement is the intersection 
of all closed sets containing the complement of E, and this, by Theorem 2.27 
(c), is the closure of the complement of E. 

(e) Emphatically not. If E is the rational numbers in the space Rl, then 
E 0 = 0, while E = R1 , so that the interior of E is R1 . 

(f) Emphatically not. If E is the rational numbers in the space R 1, then 
E = R1 , while E 0 = 0, so that E 0 = 0. 

Exercise 2.10 Let X be an infinite set. For p EX and q EX, define 

d(p,q) = { ~: (if p # q), 
(if p = q). 

Prove that this is a metric. Which subsets of the resulting metric space are 
open? Which are closed? Which are compact? 

Solution. It is obvious that d(p, q) > 0 if p # q and d(p,p) = 0; likewise it 
is obvious that d(p, q) = d(q,p). To show the triangle inequality d(x, z) :::; 
d(x, y) + d(y, z), note that the maximal value of the left-hand side is 1, and can 
be attained only if x # z. In that case y cannot be equal to both x and z, so 
that at least one term on the right-hand side is also 1. 

Each one-point set is open in this metric, since B 1( x) ~ { x}. Therefore 
2 

every set, being the union of all its one-point subsets, is open. Hence every 
set, being the complement of its complement, is also closed. Only finite sets 
are compact, since any infinite subset has an open covering (by the union of its 
one-point subsets) that cannot be reduced to a finite subcovering. 

Exercise 2.11 For x E R 1 andy E R 1 , define 

d1(x,y) 

d2(x,y) 

(x- y)2, 

Jix-yl, 



d3(x, y) 

d4(x, y) 

d0 (x, y) 

- lx2 - Y2 1, 
- lx- 2yl, 

lx-yl 
1 + lx- yi' 

Determine, for each of these, whether it is a metric or not. 

Solution. The function d1 (x, y) fails the triangle inequality condition, since 

The function d2(x, y) meets the triangle inequality condition, since 

vlx- zi :5 vlx..:. Yi + VIY- zi, 
as one can easily see by squaring both sides. Hence d2 is a metric. 
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The function d3(x, y) fails the positivity condition, since d2(l, -1) = 0. (Re
stricted to [0, oo), d3 would be a metric.) 

Since d4 (1, ~) = 0, the function d4(x, y) likewise fails the positivity condition. 
It also fails the symmetry condition, since d4(x, y) =I= d4(y, x) in general. 

The function d5(x, y) is a metric. In fact we can prove more generally that 
if d(x, y) is a metric, so is p(x, y) = 1~~:,~). It is obvious that p meets the 
nonnegativity and symmetry requirements, and we need only verify the triangle 
inequality, which in this case says th.at 

d(x,z) d(x,y) d(y,z) 
1 + d(x, z) ::; 1 + d(x, y) + 1 + d(y, z)' 

To do this, let a= d(x, z), b = d(x, y), and c = d(y, z). We need to show that 
if a ::; b + c, then 

a b c 
--<--+--. 1+a- 1+b 1+c 

Clearing out the denominators, we find this inequality to be equivalent to 

a + ab + ac + abc ::; b + c + ab + ac + 2bc + 2abc, 

which is clearly true. 

Exercise 2.12 Let K C R1 consist of 0 and the numbers 1/n, for n = 1, 2, 
3, .... Prove that E is compact directly from the d.efinition without using the 
Reine-Borel theorem. 

Solution. Suppose K C Uo" where U0 is open. Then 0 must be in some set U00 • 

Since U 00 is open, there exists 8 > 0 such that ( -8, 8) C U 00 • In particular 
1/n E U00 if n > ~· Let N be the largest integer in !, and let O.j, j = 1, ... , N, 

1 N 
be such that ..,. E Uoj. Then K C U Uoj. 

J j=O 
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Exercise 2.13 Construct a compact set of real numbers whose limit points 
form a countable set. 

Solution. Let K = {0} U { 1..: n = 1, 2, ... } U { .1.. + 1..: n = m, m + 1, ... ; m = n m n 
1, 2, ... }. It is clear that 0 and the points ~ are limit points of K. We need 
only show that these are all the limit points. Since x ~ 0 for all x E K and 
for any positive number c there is only a finite set of numbers in K larger than 
1 + c, it is clear that no negative number and no number larger than 1 can be 
a limit point of K. Hence we need only consider positive numbers x satisfying 
0 < x < 1. If x is such a number and x is not one of the points ~, let p be 
such that p~l < :r: < ~' and let c = ! min(x- p~l, ~ - x). The intersection 
of the set K with the interval ( x - c, x + c) is contained in the set of points 
{P!1 +t: p+1::; k < :}u{~ +~: m::; n < ~ 1 - P!2; m = p+2, ... , 2p+2}, 
which is a finite set. Therefore x cannot be a hmit point of K. 

Exercise 2.14 Give an example of an open cover of the segment (0, 1) which 
has no finite subcover. 

Solution. Let An=(~, n~ 1 ), n = 3,4, .... If 0 <X< 1, then X E An if 
00 

n > 1/min(x, 1-x), so that U An covers (0, 1). However, the union any finite 
n=3 

collection { A1 , ... , AN} is an interval ( t, kk 1 ), which fails to contain the point 
1 

2k. 

Exercise 2.15 Show that Theorem 2.36 and its Corollary become false (in R1 , 

for example) if the word "compact" is replaced by "closed" or "bounded." 

Solution. Theorem 2.36 asserts that if a family of closed subsets has the finite 
intersection property (any finite collection of the sets has a non-empty inter
section), then the entire family has a non-empty intersection. To see why this 
fails for sets that are merely bounded or merely closed, let An = (0, ~) and 
Bn = [n, oo). The sets An are bounded, and the sets Bn are closed. Any finite 
intersection of the A~ s is nonempty, and any finite intersection of the B~ s is 

00 00 

nonempty, yet n An= 0 = n Bn· 
n=l n=l 

The corollary asserts that a nested sequence of nonempty compact sets has 
a nonempty intersection, and the examples just given show that compactness 
cannot be replaced by either closedness or boundedness. 

Exercise 2.16 Regard Q, the set of all rational numbers, as a metric space, 
with d(p, q) = Jp- qJ. Let E be the set of all p E Q such that 2 < p2 < 3. Show 
that E is closed and bounded in Q, but that E is not compact. Is E open in Q? 
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Solution. Suppose x E Q \E. We claim that x is an interior point of the 
complement of E (which by definition means E is closed). In fact if x 2 ::; 2, 
then x 2 < 2, since there is no rational number whose square is 2. If x = 0, let .r-- 2 8 = 1; otherwise let 8 =min( y 23x2

, 23j;1 ). Then if y E (x- 8,x + 8), we have 

y2 < 2. This is obvious if x = 0 and 8 = 1. In the other c;:ase let y = x+h, where 
ihl < 8. Then y2 = x2 +2xh+h2 < x2 +2lxl8+82 < x2 +~(2-x2)+ 23x2 = 2. 
Hence x is an interior point of the complement of E. 

Similarly suppose x 2 2: 3. Since there is no rational number whose square is 
3, we must have x2 > 3. Since x =J. 0, we let 8 = x;1; 13 . Then if y E (x- 8, x+8), 
we have y2 > 3. For since y . x + h, with I hi < 8, and so y2 = x2 + 2xh + h2 > 
x 2 - 2lxl8 = 3. Thus again x is an interior point of the complement of E. 

Hence in all cases Q \ E is open, so that E is closed. 

That E is bounded is obvious, since E C [-2, 2]. 
To show that E is not compact, let Un = {p: 2 < p2 < 3- ~}, n = 2, 3, .... 

The argument that will be used below to show that E is open shows that Un is 
open. The sets Un cover E, but no finite collection of them covers E. Thus E 
is not compact. 

The set E is also open, since if 2 < x2 < 3, we can let 8 be the minimum of 

r;;:;2 3-x2 d x 2 - 2 Th 'f ( £ £) t h 2 2 3 y --r' 3'fXi' an . 2'jXf· en 1 y E x-u, x + u , we mus ave < y < , 
by the same set of inequalities that was used above. 

Exercise 2.17 Let E be the set of all x E [0, 1] whose decimal expansion con
tains only the digits 4 and 7. Is E countable? Is E dense in [0, 1]? Is E compact? 
Is E perfect? 

Solution. The set E is not countable, since for any hypothetical list of its 
elements a1 , a2 , .•. , an, ... we can always produce an element a of E not in the 
list by taking the nth digit of a to be 4 if the nth digit of an is 7 and equal to 
7 if the nth digit of an is 4. 

The set E is not dense in [0, 1], since E C [0.4, 0.8] 

The set E is closed and bounded, and therefore compact. To show that E 
is closed, let x E [0, 1] \ E, i.e., the decimal expansion of x contains a digit 
different from 4 and 7. Let the first such digit occur in the nth place (xn)· Let 
y be any element of E, and let the first digit in which x andy differ be the mth 

00 

digit (m::; n, Xm # Ym)· Then lx- Yl 2: 10-m- c, c ::; L 10-klxk - Yki· 
k=m+l · 

Since Yk E { 4, 7} and xk E {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, it follows that lxk- Ykl ::; 7. 
Hence c :S ~10-m, and it follows that lx - Yl 2: 9 } 0m 2: 9.fon. Thus x is an 
interior point of [0, 1] \ E, and so E is closed. 

The set E is perfect. For each x E E and each c > 0 we can find a point 
y E E with 0 < lx- Yi < c by changing the nth digit of x from 4 to 7 or from 7 
to 4 in the nth place for any n > 1 -log10 c. Hence x E E', i.e., E ~ E'. Since 
we already know E is closed, it follows that E = E'. 
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Exercise 2.18 Is there a non-empty perfect set in R 1 which contains no ratio
nal number? 

Answer. Yes. Let {r1, r2, ... , rn, .. . } be the rational numbers in the interval 
[-71, 71]. Let Eo = [-71, 71]. Now assuii_le that Ek has been chosen for k < n 
in such a way that Ek is a pa.irwise disjoint union of at most 2k+l - 1 closed 
intervals with irrational endpoints, each of positive length at most ( ~ )k71 and 
that Ek does not contain rj if j ::; k. (All of these conditions hold trivially for 
k = 0.) Define a set Fk+l, which is obtained from Ek by removing first the 
middle third of each of the intervals that constitute Ek· The result is a set of 
at most 2k+2 - 2 pairwise disjoint intervals having irrational endpoints, each 
interval being of length at most ( ~ )k+11r. If rk+l ~ Fk+l, let Ek+l = Fk+l· 
If Tk+l E Fk+l, theri rk+l is not the endpoint of the interval I = [a, b] of 
Fk+l that it belongs to. Hence let 8 be an irrational positive number less than 
the minimum of rk+l -a and b- Tk+l, and let Ek+l be obtained from Fk+l 
by removing the interval (rk+l - 8, rk+l + 8) (which has irrational endpoints). 
Then Ek+l consists of at most 2k+2 - 1 pairwise disjoint closed intervals, each 
of positive length at most ( ~ )k+171, and each having irrational endpoints. 

The sets Ek form a nested sequence of nonempty compact sets. Hence the 
00 

intersection E = n is a nonempty compact set. By construction it contains no 
k=O 

rational numbers. To show that it is perfect, we merely observe that if x E E, 
then for each k there is a unique interval h = [ak, bk], among the finite set of 
closed intervals constituting the set Ek such that x E h. Let Yk = ak if ak =/=- x, 
otherwise let Yk = bk. In either case Yk E E (since in our construction no 
endpoint of any Ek is ever removed) and iYk- xi < 2 · 3-k71. Therefore x E E'. 

Exercise 2.19 (a) if A and Bare disjoint closed sets in some metric space X, 
prove that they are separated. 

(b) Prove the same for disjoint open sets. 

(c) Fix p EX, 8 > 0, define A to be the set of all q EX for which d(p, q) < 8, 
define B similarly with > in place of<. Prove that A and B are separated. 

(d) Prove that every connected space with at least two points is uncountable. 
Hint: Use (c). 

Solution. (a) We are given that An B = 0. Since A and B are closed, this 
means A n B = 0 = An B, which says that A and B are separated. 

(b) Since X\ B is a closed set containing A, it follows from Theorem 2.27 
(c) that X\ B 2 A, i.e., that An B = 0. Similarly An B = 0. 

(c) The sets A and B are disjoint open sets, hence by part (b) they are 
separated. 

(d) Let x EX andy EX, and let d(x, y) = d > 0. Then for every 8 E (0, d), 
there must be a point z such that d(x, z) = 8. (If not, the sets A and B defined 
in part (c) would separate X.) Hence there is a subset of X that can be placed 
in one-to-one correspondence with the interval [0, d], and so X is uncountable. 
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Exercise 2.20 Are closures and interiors of connected sets always conneCted? 
(Look at subsets of R 2 .) 

Answer. The closure of a connected set is connected. Indeed if E is connected 
and E ~ F ~ E, then F is connected. For, suppose F = G U H, where G and 
H are separated, nonempty sets. The set E cannot be contained entirely in G. 
(If it were, since H is nonempty, H would contain a limit point of E, hence 
a limit point of G, contrary to hypothesis.) For the same reason E cannot be 
contained entirely in H. Hence G1 =EnG and H1 . En Hare nonempty 
separated sets such that E = G1 U H 1 , and E is not connected. 

The interior of a connected set may fail to be connected, as we see by letting 
E be the union of two closed disks in R2 that are tangent to each other. 

Exercise 2.21 Let A and B be separated subsets of some Rk, suppose a E A, 
b E B, and define 

p(t) = (1-t)a+tb 

fortE R 1 . Put Ao = p-1 (A), B 0 = p-1 (B). [Thus t E A0 if and only if 
p(t) EA.] 

(a) Prove that Ao and B0 are separated subsets of R1 . 

(b) Prove that there exists toE (0, 1) such that p(t0 ) rf. AU B. 

(c) Prove that every convex subset of Rk is connected. 

Solution. (a) The definition shows that Ao and B0 are disjoint. We need only 
show that neither contains a limit point of the other. Let x be a limit point of 
Ao, and suppose x E Bo. This means that for any 8 > 0 there exists t E A 0 

with 0 < jx- tj < 8, p(t) = (1- t)b + tb E A and p(x) = (1- x)a + xb E B. 
Now d(p(t),p(x)) = jp(t)- p(x)j = jx- tjja- bj ~ jx- tj (ial + jbi) < M8, 
where M = jaj + jbj. Since 8 is arbitrary, this means that B contains a limit 
point of A, contrary to hypothesis. This contradiction shows that B0 contains 
no limit points of Ao Likewise Ao contains no limit points of Bo, and so A0 and 

· Bo are separated. 

(b) Ifp(t) E AUB for all t E [0, 1], then [0, 1] ~ AoUBo. Hence [0, 1] = GUH, 
where G = [0, 1] n A0 and H = [0, 1] n Bo are both nonempty (0 E G and 
1 E H) and separated. This would mean [0, 1] is not connected. Therefore 
p(to) rf. AU B for some to E [0, 1), and necessarily to E (0, 1), since p(O) =a E A 
and p(l)b E B. 

(c) By definition a convex set C is one for which the mapping p has the 
property p(t) E C for all t E [0, 1] provided p(O) = a E C and p(l) = b E C. 
Hence by part. (b) there cannot be separated nonempty sets A and B such that 
C=AUB. 
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Exercise 2.22 A metric space is called separable if it contains a countable 
dense subset. Show that Rk is separable. Hint: Consider the set of points 
which have only rational coordinates. 

Solution. We need to show that every nbn-empty open subset E of Rk contains 
a point with all coordinates rational. Now E contains a ball Br(x), and this ball 
contains all points y such that (xj- yj) 2 < f; for j = 1, 2, ... , k. Each interval 
(xj ~ f;, Xj + f;) contains a rational number rj, and so the point r = (r1 , ... , rk) 
belongs to E. Thus E contains a point with only rational coordinates. 

Exercise 2.23 A collection {Va} of open sets of X is said to be a base for X 
if the following is true: For ·every x E X and every open set G C X such that 
x E G, we have x EVa C G for some a. In other words, every open set in X is 
the union of a subcollection of {Va}· 

Prove that every separable metric space has a countable base. Hint: Take all 
neighborhoods with rational radius and center in some countable dense subset 
of X. 

Solution. Let {x1 ,x2 , ... ,xn,···} be a countable dense subset of X. For 
each positive integer m and each positive rational number r let Vm,r = {y : 
d(y, Xm) < r }. The collection Vm,r is countable. 

Let x E X, and let G be any open subset of X with x E G. Then there 
exists 8 > 0 such that B0(x) C G. The open ball B&.(x) contains a point Xk 

2 

for some k. Let r be a rational number such that d(xk,x) < r < % Then 
x E Br(xk) C B0 (x) C G, and we are done. 

Exerc:;ise 2.24 Let X be a metric space in which every infinite subset has a limit 
point. Prove that X is separable. Hint: Fix 8 > 0, and pick x 1 E X. Having 
chosen x 1 , ... , Xj EX, choose xj~1. EX, if possible, so that d(xj, Xj~l.) 2:: 8 for 
i = 1, ... ,j. Show that this process must stop after a finite number of steps, 
and that X can therefore be covered by finitely many neighborhoods of radius 
8. Take 8 = 1/n (n = 1, 2, 3, ... ), and consider the centers of the corresponding 
neighborhoods. 

Solution. Following the hint, we observe that if the process of constructing Xj 
did not terminate, the result would be an infinite set of points Xj, j = 1, 2, ... , 
such that d( Xi, x j) ;:::: 8 for i =J. j. It would then follow that for any x E X, 
the open ball B§.(x) contains at most one point of the infinite set, hence that 

2 

no point could be a limit point of this set, contrary to hypothesis. Hence X is 
totally bounded, i.e., for each 8 > 0 there is a finite set x 1 , ... , x N ....§._such that 

N-.&-
X= U Ba(x·). 

j/ l. J 

Nn 
Let Xm, ... , XnN be such that X = .U Bl (Xnj ), n = 1, 2, .... We claim 

n. J/ 1 n 

that {xnj : 1:::; j:::; Nn; n = 1, 2, ... } is a countable dense subset of X. Indeed 
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if x EX and 8 > 0, then x E B.!.(Xnj) for some Xnj for some n > i,·and hence 
n . 

d(x,Xnj) < 8. By definition, this means that {xnj} is dense in X. 

Exercise 2.25 Prove that every compact metric space K has a countable base, 
and that K is therefore separable.· Hint: For every positive integer n, there are 
finitely many neighborhoods of radius 1/n whose union covers K. 

Solution. It is easier simply to refer to the previous problem. The hint shows 
that K can be covered by a finite union of neighborhoods of radius 1/n, and 
the previous problem shows that this implies that K is separable. 

It is not entirely obvious that a metric space with a countable base is sep
arable. To prove this, let {Vn}~=l be a countable base, and let Xn E Vn. The 
points Vn must be dense in X. · For if G is any non-empty open set, then G 
contains Vn for some n, and hence Xn E G. (Thus for a metric space, having a 
countable base and being separable are equivalent.) 

Exercise 2.26 Let X be a metric space in which every infinite subset has a 
limit point. Prove that X is compact. Hint: By Exercises 23 and 24, X has a 
countable base. It follows that every open cover of X has a countable subcover 
{ Gn}n=l, n = 1, 2, 3, .... If no finite subcollection of { Gn} covers X, then the 
complement Fn of G1 U · · · U G~ is nonempty for each n, but nFn is empty. If 
Eisa set which contains a point from each Fn, consider a limit point of E, and 
obtain a contradiction. 

Solution. Following the hint, we consider a set E consisting of one point from 
the complement of each finite union, i.e., Xn ~ G1 U · · · U Gn. Since there are 
infinitely many finite unions and every point is in some set of the covering, the 
set E cannot be finite. (If { Xip .•. , X in} is any finite subset of E, there are sets 
Gil, ... , Gin sueh that Xik E Gjk for each k. Since E contains a point not in 
Gil U · · · U Gjn' it <:;ontains a point different from x1, ... ,xn. Hence E is not 
finite.) 

Now by hypothesisE must have a limit point z. The point z must belong 
to some set Gn; and since Gn is open, there is a number 8 > 0 such that 
Bs(z) ~ Gn. But then Bs(z) cannot contain Xm if m ~ n, and so z cannot be 
a limit point of {xm}· We have now reached a contradiction. 

Exercise 2.27 Define a point pin a metric space X to be a condensation point 
of a set E c X if every neighborhood ofp contains uncountably many points of 
E. 

Suppose E C Rk, E is uncountable, and let P be the set of all condensation 
points of E. Prove that P is perfect and that at most countably many points of 
E are not in P. In other words, show that pc n E is at most countable. Hint: 
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Let {Vn} be a countable base of Rk, let W be the union of those Vn for which 
E n Vn is at most countable, and show that P = we. 
Solntion. Following the hint, we see that En W is at most countable; being a 
countable union of at-most-countable sets. It remains to show that P = we, 
and that P is perfect. 

If X E we' and 0 is any neighborhood of X' then X E Vn s;;; 0 for some 
n. Since x ¢. W, Vn n E is uncountable. Hence 0 contains uncountably many 
points of E, and so X is a condensation point of E. Thus X E P, i.e., we s;;; P. 

Conversely if x E W, then x E Vn for some Vn such that Vn n E is countable. 
Hence x has a neighborhood (any neighborhood contained in Vn) containing at 
most a countable set of points of E' and so X ¢. p' i.e.' w s;;; pc. Hence p = we. 

It is clear that Pis closed (since its complement W is open), so that we need 
only show that P s;;; P'. Hence suppose x E P, and 0 is any neighborhood of 
x. (By definition of P this means 0 n E is uncountable.) We need to show that 
there is a point y E P n ( 0 \ { x}). If this is not the case, i.e., if every point y 
in 0 \ { x} is in pc, then for each such point y there is a set Vn containing y 
such that Vn n E is at most countable. That would mean that yEW, i.e., that 
0\ {x} is contained in W. It would follow that 0 n E s;;; {x} U (W n E), and 
so 0 n E contains at most a countable set of points, contrary to the hypothesis 
that x E P. Hence 0 contains a point of P different from x, and so P s;;; P'. 
Thus P is perfect. 

Remark: This result has now been proved to be true in any separable metric 
space, not just Rk. 

Exercise 2.28 Prove that every closed set in a separable metric space is the 
union of a (possibly empty) perfect set and a set which is at most countable. 
(Corollary: Every countable closed set in Rk has isolated points.) H.int: Use 
Exercise 27. 

Solution .. If E is closed, it contains all its limit points, and hence certainly all 
its condensation points. Thus E = P U (E \ P), where Pis perfect (the set of 
all condensation points of E), and E \ P is at most countable. 

Since a perfect set in a separable metric space has the same cardinality as 
the real numbers, the set P must be empty if E is countable. The at-most
countable set E \ P cannot be perfect, hence must have isolated points if it is 
nonempty. 

Exercise 2.29 Prove that every open set in R 1 is the union of an at most 
countable collection of disjoint segments. Hint: Use Exercise 22. 

Solution. Let 0 be open. For each pair of points x E 0, y E 0, we define an 
equivalence relation x rv y by saying x""' y if and only if [min(x, y), max(x, y)] C 

0. This is an equivalence relation, since x,...., x ([x,x] C 0 if x E 0); if x"" y, 
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then y rv x (since min(x, y) = min(y, x) and max(x, y) = max(y, x)); and if 
x,...., y andy,...., z, then x,...., z ([min(x,z),max(x,z)] ~ [min(x,y),max(x,y)] U 
[min(y, z), max(y, z)] ~ 0). In fact it is easy to prove that 

min(x,z) ~ min(min(x,y),min(y,z)) 

and 
max(x,z) ~ max(max(x,y),max(y,z)). 

It follows that 0 can be written as a disjoint union of pairwise disjoint equiva
lence classes. We claim that each equivalence class is an open interval. 

To show this, for each x E 0; let A= {z: [z, x] ~ 0} and B = {z: [x, z] ~ 
0}, and let a= inf A, b =sup B. We claim that (a, b) C 0. Indeed if a< z < b, 
there exists c E A with c < z and dEB with d > z. Then z E [c, x] U [x, d] ~ 0. 
We now claim that (a, b) is the equivalence class containing x. It is clear that 
each element of (a, b) is equivalent to x by the way in which a and b were chosen. 
We need to show that if z ~ (a, b), then z is not equivalent to x. Suppose that 
z < a. If z were equivalent to x, then [z, x] would be contained in 0, and so 
we would have z EA. Hence a would not be a lower bound for A. Similarly if 
z >band z,...., x, then b could not be an upper bound for B. 

We have now established that 0 is a union of pairwise disjoint open intervals. 
Such a union must be at most countable, since each open interval contains a 
rational number not in any other interval. 

Exercise 2.30 Imitate the proof of Theorem 2.43 to obtain the following result: 

If Rk = U1 Fn, where each Fn is a closed subset of Rk, then at 
least one Fn has a nonempty interior. 

Equivalent statement: If Gn is a dense open subset of Rk, for 
n = 1, 2, 3, ... , then n1Gn is not empty (in fact, it is dense in Rk). 

(This is a special case of Baire's theorem; see Exercise 22, Chap. 3, for the 
general case.) 

Solution. The equivalence of the two statements is easily established. Sup
pose the first statement is true, and Gn is a dense open subset of Rk for 
n = 1, 2, 3, .... Let Fn = Rk \ Gn. Then Fn is a closed subset of Rk having 
empty interior (if the interior of Fn were non-empty, Gn would not be dense). 
Hence by the first statement, the union of the set Fn cannot be all of Rk, and 
hence the intersection of their complements is not empty. 

Conversely, if the second statement holds and Fn are closed subsets of Rk 
whose union is all of Rk, let Gn be the complement of Fn. Since the intersection 
of the Gn 's is empty, at least one of them must fail to be dense in Rk, which 
means that its complement contains a non-empty open set. 

We now prove the second statement, including the parenthetical remark. 
Let Gn be a sequence of dense open sets in Rk, and let 0 be any non-empty 
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open set in Rk. Since 0 is an open set and G1 is dense, it must intersect G1 

in a non-empty open set 01. Let X1 E 01, and choose r1 > 0 such that the 
closed ball Br1 (x1) is contained in 01. Then the open ball Br1 (x1) is non
empty, and hence must intersect G2 in a non-empty open set 0 2 . Let x 2 E 0 2 , 

and choose r2 > 0 such that the closed ball Br2 ( x2) is contained in 0 2. In 
this way we obtain a nested sequence of nonempty compact sets (closed balls) 
B1 ~ B2 ~ · · · ~ Bn ~ · · ·. If x E nBn, then x E On for each n, and hence 
x E 0 n Gn for each n. Thus nGn intersects each non-empty open set 0 in at 
least one point, which says precisely that nGn is dense in Rk. Notice that the 
whole proof works exactly the same way if Rk is replaced by 0, since Gn n 0 is 
dense in 0. 

Remark: The stronger form of the second statement that we have proved 
shows that the first statement can also be strengthened. If {Fn} is a sequence 
of closed sets whose union is all of Rk and 0 is any non-empty open set, then 
the interior of F'n, n 0 is non-empty for at least one n. (Simply apply the original 
statement with Rk replaced by 0 and Fk by Fk n 0.) 



Chapter 3 

N urnerical Sequences and 
Series 

Exercise 3.1 Prove that convergence of {sn} implies convergence of {lsnJ}. Is 
the converse true? 

Solution. Let c > 0. Since the sequence { Sn} is a Cauchy sequence, there 
exists N such that Ism- sn! < c for all m > Nand n > N. We then have 
Jlsml -JsnJJ :5 Ism- snl < c for all m >Nand n > N. Hence the sequence 
{Jsnl} is also a Cauchy sequence, and therefore must converge. 

The converse is not true, as shown by the sequence { Sn} with Sn = ( -1) n. 

Exercise 3.2 Calculate lim ( Jn2 + n- n). 
n-oo 

Solution. Multiplying and dividing by Jn2 + n + n yields 

)n2 + n- n = n = 1 
Jn2 + n + n V1 + ~ + 1. 

It follows that the limit is ~. 

Exercise 3.3 If s1 = J2 and 

Sn+l = V2 + Fn (n = 1, 2, 3 ... ), 

prove that { sn} converges, and that Sn < 2 for n = 1, 2, 3 .... 

Solution. Since J2 < 2, it is manifest that if Sn < 2, then Sn+l < J2+2 = 2. 
Hence it follows by induction that v'2 < Bn < 2 for all n. In view of this fact, 

29 
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it also follows that (sn- 2)(sn + 1) < 0 for all n > 1, i.e., Sn > s~- 2 = Sn-l· 

Hence the sequence is an increasing sequence that is bounded above (by 2) and 
so converges. Since the limit s satisfies s2 - s - 2 = 0, it follows that the limit 
is 2. 

Exercise 3.4 Find the upper and lower limits of the sequence { sn} defined by 

1 
B2m+l = 2 + B2m· 

Solution. We shall prove by induction that 

1 1 1 
82m =2- 2m and B2m+l = 1- 2m . 

for m = 1, 2, .... The second of these equalities is a direct consequence of the 
first, arid so we need only prove the first. Immediate computation shows that 
s2 = 0 and ss = ~. Hence assume that both formulas hold for m ::; r. Then 

B2r+2 = ~S2r+l = ~ ( 1 - ;r) = ~ - 2r~l · 
This completes the induction. We thus have lim sup sn = 1 and lim inf Sn = ~. 

n->oo n-oo 

Exercise 3.5 For any two real sequences {an}, {bn} prove that 

lim sup( an+ bn) ::; lim sup an+ lim sup bn, 
n->oo n->oo n->oo 

provided the sum on the right is not of the form oo- oo. 

Solution. Since the case when lim sup an = +oo and lim sup bn = -oo has 
n-.oo n-oo 

been excluded from consideration, we note that the inequality is obvious if 
lim sup an = +oo. Hence we shall assume that {an} is bounded above. 

n-.oo 
Let { nk} be a subsequence of the positive integers such that lim ( an~c + 

k-oo 
bn~c) = limsup(an + bn)· Then choose a subsequence of the positive integers 

n-oo 
{ km} such that 

. The subsequence an~c.,.. + bn~cm still converges to the same limit as an~c + bn~c, 
i.e., to lim sup( an+ bn). Hence, since an~c is bounded above (so that lim sup an~c 

· n->oo k-oo 

is finite), it follows that bn~cm converges to the difference 

lim bn~c = lim ( an~c + bn~c ) - lim ank . 
m-->00 m m-->00 m m m-00 '17L 
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Thus we have proved that there exist subsequences {ankm} and {bn~cm.} which 
converge to limits a and b respectively such that a+ b =lim sup( an+ b~). Since 

n-->oo 

a is the limit of a subsequence of {an} and b is the limit of a subsequence of 
{bn}, it follows that a ::; lim sup an and b ::; lim sup bn, from which the desired 

n-->oo n-->oo 
inequality follows. 

Exercise 3.6 Investigate the behavior (convergence or divergence) of 'L: an if 

(a) an = Jn + 1- y'n; 

(b) - J7i+T - Vn. 
an- ' n 

(c) an = ( yfn- 1)n; 
1 

(d) an= 1 for complex values of z. + zn 

Solution. (a) Multiplying and dividing an by Jn + 1 + y'n, we find that 
an = vn+i+vn' which is larger than 2v~+l. The series L an therefore diverges 

by comparison with the p series (p = ~). 
Alternatively, since the sum telescopes, the nth partial sum is yin+ 1 - 1, 

which obviously tends to infinity. 

(b) Using the same trick as in part (a), we find that an = n[vn=h-+VnJ, which 

is less than n 31; 2 • Hence the series converges by comparison with the p series 

(p = ~). 
1 

(c) Using the root test, we find that a~ = :::/1i-1, which tends to zero as n ~ oo. 
Hence the series converges. (Alternatively, since by part (c) of Theorem 3.20 
:::j1i tends to 1 as n ~ oo, we have an ~ 2-n for all large n, and the series 
converges by comparison with a geometric series.) 

(d) If izl ~ 1, then Janl ~ ~' so that an does not tend to zero. Hence the series 
diverges. If Jzl > \ the series converges by comparison with a geometric series 
with r = 1; 1 < 1. 

Exercise 3. 7 Prove that the convergence of :Ean implies the convergence of 

if an~ 0. 

Solution. Since (.;a;,- ~ )2 ~ 0, it follows that 

Fn < ~( 2 ]_) - 2 an+ 2 . n n 
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Now :z::a; converges by comparison with :Ban (since I:an converges, we have 
an < 1 for large n, and hence a; < an)- Since I:~ also converges (p series, 

p = 2), it follows that I;~ converges. 

Exercise 3.8 If I:an converges, and if {bn} is monotonic and bounded, prove 
that I:anbn converges. 

Solution. We shall show that the partial sums of this series form a Cauchy 
n 

sequence, i.e., given c > 0 there exists N such that J L akbk j < c if n > 
k=m+l 

m 2: N. To do this, let Sn = L~=l ak (So = 0), so that ak = Sk - Sk-I 
for k = 1, 2, .... Let 111 be an uppper bound for both Ibn I and ISnl, and let 
S = :L an and b = lim bn. Choose N so large that the following three inequalities 
hold for all m > N and n > N: 

c c c 
lbnSn- bSI < 3; lbmSm- bSI < 3; Ibm- bnl < 3M. 

Then if n > m > N, we have, from the formula for summation by parts, 

n n-l 

L anbn = bnSn- bmSm + L (bk- bk+l)Sk· 
k=m+l k=m 

Our assumptions yield immediately that lbnSn - bmSm I < 2
3c, and 

Since the sequence {bn} is monotonic, we have 

from which the desired inequality follows. 

Exercise 3.9 Find the radius of convergence of each of the following power 
series 
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Solution. (a) The radius of convergence is 1, since an = n3 satisfies lim ~ = 
n-oo an+l 

1. 
(b) The radius of convergence is infinite, since an = 2 ·~ satisfies lim ~· = 

n. n->oo an+l 
l. n+ 1 
lm -2- = oo. 

n-.oo 

(c) The radius of convergence is ~, since an = ~ satisfies 

3 
(d) The radius of convergence is 3, since ·an = ~ .. satisfies 

l. an l' 3 ( n ) 3 3 lm--= 1m -- =. 
n-.oo an+l n-oo n + 1 

Exercise 3.10 .Suppose that the coefficients of the power series 'Eanzn are in
tegers, infinitely many of which are distinct from zero. Prove that the radius of 
convergence is at most 1. 

Solution. The series diverges if !zl > 1, since its general term does not tend to 
zero. (Infinitely many terms are larger than 1 in absolute value.) 

Exercise 3.11 Suppose an> 0, Sn = a1 +···+an, and 'Ean diverges. 

(a) Prove that 2: 1 ~'an diverges. 

(b) Prove that 
aN+l + ... + aN+k > 1 _ ..!.!!__ 
BN+l SN+k - SN+k 

and deduce that 2: ~ .diverges. 

(c) Prove that 
an< _1 __ ]:_ 
S~ - Bn-1 Sn 

and deduce that 2: ~ converges. s, 

(d) What can be said about 

Solution. (a) If an does not remain bounded, then 1 ~'a, does not tend to zero, 

and hence the series :2: 1 ~'a, diverges. If an ~ M for all n, then 1 :nan ~ 
1 Man, and hence again the series is divergent. 

1+ 
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(b) Replacing each denominator on the left by s N +k, we have 

It follows that the partial sums of the series I: £u. do not form a Cauchy 
Sn 

sequence. For, no matter how large N is taken, if N is held fixed, the right hand 
side can be made larger than ~ by taking k sufficiently large (since S N +k ---+ oo). 

(c) We observe that if n ~ 2, then 

1 1 an an 
----~2· 

Sn-!Sn Sn Sn-1 Sn 

00 

Since the series L - 1- - ..l. converges to ...L, it follows by comparison that 
n=2 Sn.-1 Sn al 

" a, converg·es L..,sr . 

(d) The series L 1 ..:::_an may be either convergent or divergent. If the sequence 
{nan} is bounded above or has a positive lower bound, it definitely diverges. 
Thus if nan :::; M, each term is at least H~M an, and so the series diverges. If 
nan ~ c > 0 for all n, then each term is at least 1!c: ~' and once again the series 
is divergent. 

In general, however, the series .2: 1..:;:an may converge. For example let 
an = ~ if n is not a perfect square and an = 7::- if n is a perfect square. The n yn 

sum of 1..:;:"an over the nonsquares obviously converges by comparison with the 

p series, p = 2. As for the sum over the square integers it is " ::-h, which L.., n-rn 

converges by comparison with the p series, p = 2. 
Finally, the series 2: I+~"'::\ an is obviously majorized by the p series ·with p = 2, 

hence converges. 

Exercise 3.12 Suppose an > 0 and L an converges. Put 

(a) Prove that 

00 

Tn = L an. 
m==n 

if m < n, and deduce that L ~ diverges. 

(b) Prove that 
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and deduce that 2.::: ';?-- converges. 
yTn 

Solution. (a) Replacing all the denominators on the left-hand side by the largest 
one (rm), we find 

am n,n (],m + e ... + O.n 
-+···+->-----
Tm Tn Tm 

since rn > rn+l· 
As in the previous problem, this keeps the partial sums of the series '2.:::: .£n. 

Tn 

from forming a Cauchy sequence. No matter how large m is taken, one can 
n 

choose n larger so that the difference L ak is at least ~, since r n ---+ 0 as 
. k=m rk 

n ---+ oo. 

(b) We have 

Dividing both sides by Fn + yr;;+1 now yields the desired inequality. 
Since the series 2.:::( Fn- yr;;+I) converges to .JTl, it follows by comparison 

that 2.::: i;:- converges. 
yTn 

Exercise 3.13 Prove that the Cauchy product of two absolutely convergent 
series converges absolutely. 

Solution. Since both the hypothesis and conclusion refer to absolute con
vergence, we may assume both series consist of nonnegative terms. We let 
Sn = L~=O an, Tn = L~=O bn, and Un = L~=O L~=O azbk-l· We need to show 
that Un remains bounded, given that Sn and Tn are bounded. To do this we 
make the convention that a_ 1 = T_ 1 = 0, in order to save ourselves from having 
to separate off the first and last terms when we sum by parts. We then have 

n k 

LLazbk-l 
k=Ol=O 

n k 

L L az(Tk-l- Tk-l-1) 
k=Ol=O 

n k 

L L ak-J(TJ- TJ-1) 
k=Oj=O 

n k 

L L(ak-J - ak-J-l)TJ 
k=Oj=O 

n n 

L L(ak-J - ak-J-l)TJ 
j=O k=j 



36 CHAPTER 3. NUl\lfERICAL SEQUENCES AND SERIES 

n 
Lan-jTj 
j=O 

n 
< TLam 

m=O 

TSn 

< ST. 

Thus Un is bounded, and hence approaches a finite limit. 

Exercise 3.14 If {sn} is a complex sequence, define its arithmetic mean O"n by 

n+1 
so+ 81 + · · · + Sn 

O"n = (n=0,1,2, ... ). 

(a) If lim Sn = s, prove that limO" n = s. 
(b) Construct a sequence {sn} which does not converge, although limO"n = 0. 

(c) Can it happen that sn > 0 for all nand that limsupsn = oo, even though 
lim O"n = 0? 

(d) Put an= Sn- Sn-1 for n ~ 1. Show that 

1 n 

Sn - 0" n = n I 1 L kak. 
I k=l 

Assume that lim(nan) = 0 and that {an} converges. Prove that {sn} converges. 
[This gives a converse of (a), but under the additional assumption that nan --+ 0.] 

(e) Derive the last conclusion from a weaker hypothesis: Assume M < oo, 
jnanJ S;·M for all n, and limO"n = O". Prove that limsn = O" by completing the 
following outline: 

If m < n, then 

m+1 1 ~ 
Sn- O"n = (O"n- O"m) + --- L,_; 

n-m n-m 
i=m+l 

For these i, 

Is -s·l< (n-i)M < (n-m-1)M 
n ~- i+1 - m+2 · 

Fix c > 0 and associate with each n the integer m that satisfies 

n-E 
m<--<m+l. 

- 1 +c 

then (m + 1)/(n- m) ~ 1/c and lsn- sil <Me. Hence 

lim sup lsn - 0"1 ~ ME. 
n-oo 
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Since e was arbitrary, lim Sn = CJ. 

Solution. Let c > 0. Let M = sup{lsn 1}, and let No be the first integer such 

that !sn- s! < ~ for all n >No. Let N =max (No, [2(No + 1~(M +lsi)]). 

Then if n > N, we have 

ICJn- si -

< 

I (so- s) + (s1 - s) + .. · + (sn - s) I 
n+1 

I (so- s) + · · · + (BN0 - s) I+ 
n+1 

. +I (sNo+1)- s) + .. · + (sn- s) I· 
n+1 

The first sum on the right-hand side here is at most (No+~~~+lsl), and since 

n + 1 > 2(No+l~(M+Isl), this sum is at most ~· The second sum is at most 

(n~~~H, which is at most ~· Thus !CJn - s! < e if n > N, which was to be 
proved. 
(b) Let Sn = ( -1) n. Here CJ n is 0 if n is odd and n~ 1 if n is even. Thus CJ n --+ 0, 
though Bn has no limit. 
(c) Let Sn = ~ if n is not a perfect cube and Sn = .qn if n is a perfect cube. 
Then if k3 :::; n < (k + 1)3 we have 

1 n 1 1 k 

n+1L;:;,+n+1~j 
m=l J=l 

Cln < 

_1_( t _!_) + _1_. k(k + 1). 
n + 1 m=1 m n + 1 2 

The first sum on the right tends to zero by part (a) applied to the sequence 
so = 0, sn = ~ for n ;:::: 1. As for the last term, since n ~ k3 , it is less than 
21k + ~' which tends to zero as k--+ oo. Since (k + 1)3 > n, it follows that k 
tends to infinity as??- tends to infinity, and hence we have O'n --+ 0, even though 

n 
(d) If we set ao =so, we have sn = E ak. Then 

k=O 

Sn- Cln 
so+ s1 + · · · + Sn 

- Sn-
n+1 

- (ao + a1 + · · · + an-1 +an)-
(n + 1)ao + na1 + · · · + 2an-1 +an 

n+1 
a1 + 2a2 + · · · + (n- 1)an-1 +nan 

n+1 

which was to be proved. If nan --+ 0, then the expression on the right-hand side 
tends to zero by part (a) with Sn replaced by nan. Hence Sn - CJn --+ 0. 
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(e) If m < n we have 

So+···+ Sn 

n+l 
So+···+ Sm 

m+1 
1 1 n s· 

(So + · · · + Sn) (- - ) + I: ~ 
n+1 m+1 . , m+1 

. 2=m-rl 

m-n 1 I:n 
---C5n + Si. 
m+l m+1 i=m+l 

If we multiply both sides of this equation by ;;:~~, and then transpose the 
left-hand side to the right and the term O"n to the left, we obtain 

Adding Sn = n~m L:7=m+l Sn to both sides then yields the result. 
We then have 

( 1 1) (n-i)M Is - s·l = Ja·+l +···+a I< M -- + · · · +- < . 
n ~ 2 n- i+1 n - i+1 

Since the function ~~~ = :~i - 1 is decreasing, the maximal value of the right

hand side here is reached with i = m + 1, so that isn - sii ::; (n-:;:.;i)M, as 
asserted. 

When we choose m to be the largest integer in ~+! , we clearly have m < n. 
Since cis fixed, we can assume m >E. The inequality ~+! < m + 1 can easily 
be converted to n~:_;- 1 < E, and the inequality m ::; ~+! likewise becomes 
;;-_+~ ::; ~- The first of these implies that m-+ oo as n-+ oo, and we have 

for all n. This implies that the limit of any subsequence of isn- ani is at most 
ME, and since E is arbitrary, every convergent subsequence of J Sn- an I converges 
to zero. This, of course, implies that sn - O"n tends to zero, so that if O"n -+ s, 
then Sn -+ s. 

Exercise 3.15 Definition 3.21 can be extended to the case in which the an lie 
in some fixed Rk. Absolute convergence is defined as convergence of I: Jan J. 
Show that Theorems 3.22, 3.23, 3.25(a), 3.33, 3.34, 3.42, 3.45, 3.47, and 3.55 
are true in this more general setting. (Only slight modifications are required in 
any of the proofs.) 
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Solution. (Theorem 3.22). 2.:: an converges if and only if for every c > 0 there 
is an integer N such that 

ifm ~ n ~ N. 

It is a trivial remark that, since Jaj - bj I ::; Ja- bJ :::; Ja1 - b1l + · · · + Jak - bk I, 
the sequence {an} converges if and only if each sequence of components {anj} 

converges, j = 1, ... , k. Hence the sequence of vector-valued functions converges 
if and only if each sequence of its components is a Cauchy sequence, and by the 
same inequalities, this is equivalent to saying that the vector-valued sequence is 
a Cauchy sequence. 

(Theorem 3.23) If 2.:: an converges, then limn-= an = 0. 

Using the remark made in the previous paragraph, if 2.:: an converges, then each 
sum of components 2.:: anj converges. Hence for each j we have anj --1- 0, which, 
again by the remark, means an --1- 0. 

(Theorem 3.25 (a)) If Janl ::; Cn for n ~ No, where No is some fixed integer, 
and if 'L Cn converges, then 'L an converges. 

Again, the hypothesis implies that Janjl ::; Cn for n ~ No, so that I: anj con
verges for each j = 1, 2, ... , k. Once again, by the remark, this means that 
L an converges. 

(Theorem 3.33) Given 2.:: an, put a= lim sup \llaJ. Then 

(a) if a < 1, 2.:: an converges; 

(b) if a> 1, L an diverges; 

(c) if a = 1, the test gives no information. 

Part (a) follows from the remarks made above, since ~ ::; y'jaJ. (If 
a< 1, then each component series converges.) 

As for part (b), if a> 1, then Jan! > 1 for infinitely many n, and hence the 
series diverges .. 

(Theorem 3.34) The series 2.:: an 

(a) converges iflimsup l~n+~l < 1, 
n-= an 

(b) diverges if ~~::1' ~ 1 for n ~no, where no is some fixed integer. 

(a) The inequality implies that for some constant A and some fixed r < 1 we 
have Jan I < Arn, so that 2.:: Jan I converges. Therefore by 3.25 the series 2.:: an 
also converges. 

(b) As in the numerical case, this inequality implies that an does not tend to 
zero, so that the series must diverge. 

(Theorem 3.42) Suppose 
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(a) the partial sums An of~ an form a bounded sequence; . 

(b) bo 2: b1 2: b2 2: · · ·; 
(c) lim bn = 0. 

n->oo 

Th.en 2: b.nan converges. 

We reduce this to Theorem 3.22 by showing that the partial sums of the series 
L bn.an form a Cauchy sequence. In fact 

q-l 

/I:(bn- bn+r)An + bqAq- bpAp-1( 
n=p 

< 
q-1 

M( L Jbn- bn+ll + bq + bp) 
n=p 

-
Now, given c > 0 choose N so large that bp < 2~ for all p > N. Then if 
q 2 p > N, we have 

q 

) L bnan/ :S 2Mbp <c. 
n=p 

This proves that the partial sums form a Cauchy sequence, as required. 

_(Theorem 3.45) If 2: an converges absolutely, then 2: an converges. 

Again this is a consequence of 3.25, with Cn = Jan/· 

(Theorem 3.47) If L an =A and L bn = B, then l:(an + bn) =A+ B and 
L can = cA for any fixed c. 

This theorem holds for each component of the vectors involved, hence it holds 
for the vectors themselves. 

(Theorem 3.55) If I: an is a series of vectors which converges absolutely, then 
every rearrangement of L an converges, and they all converge to the same sum. 

Let A be the sum of the series in its original arrangement, and let c > 0. Choose 

N so large that L~=m Jakl <~if n 2: m > N. Then of course I I:~=l ak -AI :s; 
~ if n > N. For any arrangement of the series 2: ank, Choose N 1 so large 
that {1, 2, ... , N} ~ { nr, n2, ... , nN1 }. Then if m > N1 and N2 is such that 
{n1, ... , nm} ~ {1, ... , N2} have, 

m m m 

I Lank- L:aki + j L:ak- AI 
k=l k=l k=l 

m 

< L !ak!+~ 
b::::.N+l 

< c 
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Exercise 3.16 Fix a positive number a. Choose x1 > fo, and define x1, x2, 
X3, ... , by the recursion formula 

Xn+l = ~(xn + ;:). 

(a) Prove that {xn} decreases monotonically and that limxn = fo. 
(b) Put c = Xn - fo, and show that 

so that, setting {3 = 2fo, 

(n=1,2,3, ... ,). 

(c) This is a good algorithm for computing square roots, since the recursion 
formula is simple and the convergence is extremely rapid. For example, if a = 3 
and x1 = 2, show that ci/ {3 < 110 , and that therefore 

c5 < 4 · 10-16 , c6 < 4 ·10-32 • 

Solution. (a) We note that Xn ·is always positive, and that if Xn > fo., then 

x;+l- a= ~(xn- xC:) 2 > 0. Thus Xn > fo for all n. Since Xn > fo, it 

follows that ~ < fo. < Xn· Hence Xn- Xn+l = ~(xn- ~) > 0, and so {xn} 

decreases to a limit >. 2: fo., which must satisfy>.= X' i.e., >. = fo.. 

(b) W h e2 x; -2xnv!O'+a: 1 ( a: ) r;;, r;;, Th e ave 2;n = . 2xn = 2 Xn +'X; - ya = Xn+l- ya = cn+l· e 
2 

inequality then results from the simple fact that Xn > fo.. Thus c2 < 7J- = 
2 2n-l 2 

f3( -J) . By induction, if we suppose that en < f3( -J) , we find cn+l < e/3 < 
f3( 1") 2"'. 

(d) Taking x1 = 2, a = 3, we certainly have {3 < 4. And, since v'3 > i, we 
deduce that 12v'3 > 20, so that 2v'3 > 10(2 - v'3), i.e., c1 = 2 - J3 and 
{3 = 2J3 satisfy ci/ {3 < 110, as asserted. It follows that en < 4 · w-2n-l. In 
particular c5 < 4 · 10-16 and c6 < 4 · 10-32 • 

Exercise 3.17 Fix a > 1. Take x1 > fo., and define 

a+xn a-x; 
Xn+l = l = Xn + 1 · 

+xn +xn 

(a) Prove that x1 > X3 > Xs > · · · . 
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(b) Prove that x2 < X4 < X5 < · · · . 
(c) Prove that lim Xn = fo.. 
(d) Compare the rapidity of convergence of this process with the one described 
in Exercise 16. 

Solution. Most of the work in this problem is done by the following three 
identities, whose proofs are routine computations: 

(1 + Xn)(1 + Xn+l) = 2(1 + Xn) +(a- 1), 

2 [ (a-1) J 2 ) 
Xn+.l- a=- (1 + Xn)2 (xn- a ' 

(a- 1)2 . 2 
x~+1 -a= (1 + Xn)2(1 + Xn-1)2 (xn-1 -a) = 

[ a-1 ] 2 2 
= (a- 1) + 2(1 + Xn-1) (xn- 1- a). 

The second of these identities shows that Xn and Xn+l lie on opposite sides 
of fo.. The third shows that Xn+1 is closer to fo. than Xn-1· Hence, since 
x1 > ffo. by hypothesis, parts (a) and (b) are proved. As for (c), the third 
relation shows that jx;+1- aj ~ r2 jx~_ 1 - aj, where r = 2~;~ 1 < 1. It follows 
that 1x;+2k -a! ~ r2k jx; - ai, and the right-hand side of this expression tends 
to zero as k --+ oo. Thus lim Xn+2k = vfa whether n is odd or even, and so 

k-oo 

lim Xn = .JQ. 
17.->00 

The convergence in this case is geometric, but not quadratically geometric, 
as in Exercise 16. The rate of convergence will depend on the size of a. For 
1 < a~ 2 we certainly have Xn ~a- 2 for all n, and so in this case r < t, i.e., 

jx;+1-aj < -91 )x;_1 -aj. This implies that )xn.J..l-fo.l < -91 Xn-l~~lxn-1-fol· ' Xn+l Ct 

If n is odd, we have Xn-1 < Xn+1, and so lxn+1- fo.l < !lxn-1- foj. If n is 

even, we can at least assume x1 < 1.5 (since a < 2), and so Xn-l~~ < 1.5, so - Xn+l Ct 

that )xn+1 - fol < 1;} )Xn-1 - fo.j. 

Exercise 3.18 Replace the recursion formula of Exercise 16 by 

p -1 a +1 
Xn+1 = --Xn + -x;;? , 

p p 

where p is a fixed positive integer, and describe the behavior of the resulting 
sequences {xn}· 

Solution. (Exercise 16 is the case p = 2, of course.) The main work is done by 
l 

the following easily derived formulas, which hold if Xn > a P'. 

l 
Xn+.l- aP 1 [(P- 1) 1 ((ai) (ai )p-1)] 

= (xn-a'P) P -P Xn +· .. + Xn 
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< (xn - a i) ( p ; 1) ( 1 - ( :: y-') 
(xn- a~)( p ~-\) (x~- 1 - (oJ)P-1) 

'PXn / 
1 2 p - 1 2 3 1 p-2 

(xn-a"P) ·-P_1 ·[x~- +x~- a"P+···+a P] 
PXn · 

( 1.)2 (p-1)2 
Xn - a P • -'-'---'--

PXn 
< 

< ( Xn - a ~l · (p -I) 2 

paP 

Thus we can guarantee quadratic-geometric convergence if we start with 
~ 

1. paP h x 1 - a P = c1 < f3 = CP=I)2. In that case we obtain t e same inequalities as in 
1 

Exercise 16, and Xn --+ a"P. 

Exercise 3.19 Associate to each sequence a= {an}, in which an is 0 or 2, the 
real number 

00 

.x(a) = L ;: . 
n=l 

Prove that the set of all x( a) is precisely the Cantor set described in Sec. 2.44. 

Solution. We note that the open middle third removed at the first stage of the 
construction is precisely the set of points whose ternary expansions must have 
a 1 as their first digit. (The numbers ! and ~ can be written with a 1 in this 
place, since 

1 

3 
2 
3 

1 0 0 
-+-+ .. ·+-+··· 3 9 3n 
1 2 2 
-+-+ .. ·+-+··· 3 9 3n 

However, these numbers can also be written as 

1 

3 
2 
3 

0 2 2 
-+-+···+-+··· 3 9 3n 
2 0 0 
-+-+···+-+··· 3 9 3n 

Thus the points retained in the Cantor set after the first dissection are precisely 
those whose ternary expansions may be written without a 1 in the first digit. 
The same argument shows that the points retained in the Cantor set after the 
nth dissection are precisely those whose ternary expansions may be written 
without using a 1 in any of the first n digits. It then follows that the Cantor 
set is the set of points in [0, 1] whose ternary expanions can be written without 
using any 1's, i.e., it is precisely the set of numbers x(a) just described. 
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Exercise 3.20 Suppose {Pn} is a Cauchy sequence in a metric space X, and 
some subsequence {Pn} converges to a point p E X. Prove that the full sequence 
{Pn} converges top. 

Solution. Let c; > 0. Choose N 1 so large that d(pm,Pn) < ~ if m > N 1 and 
n > N 1 . Then choose N ~ N 1 so large that d(pnk, p) < ~ if k > N. Then if 
n > N, we have 

d(pn,p)::::; d(pn,PnN+l) + d(pnN+Pp) <E. 

For the first term on the right is less than ~since n > Nr and nN+l > N + 1 > 
N 1 . The second term is less than ~ by the choice of N. 

Exercise 3.21 Prove the following analogue of Theorem 3.10(b): If {En} is a 
sequence of closed and bounded sets in a complete metric space X, if En ::::::> En+ I, 

and if 
lim diam En = 0, 

n->oo 

then n} En consists of exactly one point. 

Solution. Choose Xn E En· (We use the axiom of choice here.) The sequence 
{xn} is a Cauchy sequence, since the diameter of En tends to zero as n tends 
to infinity and En contains En+l· Since the metric space X is complete, the 
sequence Xn converges to a point x, which must belong to En for all n, since En 
is closed and contains Xm for all m 2: n. There cannot be a second point'y in 
all of the En, since for any point y =f x the diameter of En is less than d( x, y) 
for large n. 

Exercise 3.22 Suppose X is a complete metric space, and { Gn} is a sequence 
of dense open subsets of X. Prove Baire's theorem, namely that nfGn is 
not empty. (In fact, it is dense in X.) Hint: Find a shrinking sequence of 
neighborhoods En such that En C Gn, and apply Exercise 21. 

Solution. Let Fn be the complement of Gn, so that Fn is closed and contains 
no open sets. We shall prove that any nonempty open set U contains a point 
not in any Fn, hence in all Gn. To this end, we note that U is not contained 
in F1 , so that there is a point x1 E U \ F1 . Since U \ F1 is open, there exists 
r1 > 0 such that B1, defined as the open ball of radius r 1 about x 1, is contained 
in U \ F1. Let E1 be the open ball of radius Zf about x 1 , so that the closure of 
E1 is contained in B1. Now F2 does not contain E1 , and so we can find a point 
x2 E E1 \ F2. Since E1 \ F2 is an open set, there exists a positive number r2 

such that B2, the open ball of radius R2 about x2, is contained in E1 \ F2 , which 
in turn is contained in U \ (FI U F2). We let E2 be the open ball of radius ~ 
about x2, so that E2 ~ B2. Proceeding in this way, we construct a sequence of 
open balls Ej, such that Ei ;;;? Ej+I, and the diameter of Ej tends to zero. By 
the previous exercise, there is a point x belonging to all the sets Ej, hence to 

all the sets u \(Flu F2 u ... u Fn). Thus the point X belongs to u n ( nr Gn). 
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Exercise 3.23 Suppose {Pn} and {qn} are Cauchy·sequences in a metric space 
X. Show that the sequence { d(pn, qn)} converges. Hint: For any m, n, 

it follows that 

is small if m and n are large. 

Solution. The inequality in the hint, which is an extension of the triangle 
inequality, shows that 

and since the same inequality holds with m and n reversed, it follows that 

Now if c > 0, choose N1 and N2 so that d(pn,Pm) < ~ if m > N1, n > N1, 
and d(qn, qm) < ~ if m > N2, n > N2. Then let N = max(N1, N2). It follows 
immediately that id(pn, qn)- d(pm, qm)l < c if m > Nand n > N. Since the 
real numbers are a complete metric space, it follows that { d(pn, qn)} converges. 

Exercise 3.24 Let X be a metric space. 

(a) Call two Cauchy sequences {Pn}, { qn} in X equivalent if 

lim d(pn, qn) = 0. 
11.-->00 

Prove that this is an equivalence relation. 

(b) Let X* be the set of all equivalence classes so obtained. If P E X* and 
Q EX*, {Pn} E P, {qn} E Q, define 

tl(P, Q) = lim d(pn, qn); 
n-oo 

by Exercise 23, this limit exists. Show that the number tl(P, Q) is unchanged 
if {Pn} and {qn} are replaced by equivalent sequences, and hence that tl is a 
distance function in X*. 

(c) Prove that the resulting metric space X* is complete. 

(d) For each p E X, there is a Cauchy sequence all of whose terms are p; let Pp 
be the element of X* which contains this sequence. Prove that 

for all p, q E X. In other words, the mapping r.p defined by r.p(p) = Pp is an 
isometry (i.e., a distance-preserving mapping) of X into X*. 
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(e) Prove that so( X) is dense in X, and that so( X) = X* if X is complete. 
By (d), we may identify X and <p(X) and thus regard X as embedded in the 
complete metric space X*. We call X* the completion of X 

Solution. (a) We need to show that: 1) {Pn} is equivalent to itself; 2) if {Pn} is 
equivalent to {qn}, then {qn} is equivalent to {Pn}; and 3) if {Pn} is equivalent 
to {qn} and {qn} is equivalent to {r11 }, then {Pn} is equivalent to {r11 }. These 
follow from the properties of any metric. Thus 1) follows, since d(pn, Pn) = 0 
for all n; 2) follows since d(p11 , qn) = d(qn,Pn); and 3) follows from the triangle 
inequality, i.e., d(p11 , Tn) :::; d(p11 , q11 ) + d(q11 , r 11 ), so that if d(pn, qn) ~ 0 and 
d(qn, Tn) ~ 0, then d(pn, Tn) ~ 0. 

(b) Let {p71 } be equivalent to {p~} and {q11 } equivalent to {q~}. Then, since 
we know in advance that all the limits exist, we have 

By symmetry, however, we must also have the opposite inequality, so that the 
two limits arer actually equal. 

Now X* is a metric space; for t:..(P, Q) 2::: 0, by definition ..6.(P, Q) = 0 means 
P = Q, and symmetry and the triangle inequality on X* follow from the same 
properties on X. 

(c) Suppose {Pk} is a Cauchy sequence in X*. Choose Cauchy sequences {Pkn} 
in X such that {Pkn} E Pk, k = 1, 2, .... For each k, let Nk be the first positive 
integer such that d(Pkn,Pkm) < 2-k if m 2::: Nk and n 2::: Nk. Let Pk = PkNk. 
Observe that d(pk,Pkn) < 2-k for any n 2::: Nk, so that limn-= d(pk,Pkn) ~ 2-k. 
(This limit exists since- the sequence all of whose terms equal Pk is a Cauchy 
sequence.) Also, for any k, l, and n we have 

Hence, taking n sufficiently large and assuming k < l, we obtain 

It follows that {Pk} is a Cauchy sequence. Let P be the element of X* containing 
{Pk}· We claim Pk --+Pin X*. For 

< 2-k +lim sup .6.(Pk? Pn) + 3 · 2-k. 
n-= 

Thus if c > 0, choose N1 = 2 + [~~;~e], and Nz such that .6.(Pk, P1) < ~ 
if k > Nz and l > Nz. Let N = max(N1, N2). We claim that if k > N, 
then d(Pk, P) < c. Indeed this follows, since we then have 2-k+Z < ~ and 
lim supn-= .6.(Pk, Pn) ~ ~· We have thus finally proved that X* is complete. 
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(d) The assertion fl.(Pp, Pq) = d(p, q) is the trivial assertion that if Pn ·= p and 
qn = q for all n, then 

lim d(pn, qn) = d(p, q). 
n-oo 

(e) Let P be any element of X*, and let e > 0. We shall find p EX such that 
fl.(P, Pp) <e. To this end, let {Pn} E P and let N be such that d(pn,Pm) < ~ 
if n >Nand m > N. Let p = PN+l· Then fl.(P,Pp) = limd(pn,P) ~~'and 
we are done. 

If X is already complete, then for each P E X* and {Pn} E P there exists 
p E X such that Pn --+ p. This p is obviously the same for any sequence 
equivalent to {Pn}, and it is clear that P = Pp· Hence <p(X) =X* when X is 
complete. 

It should be remarked that X* is unique, in the sense that if Y and Z are 
any two complete metric spaces, each containing a dense subset isometric to 
X, then Y is isometric to Z. Indeed let <p and '1/J be isometries of X into Y 
and Z respectively, such that <p(X) is dense in Y and '1/J(X) is dense in Z. 
We construct an isometry of Y onto Z as follows. For each y E Y, there is 
a sequence {xn} C X such that cp(xn) --+ y. The sequence {xn} is a Cauchy 
sequence in X, and hence { '1/J(xn)} is a Cauchy sequence in Z (since '1/J preserves 
distance). Since Z is complete, there is an element z such that '1/J(xn) --+ z. We 
define ()(y) = z. We claim first of all that this definition is unambiguous. For if 
y is given and some other sequence {x~} in X is such that {cp(x~)} converges 
toy, then dz('l/J(xn), '1/J(x~)) = dx(xn, x~) = dy(<p(xn), <p(x~) --+ 0, and hence 
'1/J(x~) --+ z also. The mapping fJ is an isometry, since if Yl = lim cp(xln) and 
Y2 =lim cp(x2n), then 

dz( fJ(yl), fJ(y2)) - lim dz ( '1/J(xln), 'l/J(x2n)) 

- lim dx (xln: X2n) 

- limdy(<p(Xln), cp(x2n)) 

- dy(yl, Y2)· 

(Here we have used the fact that if Pn --+ p and qn --+ q, then d(pn, qn) --+ d(p, q), 
which in turn follows from the inequality 

proved in Exercise 23 above.) 
Finally fJ(Y) = Z, since one can easily define an inverse mapping 17 : Z--+ Y 

by merely reversing the steps used to define (). 

Exercise 3.25 Let X be the metric space whose points are the rational num
bers, with the metric d(x, y) = lx- Yl· What is the completion of this space? 
(Compare Exercise 24.) 
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Answer. By the remarks at the end of Exercise 24, the completion of a metric 
space X is any complete metric space containing a dense subset isometric to 
the space X. Since the real numbers have this property, the completion of the 
rational numbers is the real numbers. A Cauchy sequence of rational numbers 
converges to a unique real number, of course, and two sequences are equivalent 
if and only if they converge to the same real number. Hence we have also a 
more direct reason for claiming that the completion of the rational numbers is 
the real numbers. 
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Continuity· 

Exercise 4.1 Suppose f is a real function defined on R 1 which satisfies 

lim [f (X + h) - j (X - h)) = 0 
h-.0 

for every x E R 1 . Does this imply that f is continuous? 

Solution. No. In fact even the stronger statement 

lim f (X + h) - f (X - h) = O 
h--0 hn 

for every x E R 1 , where n is an arbitrary positive number, does not imply that 
f is continuous, since this property is possessed by the function 

!( ) _ [ 1 if x is an integer, 
x - l 0 if x is not an integer. 

(If x is an integer, then f(x +h) - f(x- h) = 0 for all h; while if x is not an 
integer, f(x +h)- f(x- h)= 0 for !hi < min(x- [x], 1 + [x]- x). 

Exercise 4.2 If f is a continuous mapping of a metric space X into a metric 
space Y, prove that 

f(E) C f(E) 

for every set E C X. (E denotes the closure of E.) Show, by an example, that 
f(E) can be a proper subset of f(E). 

Solution. Let x E E. We need to show that f(x) E f(E). To this end, 
let 0 be any neighborhood of f ( x). Since f is continuous, f- 1 ( 0) contains 
(is) a neighborhood of x. Since x E E, there is a point u of E in f-1 ( 0). 
Hence f(u) E 0 n f(E). Since 0 was any neighborhood of f(x), it follows that 
f(x) E f(E). 

Consider f: R1 -r R1 given by f(x) = x 2 , and let E = E = [1, oo), so 
l+x 

that f(E) = f(E) = (0, ~], yet !(E)= [0, ~J. 

49 
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Exercise 4.3 Let f be a continuous real function on a metric space X. Let 
Z(f) (the zero set of f) be the set of all p EX at which f(p) = 0. Prove that 
Z(f) is closed. 

Solution. Z(f) = f- 1 ( {0} ), which is the inverse image of a closed set. Hence 
Z(f) is closed. 

Exercise 4.4 Let f and g be continuous mappings of a metric space X into a 
metric space Y, and let E be a dense subset of X. Prove that f(E) is dense 
in f(X). If g(p) = f(p) for all p E E, prove that g(p) = f(p) for all p E X. 
(In other words, a continuous mapping is determined by its values on a dense 
subset of its domain.) 

Solution. To prove that f(E) is dense in f(X), simply use Exercise 2 above: 
f(X) = f(E) ~ f(E). 

The function 'P: X -t R 1 given by 

cp(p) = dy(f(p),g(p)) 

is continuous, since 

jdy(f(p),g(p))- dy(f(q),g(q))l s dy(f(p),J(q)) +dy(g(p),g(q)). 

(This inequality follows from the triangle inequality, since 

dy(f(p),g(p)) s dy(f(p),J(q)) +dy(f(q),g(q)) +dy(g(q),g(p)), 

and the same inequality holds with p and q interchanged. The absolute value 
jdy(f(p),g(p))- dy(f(q),g(q))! must be either dy(f(p),g(p))- dy(f(q),g(q)) 
or dy (f ( q), g( q)) - dy (! (p), g(p)), and the triangle inequality shows that both 
of these numbers are at most dy(f(p),J(q)) + dy(g(p),g(q)).) 

By the previous problem, the zero set of <pis closed. But by definition 

Z(cp) = {p: f(p) = g(p)}. 

Hence the set of p for which f(p) = g(p) is closed. Since by hypothesis it is 
dense, it must be X. 

Exercise 4.5 Iff is a real continuous function defined on a closed set E C R 1 , 

prove that there exist continuous real functions g on R1 such that g( x) = f ( x) 
for all x E E. (Such functions g are called continuous extensions off from E to 
R1 .) Show that the result becomes false if the word "closed" is o:rp.itted. Extend 
the result to vector-valued functions. Hint: Let the graph of g be a straight 
line on each of the segments which constitute the complement of E (compare 
Exercise 29, Chap. 2). The result remains true if R 1 is replaced by any metric 
space, but the proof is not so simple. 



51 

Solution. Following the hint, let the complement of E consist of a countable 
collection of finite open intervals ( ak, bk) together with possibly one or both 
of the the semi-infinite intervals (b, +oo) and ( -oo, a). The function f(x) is 
already defined at ak and bk, as well as at a and b (if these last two points 
exist). Define g(x) to be f(b) for x >band f(a) for x <a if a and b exist. On 
the interval ( ak, bk) let 

x -ak 
g(x) = f(ak) + bk _ ak (f(bk)- f(ak)). 

Of course we let g(x) = f(x) for x E E. It is now fairly clear that g(x) is 
continuous. A rigorous proof. proceeds as follows. Let c > 0. To choose b > 0 
such that Jx- uJ < b implies Jg(x)- g(u)l < c, we consider three cases. 

i. If x > b, let b = x - b. Then if jx - uj < b, it follows that u > b also, 
so that g(u) = f(b) = g(x), and Jg(u)- g(x)l = 0 <c. Similarly if x <a, let 
b =a-x. 

ii. If ak < x < bk and f(ak) = f(bk), let b = min(x- ak, bk- x). Since 
jx- uj < b implies ak < u < bk, so that g(u) = f(ak) = f(bk) = g(x), we 
again have jg(x) - g(u)l = 0 < c. If ak < x < bk and f(ak) =I f(bk), let 

. ( (bk - ak)c ) . . 
b = mm x- aklbk- x, !f(bk) _ f(ak)l . Then 1f jx- uj < 6, we agam have 

ak < u < bk and so 

lx-ul 
Jg(x)- g(u)j = b if(bk)- f(ak)i <c. 

k- ak 

iii. If x E E, let DI be such that if(u)- f(x)l < c if u E E and jx- ul < 8I. 
(Subcase a). If there are points x 1 E En (x- 81, x) and x2 E En (x, x + 81 ), 

let 8 = min(x- XI, x2- x). If Ju- xj < 8 and u E E, then lf(u)- f(x)l < c by 
definition of 81. if u ¢:. E, then, since XI, x, and x2 are all in E, it follows that 
u E (ak, bk), where ak E E, bk E E, and iak - xl < 8 and jbk - xj < b, so that 
lf(ak)- f(x)j < c and lf(bk)- f(x)j <c. If f(ak) = f(bk), then f(u) = f(ak) 
also, and we have lf(u)- f(x)l <c. If f(ak) =I= f(bk), then 

lf(u)- f(x)l - /J(ak)- f(x) +:- ak (f(bk)- f(ak))l 
k- ak 

- I :k- u (f(ak)- f(x)) +:- ak (f(bk)- f(x)) I 
k- ak k- ak 

bk- u u- ak 
< c+ c 

bk- ak bk- ak 
c 

(Subcase b). Suppose x2 does not exist, i.e., either x = ak or x = ak 
and bk > ak + 8I. Let us consider the second of these cases and show how to 
get lf(u) - f(x)l < c for x < u < x + 8. If f(ak) = f(bk), let b = 8I. If 
u > x we have ak < u < bk and f(u) = f(ak) = f(x). If f(ak) =I f(bk), let 8 = 

. ( (bk - ak)c ) . . 
mm 8I, lf(bk) _ f(ak)l . Then, JUSt as m Subcase a, we have IJ(u)- f(x)l <c. 
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The case when x = bk for some k and ak < x - 61 is handled in exactly the 
same way. 

If x = b, let b = 61 . Ifu > x we have f(x)- f(u); and ifu < x and u ¢:. E, 
we use the same argument as in Subcases a and b. 

The case x = a is handled similarly. 

The extension of this result to vector-valued functions is immediate: Simply 
extend each component of the function. A vector-valued function is continuous 
if and only if each of its components is continuous. 

Exercise 4.6 Iff is defined onE, the graph off is the set of points (x, f(x)) 
for x E E. In particular, if E is the set of real numbers and f is real-valued, the 
graph of f is a subset of the plane. 

Suppose E is compact, and prove that f is continuous on E if and only if 
its graph is compact. 

Solution. Let Y be the co-domain of the function f. We invent a new metric 
space Ex Y as the set of pairs of points (x, y), x E E, y E Y, with the metric 
p((x1, Yl ), (x2, Y2)) = dE(xl, x2) + dy (YI, Y2). The function <p(x) = (x, f(x)) is 
then a mapping of E into E x Y. 

We claim that the mapping <p is continuous iff is continuous. Indeed, let 

x E X and c: > 0 be given. Choose rJ > 0 so that dy(f(x),j(u)) < ~ if 

dE(x,y) < rJ. Then let D =min (rJ, ~)·It is easy to see that p(<p(x),<p(u)) < c: 

if de(x, u) < b. Conversely if <p is continuous, it is obvious from the inequality 
p(<p(x), cp(u)) 2:: dy(f(x), f(u)) that f is continuous. 

From these facts we deduce immediately that the graph of a continuous 
function f on a compact set E is compact, being the image of E under the 
continuous mapping <p. Conv.ersely, iff is not continuous at some point x, there 
is a sequence of points Xn converging to x such that f(xn) does not converge to 
f(x). If no subsequence of f(xn) converges, then the sequence { (xn, f(xn)}~ 1 
has no convergent subsequence, and so the graph is not compact. If some 
subsequence of j(xn) converges, say f(xnk) -+ z, but z =/: J(x), then the graph 
off fails to contain the limit point (x, z), and hence is not closed. A fortiori it 
is not compact. 

Exercise 4. 7 If E C X and iff is a function defined on X, the restriction of f 
toE is the function g whose domain of definition is E, such that g(p) = f(p) for 
pEE. Define f and g on R2 by f(O, 0) = g(O, 0) = 0, f(x, y) = xy2 j(x2 + y4 ), 

g(x,y) = xy2 j(x2 + y6 ) if (x,y) =/: (0,0). Prove that f is bounded on R2 , that 
g is unbounded in every neighborhood of (0, 0), and that f is not continuous at 
(0, 0); nevertheless, the restrictions of both f and g to every straight line in R2 

are continuous! 
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Solution. The fact that lf(x, y) I ~ ~ is an easy consequence of the inequality 

(x- y2 ) 2 ~ 0. The fact that lim g(y3 , y) = lim 2y
5
6 = lim 2

1 __.: oo shows that 
y ..... Q y->0 y .Y-+0 y 

g is unbounded on every neighborhood of infinity. The fact that lim f(y 2 , y) = 
y ..... o 

lim y4
4 = ~ shows that f is not continuous at (0, 0). 

y-O 2y 2 
Since f and g are continuous except at (0, 0), it is obvious that their re

strictions to any line that does not pass through (0, 0) are continuous. Now 
a line that does pass through (0, 0) has an equation that is either x = 0 or 
y = ax for some a. Both f and. g are constantly 0 on the first of these, and 
on the second we have f(x, ax) = a2x3 j(x2 + a4 x4 ) = a2xj(1 + a4x2), while 
g(x, ax) = a2x3 j(x2 + a6x6 ) = a2 xj(1 + a6x4 ). Both of the latter are obviously 
continuous functions. 

Exercise 4.8 Let f be a real uniformly continuous function on the bounded 
set E in R1 . Prove that f is bounded on E. 

Show that the conclusion is false if boundedness of E is omitted from the 
hypothesis. 

Let a = inf E and b = sup E, and let 8 > 0 be such that lf(x) - f(y)i < 1 if 
x, y E E and lx- yi < 8. Now choose a positive integer N larger than (b- a)/8, 

and consider theN intervals Ik =[a+ ~=~,a+ b~aJ' k = 1,2, ... ,N. For 

each k such that Ik n E #- 0 let Xk E En Ik. Then let M = 1 + max{lf(xk)l}. 
If x E E, we have lx- xkl < 8 for some k, and hence lf(x)l < M. 

The function f(x) = x is uniformly continuous on the entire line, but not 
bounded. 

Exercise 4.9 Show that the requirement in the definition of uniform continuity 
can be rephrased as follows, in terms of diameters of sets: To every c > 0 there 
exists a 8 > 0 such that diam f(E) < e for all E C X with diam E < 8. 

Solution. Suppose f is uniformly continuous and c > 0 is given. Choose 
any positive number a: smaller than c. Then there exists 8 > 0 such that 
dy(f(x), f(u)) <a: if dx(x, u) < 8. Hence if E is any set of diameter less than 
8 and x and u are any two points in E we have dy(f(x), f(u)) < a:, so that 
diam f(E) ::; a: <c. 

Conversely if f satisfies the condition stated in the problem, it is obvious 
that for any c > 0 there exists 8 > 0 such that dy(f(x), f(u)) < c whenever 
dx(x, u) < 8. (Choose 8 > 0 corresponding to c in the condition of the problem 
and then let E be the two-point set { x, u}.) 
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Exercise 4.10 Complete the details of the following alternate proof of Theorem 
4.19: Iff is not uniformly continuous, then for some E: > 0 there are sequences 
{Pn}, {qn} in X such that dx(Pn, qn) --? 0 but dy(f(pn), f(qn)) > E:. Use 
Theorem 2.37 to obtain a contradiction. 

Solution. Theorem 4.19 asserts that a continuous function on a compact set 
is uniformly continuous. By Theorem 2.37 there are subsequences {Pnk} and 
{ qnk} that converge to points p and q respectively. Since dx (Pn, qn) --? 0, it 
follows that p = q. However, since f is continuous, it follows from Theorem 
4.2 that f(Pnk) and f(qnk) converge to f(p), which, since dy(f(pnk), f(qnk) :::; 
dy(f(Pnk), f(p)) + dy(f(p), f(qnk)), implies that dy(f(Pnk), f(qnk)) - 0, con
tradicting the inequality dy(f(Pnk), f(qnJ) > E:. 

Exercise 4.11 Suppose f is a uniformly continuous mapping of a metric space 
X into a metric spaceY and prove that {f(xn)} is a Cauchy sequence in Y for 
every Cauchy sequence {xn} in X. Use this result to give an alternative proof 
of the theorem stated in Exercise 13. 

Solution. Suppose {xn} is a Cauchy sequence in X. Let c > 0 be given. Let 
8 > 0 be such that dy(f(x),J(u)) < e if dx(x,u) < 8. Then choose N so that 
dx(xn, Xm) < 8 if n, m > N. Obviously dy(f(xn), f(xm)) < E: if m, n > N, 
showing that {f(xn)} is a Cauchy sequence. 

Now let f be a uniformly continuous function defined on a dense subset E 
of X, mapping E into a complete metric space Y (for example, Y could be the 
real numbers). To prove that f has a unique continuous extension to all of X, 
proceed as follows. For each x E X \ E let { Xn} be a sequence of points in E 
converging to x. Define f(x) to be the limit of the Cauchy sequence {f(xn)}. 
This definition is unambiguous; for if { Un} also converges to x, then the sequence 
{Yn} defined by 

{ 
Xnj2 if n is even, 

Yn = U(n+l)/2 if n is odd, 

also converges ·to x. Hence {f(yn)} is a Cauchy sequence in Y, and so all 
subsequences of {f(yn)} converge to the same limit. In particular {f(xn)} and 
{f(un)} both converge to the same value. 

The extended function is also uniformly continuous. For if c > 0, let 8 > 0 

be such that dy(f(x),f(u)) < ~ if x, u E E and dx(x, u) < 8. Then if x E E, 

u EX\ E, and dx(x,u) < 8, choose vEE with dx(v,u) < 8- dx(x,u) and 

dy(f(v), f(u)) < ~ (this is possible because of the definition of f(u)). We then 

have dx(x,v):::; dx(x,u) + dx(u,v) < 8, and so 

2c 
dy(f(x),f(u)):::; dy(f(x),f(v)) +dy(f(v),f(u)) < 3 <e. 

Similarly if x EX\ E, u EX\ E, and dx(x, u) < 8, choose v, w E E with 
1 1 c 

dx(v,u) < 2(8- dx(x,u)), dx(x,w) < 2(8- dx(x,u)), dy(f(v),f(u)) < 3' 
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c 
and dy(f(w),f(x)) < 3. We then have 

dx(v,w) ~ dx(v,u) + dx(u,x) + dx(x,w) < 8 

and hence 

dy(f(x), f(u)) ~ dy(f(x), f(w)) + dy(f(w), f(v)) + dy(f(v), f(u)) <c. 

The uniqueness of this extension follows from Exercise 4 above. 

Exercise 4.12 A uniformly continuous function of a uniformly continuous func
tion is uniformly continuous. 

State this more precisely and prove it. 

Solution. Let f : X ~ Y and g : Y ~ Z be uniformly continuous. Then 
go f: X~ Z is uniformly continuous, where go f(x) = g(f(x)) for all x EX. 

To prove this fact, let c > 0 be given. Then, since g is uniformly contin
uous, there exists T/ > 0 such that dz(g(u),g(v)) < c if dy(u,v) < ry. Since 
f is uniformly continuous, there exists 8 > 0 such that dy(f(x), f(y)) < T/ if 
dx(x,y) < 8. 

It is then obvious that dz(g(f(x)),g(f(y))) < c if dx(x,y) < 8, so that go f 
is uniformly continuous. 

Exercise 4.13 Let E be a dense subset of a metric space X, and let f be a 
uniformly continuous real function defined on E. Prove that f has a continuous 
extension from E to X (see Exercise 5 for terminology). (Uniqueness follows 
from Exercise 4.) Hint: For each p E X and each positive ineger n, let Vn (p) 
be the set of all q E E with d(p, q) < 1/n. Use Exercise 9 to show that the 
intersection of the closures of the sets f ( vl (p))' f ( v2 (p))' ... ' consists of a single 
point, say g(p), of R1 . Prove that the function g so defined is the desired 
extension of f. 

Could the range space R1 be replaced by Rn. By any compact metric space? 
By any complete metric space? By any metric space? 

Solution. We shall carry out the proof in the context of any complete metric 
space, showing that the range space could be Rn or any compact metric space. 

The diameter of the closure qf f(Vi(p)) is the same as the diameter of f(Vi(p)) 
itself. Hence by Exercise 9 above these diameters tend to zero. Since they form 
a nested sequence of nonempty closed sets, their intersection must consist of a 
single point, which can be defined to be g(p). If pEE, the intersection of these 
sets is just f(p) (since f(p) is in all the sets, and only one point belongs to all of 
them), so that g coincides with f on E. It remains to show that g is continuous. 
This proof is identical to the proof given in Exercise 11 above, which depends 
only on the fact that for u E X \ E and c > 0, 8 > 0 there is a point v E E 
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with dx(v, u) < 8 and dy(f(v), f(u)) <c. This condition clearly holds in the 
present context as well. 

In general this theorem fails on an incomplete metric space. For example, 
take X to be the real numbers, Y and E the rational numbers, and let f : E ~ Y 
be given by f(x) = x. There is no possible extension off to a mapping from 
X into Y. (There is a unique extension off to a mapping from X into X, but 
its range is not contained in Y. If there were an extension off to a mapping 
from X into Y, there would be two extensions off to mappings from X into 
X, contradicting the uniqueness of the extension.) 

Exercise 4.14 Let I = [0, 1} be the closed unit interval. Suppose f is a con
tinuous mapping of I into I. Prove that f(x) = x for at least one x E I. 

Solution. If f(O) = 0 or f(1) = 1, we are done. If not, then 0 < f(O) and 
f(l) < 1. Hence the continuous function g(x) = x- f(x) satisfies g(O) < 0 < 
g(1). By the.intermediate value theorem, there must be a point x E (0, 1) where 
g(x) = 0. 

Exercise 4.15 Call a mapping from X into Y open if f(V) is an open set in 
Y whenever V is an open set in X. 

Prove that every continuous open mapping of R 1 into R 1 is monotonic. 

Solution. Suppose f is continuous and not monotonic, say there exist points 
a < b < c with f(a) < f(b), and f(c) < f(b). Then the maximum value 
of f on the closed interval [a, c] is assumed at a point u in the open interval 
(a, c). If there is also a point v in the open interval (a, c) where f assumes its 
minimum value on [a,c], then f(a,c) = [f(v),J(u)]. If no such point v exists, 
then f(a, c)= (d, f(u)], where d =min(!( a), f(c)). In either case, the image of 
(a, c) is not open. 

Exercise 4.16 Let [x] denote the largest integer contained in x, that is [x] is 
the integer such that x- 1 < [x] ::; x; and let (x) = x- [x] denote the fractional 
part of x. What discontinuities do the functions [x] and (x) have? 

Solution. The two functions have the same discontinuities, since each can be 
written as the difference of the continuous function f(x) = x and the other 
function. Now the function [x] is constant on each open interval (k, k + 1); 
hence its only possible discontinuities are the integers. These are of course real 
discontinuities, since if c = 1, there is no 8 > 0 such that l(x]- [k]l < c whenever 
lx- kl < 8. (For if any 8 is given, let fJ = min(l, 8). Then [k)- [k- ¥1 = 1.) 
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Exercise 4.17 Let f be a real function defined on(a, b). Prove that the set of 
points at which f has a simple discontinuity is at most countable. Hint: Let E 
be the set on which f(x-) < f(x+ ). With each point x of E associate a triple 
(p, q, r) of rational numbers such that 
(a) f(x-) < p < f(x+ ), 
(b) a< q < t < x implies f(t) < p, 
(c) x < t < r < b implies f(t) > p. 

The set of such triples is countable. Show that each triple is associated with 
at most one point of E. Deal similarly with the other possible types of simple 
discontinuities. 

Solution. The existence of three such rational numbers (p, q, r) for each simple 
discontinuity of this type follows from the assumption f(x-) < f(x+ ), and the 
definition of f(x-) and f(x+ ). We need to show that a given triple (p, q, r) 
cannot be associated with any other discontinuity of this type. To that end, 
suppose y > x and f(y-) < f(y+). If we do not have f(y-) < p < f(y+), 
then the triple d;10sen for y will differ from (p, q, r) in its first element. Hence 
suppose f(y-) < p < f(y+ ). In this case we definitely cannot haver> y, since 
there are points t E (x, y) such that f(t) < p (if there weren't, we would have 
f(y-) 2:: p). 

We have thus shown that the set of points x E (a, b) at which f ( x-) < f ( x+) 
is at most countable. The proof that the set of points at which f(x-) > f(x+) 
is at most countable is, of course, nearly identical. 

Now consider the set of points x at which lim f(t) exists, but is not equal 
t-+x 

to f(x). For each point x E (a, b) such that lim f(t) < f(x), we take a triple 
t-+x 

(p, q, r) of rational numbers such that 

(a) lim f(t) < p < f(x), 
t-+x 

(b) a< q < t < x or x < t < r < b implies f(t) < p. 

As before, if y > x and lim f(t) < f(y)", the triple associated with y will 
t-+y 

be different from that associated with x. For even if lim f(t) < p < f(y), we 
. ~y 

cannot haver> y, since f(y) > p and x < y. 
The proof that the set of points x E (a, b) at which lim f(t) > f(x) is 

t-+x 
countable is nearly identical. 

Hence, the number of points in [a, b] at which f has a discontinuity of first 
kind is countable. 

Exercise 4.18 Every rational X can be written in the form X = mjn, where 
n > 0 and m and n are integers without any common divisors. When x = 0, we 
take n = 1. Consider the function f defined on R1 by 

{ 
o· 

f(x) = ~ 
(x irrational), 

(x = :). 
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Prove that f is continuous at every irrational point, and that f has a simple 
discontinuity at every rational point. 

Solution. We shall show that lim f(t) = 0 for every t. Both assertions follow 
t ...... x 

immediately from this fact. To this end, let c > 0 be given, and let x be any 
real number. Let N be the unique positive integer such that N:::; 1/c < N + 1, 
and for each positive integer n = 1, 2, ... , N, let kn be the unique integer such 
that 

kn kn + 1 -<x<--n - n 

Then for each such n let Dn · ~ if x = kn , otherwise let Dn = min (x -
n n 

!5_, kn + 1 - x). Finally let 6 = min(81, ... , DN ). We claim that Jj(t)J < c if 
n n 
0 < Jx- tJ <b. This is obvious if tis irrational, while if tis rational and t = m, 

n 
we necessarily have n > N by the choice of the numbers Dn for n < N. Hence 

if t is rational,· then f(t) :::; N ~ 1 <c. The proof is now complete. 

Exercise 4.19 Suppose f is a real function with domain R 1 which has the 
intermediate-value property: If f(a) < c < f(b), then f(x) = c for some x 
between a and b. 

Suppose also, for every rational r, that the set of all x with f(x) = r is 
closed. 

Prove that f is continuous. 
Hint: If Xn ~ xo but f(xn) > r > f(xo) for some rand all n, then f(tn) = r 

for some tn between xo and Xn; thus tn ~ xo. Find a contradiction. (N. M. 
Fine, Amer. Math. Monthly, val. 73, 1966, p. 782.) 

Solution. The contradiction is evidently that x0 is a limit point of the set of 
t such that f(t) = r, yet, xo does not belong to this set. This contradicts the 
hypothesis that the set is closed. 

Exercise 4.20 If E is a nonempty subset of a metric space X, define the dis
tance from x E X to E by 

PE(x) = inf d(x, z). 
zEE 

(a) Prove that PE(x) = 0 if and only if x E E. 
(b) Prove that PE is a uniformly continuous function on X by showing that 

IPE(x)- PE(Y)i:::; d(x,y) 

for all x E X and y E X. 
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PE(x) ~ d(x, y) + PE(y). 
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Solution. (a) For each positive integer n, let Zn E E be such that PE(x) ~ 

d(x, zn) < PE(x)+ .!.. It follows that d(x, zn) ~ PE(x). If PE(x) = 0, this means n . 
Zn ~ x, i.e., x E E. Conversely, if x E E, there exists a sequence {zn}~1 ~ E 
such that Zn ~ x, and this means d(zn, x) ~ 0, so that PE(x) = 0. 

(b) The last inequality given in the hint follows form the first by taking the 
infimum over z on the right-:-hand side. This inequality immediately implies that 

PE(x) - PE(Y) ~ d(x, y). 

By interchanging x and y, we also obtain 

PE(Y)- PE(x) ~ d(y, x) = d(x, y). 

Since IPE(x)- PE(Y) I must be either PE(x)- PE(Y) or PE(Y)- PE(x), it follows 
that 

IPE(x)- PE(Y)I ~ d(x,y). 

Exercise 4.21 Suppose K and F are disjoint sets in a metric space X, K is 
compact, F is closed. Prove that there exists 8 > 0 such that d(p, q) > 8 if 
p E K, q E F. Hint: PF is a continuous positive function on K. 

Show that the conclusion may fail for two disjoint closed sets if neither is 
compact. 

Solution. Following the hint, we observe that pp(x) must attain its minimum 
value on K, i.e., there is some point r E K such that 

pp(r) = minpp(q) . . 
qEK 

Since F is closed and r ~ F, it follows from Exercise 4.20 that pp(r) > 0. Let 
8 be any positive number smaller than pp(r). Then for any p E F, q E K, we 
have 

d(p, q) ~· pp(q) ~ pp(r) > 8. 

This proves the positive assertion. 
As for closed sets in general, one could let F = {1, 2, 3, ... } and K = {1 + 

~, 2 + ~, 3 + i ... } in Rl, or one could let F = { ( x, y) : y = 0} and K = { ( x, y) : 

y = 1 
1 

2 } in R2. In both cases there are sequences of points Pn E F, qn E K 
+x 

such that d(pn; qn) ~ 0. 
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Exercise 4.22 Let A and B be disjoint nonempty closed sets in a metric space 
X, and define 

!( ) = PA(P) ( iC= Y\ 
,P, PA (p) + PB(P) ,p ~ ~- r 

Show that f is a continuous function on X whose range lies in [0, 1], that 
f (p) = 0 precisely on A and f (p) = 1 precisely on B. This establishes a 
converse of Exercise 3: Every closed set A C X is Z(f) for some continuous real 
f on X. Setting 

show that V and W are open and disjoint, and that A C V, B C W. (Thus 
pairs of disjoint closed sets in a metric space can be covered by pairs of disjoint 
open sets. This property of metric spaces is called normality.) 

Solution. The continuity off follows from the fact that the quotient of two 
continuous real-valued continuous functions is continuous wherever the denom
inator is non-zero. Now the denominator of the fraction that defines f cannot 
be zero, since the first term is zero only on A and the second is zero only on B, 
while A and B are disjoint. The fact that f(p) = 0 if and only if p E A follows 
from Exercise 20 and the fact that A is closed. Likewise the fact that f (p) = 1 
if and only if p E B follows from Exercise 20 and the fact that B is closed. The 
assertion about V and W is immediate, since V and Ware the inverse images 
of disjoint open sets containing 0 and 1 respectively. 

Exercise 4.23 A real-valued function f defined in (a, b) is said to be convex if 

f(J..x + (1- J..)y) ::S J..f(x) + (1- J..)f(y) 

whenever a < x < b, a < y < b, 0 < ).. < 1. Prove that every convex function is 
continuous. Prove that every increasing convex function of a convex function is 
convex. (For example, if f is convex, so is ef.) 

Iff is convex in (a, b) and if a< s < t < u < b, show that 

f(t)- f(s) f(u)- f(s) f(u)- f(t) ..:.......:.....:...._-..:........:......:.. < < . 
t-s - u-s - u-t 

Solution. Fix any points c, d with a < c < d < b, let fJ > 0 be any fixed 
'd 

positive number with 17 < ; c and consider any two points x, y satisfying 

c + fJ ~ x < y :::; d- fJ. The inequality in the definition implies that f(t) 
t-c 

is bounded above on [c, d]. Indeed, if c < t < d, taking ).. = -d-, we have 
-c 

t = (1- J..)c+ J..d, and so, if M = max(f(c),f(d)), we have 

f(t) :::; (1- J..)f(c) + J..f(d) ::S (1- J..)M + J..M = M. 
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It is less obvious that f is also bounded below on [c, d]. In fact if c; d < t < d, 

we have 
c+d 
~ = (1 - A)c + At, 

d-e 
where A= 2(t _c), so that 

f ( c + d) :::; ( 2t - ( c + d) ) f (c) + ( d - c ) f ( t)) 
2 2(t-c) 2(t-c) 

which implies 

! ( t) 2 ( 2 ( t - c) ) ! ( c + d) - 2t - ( c + d) ) ! (c) 2 -21! ( c + d) I - If (c) '· 
d-e 2 d-e 2 1 

The proof that f is bounded below on [ c, c; d] is similar. Hence there exists 

M such that lf(t)! :::; M for all t E [c, d]. 
We can also write 

x=(1-A)c+Ay, 

X-C 
where A=-- E (0, 1). Accordingly we have 

y-c 

f(x)- f(y):::; (1- A)(f(c)- f(y)) = 

Thus 

= y- x (!(c)- /(y)) :::; y- x If( c)- f(y)l. 
y-c 1] 

2M 
f(x)- f(y) :::; -(y- x). 

1] 

Similarly, writing y =AX+ (1- A)d, where A= d- y E (0, 1), we find 
d-x 

f(y)- f(x):::; (1- A)(f(d)- f(x)) = 

Hence we also have 

Therefore 

= dy - X (f (d) - f (X)) :::; y - X If (d) - f (X) I· 
-X 1] 

2M 
f(y)- f(x):::; -(y- x). 

1] 

2M 
!f(y)- f(x)! :::; -!y- x! 

1] 

for all x, y E [c + 1], d -TJ]. Since c, d, and 1] are arbitrary, it follows that f is 
continuous on (a, b). 
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If f ( x) is convex on (a, b), and g ( x) is an increasing convex function on 
f((a, b)), we have 

g(j()..x + (1- A)y))::; g(Aj(x) + (1- )..)f(y))::; )..g(f(x)) + (1- )..)g(f(y)). 

The inequality 
f(t)- f(s) < f(u)- f(s) 

t-s u-s 
can be rewritten as 

· t-s ( t-s) f(t)::; -f(u) + 1-- f(s), 
u-s u-s 

which is precisely the definition of convexity if we note that 

t-s 
when A=-- .. 

u-s 

t = AU+ (1 - )..)s 

The other inequality is proved in exactly the same way. 

Exercise 4.24 Assume that f is a continuous real function defined in (a, b) 
such that 

f(x; Y) ::; f(x); f(y) 

for all x, y E (a, b). Prove that f is convex. 

Solution. We shall prove that 

f()..x + (1- )..)y) ::; )..j(x) + (1- )..)j(y) 

for all "dyadic rational" numbers, i.e., all numbers of the form)..= !_,where k 2n 
is a nonnegative integer not larger than 2n. We do this by induction on n. The 
case n = 0 is trivial (since ).. = 0 or .A= 1). In the case n = 1 we have .A= 0 or 
).. = 1 or .A = ~. The first two cases are again trivial, and the third is precisely 
the hypothesis of the theorem. Suppose the result is proved for n ::; r, and 

consider .A= 2r:l. If k is even, say k = 2l, then 2r:l = ;r, and we can appeal 

to the induction hypothesis. Now suppose k is odd. Then 1 ::; k ::; 2r+l - 1, 
k-1 k+1 

and so the numbers l = -- .and m = -- are integers with 0 < l < m < 2r. 2 2 - -
We can now write 

A=s+t 
2 ' 

k-1 l k+I m 
where s = 2r+l = 2r and t = 2r+l = 2r. We then have 

AX+ (I_ )..)y = [sx + (1- s)y] + [tx + (1- t)y] 
2 . 
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Hence by the hypothesis of the theorem and the induction hypothesis we have 

j(Ax + (1- A)y) 
< J(sx + (1- s)y) + j(tx + (1- t)y) 

2 
< sf(x) + (1- s)f(y) + tj(x) + (1- t)j(y) 

2· 

- ( S ; t) j (X) + ( 1 - S ; t) j (y) 

- Aj(x) + (1- A)j(y). 

This completes the induction. 
Now for each fixed x and y both sides of the inequality 

j(Ax + (1- A)y) ::; Aj(x) + (1- A)j(y) 

are continuous functions of A. Hence the set on which this inequality holds (the 
inverse image of the closed set [0, 6o) under the mapping A f--+ Aj(x) + (1-

A)j(y)- j(Ax + (1- A)y)) is a closed set. Since it contains all the points ~' 2n 
0 ::; k ::; n, n = 1, 2, ... , it must contain the closure of this set of points, i.e., it 
must contain all of [0, 1]. Thus f is convex. 

Exercise 4.25 If A c Rk and B C Rk, define A + B to be the set of all sums 
x+y with x E A, y E B. 
(a) If K is compact and Cis closed in Rk, prove that K +Cis closed. 

· Hint: Take z ¢. K +C, put F = z-C, the set of all z-y withy E C. Then 
K and Fare disjoint. Choose 6 as in Exercise 21. Show that the open ball with 
center z and radius 8 does not intersect K +C. 

(b) Let a be an irrational number. Let C1 be the set of all integers. Let C2 be 
the set of all na with n E C1. Show that C1 and C2 are closed subsets of R1 
whose sum cl + c2 is not closed, by showing that cl + c2 is a countable dense 
subset of R1. 

Solution. (a) It is clear that the set F defined in the hint is a closed set. It is 
disjoint from K, since z ¢. K +C. Let 8 be such that IP- ql > 6 if p E F and 
q E K. We claim that there is no point of K + C inside the ball of radius 6 about 
z. For suppose w were such a point. By definition we would have w = u + v, 
where u E K and v E C. Bu.t then we would have 

lu- (z-v)l = lw-zl < 6, 

which is a contradiction, since u E K and z- v E F. Thus K +Cis closed. 

(b) Neither of the sets C1 and C2 has any limit points; hence both are closed 
sets. For each fixed integer N ;::: 2, consider the fractional parts {31 = a- [a], 
!32 = 2a- [2a], ... , f3N = Na- [No:]. There must be some half-open interval 
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[ k- 1 , k ) , k = 1, 2, ... , N -1 containing two of the numbers fJ1, ... , f3N, 
N-1 N-1 

since there are N numbers and only N- 1 intervals. (Note: No tvvo of these 
numbers are equal, since f3i = /3j, i # j, would imply 

[ia]- (ja] 
a= .. ' 

2-J 

Le., a would be a rational number.) Now the inequalities 

1 
0 < ( ia - [ia]) - (ja - [ja]) < N _ 1 

say that· ( i- j)a + ([ja] - [ia]) E ( 0, N ~ 1), that is, there is certainly a point 

of C1 + C2 in ( 0, N ~ 1 ) for any N 2: 2. We shall now prove that there is a 

point of C1 + C2 in (~, k: 1) for any integer k and any positive integer n. To 

do so, fix the integer q such that qn :::::; k < (q + l)n, and choose y E Cr + C2 
1 

such that 0 < y < -. Then X = ny E Cr + c2 and 0 < X < 1. Hence there is a 
n 

positive integer p such that k < px + qn < k + 1. This says precisely that 

k k+l 
-<py+q<--, 
n n 

and certainly py + q E C1 + C2 . Now let 0 be any nonempty open subset of R1 . 

Then 0 contains an interval (a, b). If n > -b 2 , there is an integer k such that 
-a 

( ~, k : 1 ) c (a, b). This interval, as just shown, contains a point of C1 + C2, 

and hence 0 contains such a point. Therefore C1 + C2 is dense in R 1 . Since it 
is a countable set, it is not all of R1 , and hence not closed. 

Exercise 4.26 Suppose X, Y, Z are metric spaces andY is compact. Let f 
map X into Y, let g be a continuous one-to-one mapping of Y into Z, and put 
h(x) = g(f(x)) for x EX. 

Prove that f is uniformly continuous if h is uniformly c_ontinuous. 
Hint: g-1 has compact domain g(Y), and f(x) = g-1 (h(x)). 
Prove also that f is continuous if h is continuous. 
Show (by modifying Example 4.21, or by finding a different example) that 

the compactness of Y cannot be omitted from the hypotheses, even when X 
and Z are compact. 

Solution. Theorem 4.17 asserts that g- 1 is continuous, and since its domain is 
compact, it is uniformly continuous. Exercise 12 above then implies that f is 
uniformly continuous. The same argument, with the word "uniformly" omitted, 
shows that f is continuous if h is continuous. 
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To get a counterexample when Y is not compact, let X =-[0, 1] = Z, Y = 
{0} U [1, oo), and let f: X-+ Y and g: Y-+ Z be given by 

J(x) = { ~' 0, 
0 <X ::; 1, 
X =0, 

( ) { l 1 <_ y < oo, 
g y = J!,' u y=O. 

Then h(x) = g(J(x)) = x, so that his ~niformly continuous, and g is continuous 
and one-to-one, yet f is not even continuous. 
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Chapter 5 

Differentiation 

· Exercise 5.1 Let f be defined for all real x, and suppose that 

if(x)- f(y) I ~ (x- y) 2 

for all real x and y. Prove that f is constant. 

Solution. Dividing by x- y, and letting x---+ y, we find that f'(y) = 0 for ally. 
Hence f is constant. ·· 

Exercise 5.2 Suppose f'(x) > 0 in (a, b). Prove that f is strictly increasing in 
(a, b), and let g be its inverse function. Prove that g is differentiable, and that 

91 (j (X)) = f' ~X) (a < X < b). 

Solution. For any c, d with a < c < d < b there exists a point p E ( c, d) such 
that f(d)- f(c) = f'(p)(d- c) > 0. Hence f(c) < f(d). 

We know from Theorem 4.17 that the inverse function g is continuous. (Its 
restriction to each closed subinterval [c, d] is continuous, and that is sufficient.) 
Now observe that if f(x) = y and f(x +h)= y + k, we have 

g(y + k) - g(y) 1 1 1 
k - f'(x) = f(x+h)-f(x) - J'(x) · 

h 

Since we know lim cp(t) = lim ~(t) provided lim cp(t) =1- 0, it follows that for any 
c > 0 there exists fJ > 0 such that 

1~1~ __ 1 j<c 
f(x+h)-f(x) j'(x) 

h 

if 0 < ihi < fJ· Since h = g(y+k)- g(y), there exists 8 > 0 such that 0 < ihi < 'fJ 

if 0 < iki < 8. The proof is now complete. 

67 
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Exercise 5.3 Suppose g is a real function on R1 with bounded derivative (say 
[g'l ::::; M). Fix c > 0, and define f(x) = x + cg(x). Prove that f is one-to-one 
if c is small enough. (A set of admissible values of c can be determined which 
depends only on lVJ.) 

Solution. If 0 < c < ~, we certainly have 

f'(x) 2:: 1- eM> 0, 

and this implies that f(x) is one-to-one, by the preceding problem. 

Exercise 5.4 If 
C1 Cn-1 Cn 

Co+ - + · .. + -- + -- = 0, 
2 n n+ 1 

where C0 , ... , Cn are real constants, prove that the equation 

has at least one real root between 0 and 1. 

Solution. Consider the polynomial 

( ) G C1 2 Cn-1 n Cn n..:-.1 p X = oX+ -X + .. · + --X + --X ' , 
2 n n+ 1 

whose derivative is 

It is obvious that p(O) = 0, and the hypothesis of the problem is that p(1) = 0. 
Hence Rolle's theorem implies that p'(x) = 0 for some x between 0 and 1. 

Exercise 5.5 Suppose f is defined and differentiable for every x > 0, and 
f'(x) --+ 0 as x--+ +oo. Put g(x) = f(x + 1)- f(x). Prove that g(x) --+ 0 as 
x--+ +oo. 

Solution. Let c > 0. Choose xo such that /f'(x)/ < c if x > x0 . Then for any 
x 2:: xo there exists x1 E ( x, x + 1) such that 

f(x + 1)- f(x) = f' (xl)· 

Since /f'(xi)! < c, it follows that /f(x + 1)- f(x)/ < c, as required. 



Exercise 5.6 Suppose 

(a) f is continuous for x 2: 0, 

(b) f'(x) exists for x > 0, 

(c) f(O) = 0, 

(d) f' is monotonically increasing. 

Put 

g(x) = f(x) (x > 0) 
X 

and prove that g is monotonically increasing. 

Solution. By the mean-value theorem 

f(x) = f(x)- f(O) = f'(c)x, 
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for some c E (0, x). Since f' is monotonically increasing, this result implies that 
f ( x) < x f' ( x). It therefore follows that 

g'(x) = xf'(x); f(x) > O, 
X 

so that g is also monotonically increasing. 

Exercise 5.7 Suppose f'(x) and g'(x) exist, g'(x) # 0, and f(x) = g(x) = 0. 
Prove that 

lim f(t) = f'(x). 
t-x g(t) g'(x) 

(This holds also for complex functions.) 

Solution. Since f(x) = g(x) = 0, we have 

lim f(t) -
t-x g(t) 

f(t)- f(x) 

l. t- X 
lill __,.._,;..---:.::..,~ 

t-+x g(t)- g(x) 
t-x 

l. f(t)- f(x) 
lffi ,_.;_...:___;__.:-.;... 

t-+x t- X 

l. g(t)- g(x) 
1m;:.....:....;;.._..::.....:...~ 

t-+x t- X 

f'(x) 
g'(x). 
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Exercise 5.8 Suppose f' is continuous on [a, b] and E > 0. Prove that there 
exists o > 0 such that 

I f ( t) - f (X) J"l I-\ I ~ c 
I -J\:LJ!"'--"' 
I t-X I 

whenever 0 < jt - xl < o, a :::; x :::; b, a :::; t :::; b. ·(This could be expressed by 
saying that f is uniformly differentiable on [a, b] if f' is continuous on [a, b].) 
Does this hold for vector-valued functions too? 

Solution. Let o be such that lf'(x)- f'(u)! < E for all x, u E [a, b] with jx-ui < o. 
Then if 0 < it- xi < o there exists u between t and x such that 

j(t)- f(x) = f'(u), 
t-x 

and hence, since ju- xl < o, 

! f(t~ = ~(x) - f'(x)J = lf'(u)- f'(x)l <E. 

Since this result holds for each component of a vector-valued function f(x), it 
must hold also for f. 

Exercise 5.9 Let f be a continuous real function on R 1, of which it is known 
that f'(x) exists for all x =/= 0 and that f'(x) ___. 3 as x ___. 0. Does it follow that 
f' ( 0) exists? 

Solution. Yes. By L'Hospital's rule 

lim j(t) - f(O) = lim f' (t) = 3, 
t-o t t-o 

and this by definition means that f' (0) = 3. 

Exercise 5.10 Suppose f and g are complex differentiable functions on (0, 1), 
f(x) ___. 0, g(x) ___. 0, f'(x) ___. A, g'(x) '---+ B as x ___. 0, where A and B are 
complex numbers, B =/= 0. Prove that 

Compare with Example 5.18. Hint: 

f(x) = { f(x) _A} . __:__+A.__:___ 
g(x) x g(x) g(x) 

Apply Theorem 5.13 to the real and imaginary parts of f(x)jx and g(x)jx. 
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Solution. We can make f and g continuous on [0, 1) by simply defining f(O) = 
0 = g(O). Then Exercise 9 applied to the real and imaginary parts of f and 
g show that f'(O) =A and g'(O) = B. (These are one-sided derivatives, since 
f and g are not defined for negative values of x; however, we could extend 
them as odd functions, since both are 0 at 0). We could then apply Exercise 7, 
whose proof does not use anything but the definition of the derivative and some 
general facts about limits. In this way we get the result without resorting to 
the combinatorial trick referred to in the hint. This result shows that many of 
the facts ordinarily proved for real functions by use of the mean-value theorem 
and L'Hospital's rule rem~in true for complex-valued functions, even though, as 
Example 5.18 shows, these theorems are not true for complex-valued functions. 

Exercise 5.11 Suppose f is defined in a neighborhood of x, and suppose f"(x) 
exists. Show that 

1. f(x +h)+ f(x- h) - 2f(x) _ !"( ) 
1m h2 - x. 

h-+0 

Solution. For a real-valued function this is a routine application of L'Hospital's 
rule: 

1. f(x +h)+ f(x- h)- 2f(x) 
1m --------~~~----~ 

h-+0 h2 
l. f'(x +h)- f'(x- h) 
Im 2h h-+0 

1 1. f'(x +h)- f'(x) 
--21m h + h-+0 

f'(x)- f'(x- h) 
+ h 

= f"(x). 

For complex-valued functions the result follows from separate consideration of 
real and imaginary parts. 

The limit will be zero at x = 0 for any odd function f whatsoever, even 
if the function is not continuous. For example we could take f(x) = sgn (x), 
which is + 1 for x > 0, 0 for x = 0, and -1 for x < 0 

Exercise 5.12 If f(x) = lxl3 , compute f'(x), f"(x) for all real x, and show 
that jC3) (0) does not exist. 

Solution. For x > 0 we have f'(x) = 3x2 , f"(x) = 6x, and for x < 0 f'(x) = 
-6x2 , f"(x) = -6x, i.e., f'(x) = 3xlxl, and f"(x) = 6lxl for x =/; 0. By 
Exercise 9, it therefore follows that f'(O) exists and equals 0, and then another 
application of Exercise 9 shows that f" (0) also exists and equals 0. However 

f"(x)- f"(O) 
-~----'~--'- = 6sgn ( x), 

X 

which has no limit at 0. Hence j<3) (0) does not exist. 
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Exercise 5.13 Suppose a and c are real numbers, c > 0, and f is defined on 
[-1, 1] by 

.rt , ( xa sin( x-c) 
f\X) = l 0 , 

Prove the following statements: 

(a) f is continuous if and only if a > 0. 

(b) f' (0) exists if and only if a > 1. 

(c) f' is bounded if and only if a ;::: 1 + c. 

(d) j' is continuous if and only I if a > 1 + c. 

(e) f"(O) exists if and only if a> 2 +c. 

(f) f" is bounded if and only if a ;::: 2 + 2c. 

(g) f" is continuous if and only if a > 2 + 2c. 

(if X j= 0), 
(if X= 0). 

Solution. We remark editorially that there are two difficulties with this problem. 
One is that we haven't yet introduced the function sin. To overcome that 
problem we can rely on our intuitive notion or use the Taylor series if we have 
to. The second problem is more serious, however: What do xa and x-c mean 
when x < 0? In general these will be complex-valued functions. It might be 
better to use absolute values in both cases. Thus we shall amend the problem 
by defining f(x) = lxla sin(jxj-c) when xi= 0. 

(a) Since f is infinitely differentiable except at x = 0, the only question of 

( 1) _l 1 _£ 
continuity is at x = 0. Let tn = 21T' n + 8 , Xn = tn c and Yn = -./2 tn c • Notice 

that f(xn) = Yn and that Yn tends to ~ if a= 0 and to +oo if a< 0. Hence 

the function cannot be continuous if a s 0. On the other hand, we have 

if(x)- f(O)I = /f(x)/ $/xla, 

so that if a > 0 and c is given, we can choose 8 = c'i-, and then /x- 0/ < 8 
implies if(x)- f(O)I < c, i.e., f(x) is continuous at x = 0. 

(b) Iff' (0) exists, then f is continuous at 0, so that a > 0. Notice that 

f(xn) - f(O) Yn 1 ~ 
.:......:..~-.:......:..~----t c 

Xn - Xn- J2 n 

which tends to ~if a= 1 and to +oo if 0 <a< 1. Hence f'(O) does not exist 

if a s 1. On the other harid if a > 1 we have 

0 $ f(x)- f(O) < /xla-1 ~ O, 
X 

and so f'(O) = 0. 

(c) For xi= 0 we have 

f'(x) = sgn (x)jxja-l [asin(/x/-c)- c/x/-c cos(jxj-c)J. 
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Hence f'(xn) = ~ [ax~- 1 - cx;;-c+a-1], which tends to -oo if~ < 1 +c., On. 

the other hand we have 

which is certainly bounded on [-1, 1] if a;::: 1 +c. 

(d) If f' is continuous, it is bounded, and so a ;::: 1 + c. However if a = 1 + c, 
then 1 . 

f'(xn) = y'2 [(1 + c)t;-;1 - c] 

which te~ds to - ~ as n ~ oo, while Xn ~ 0. Hence f' is not continuous at 0 

unless a> 1 +c. If a> 1 + c, the inequality 

implies that f(x). ~ 0 as x ~ 0, and so f' is continuous. 

(e) If f"(O) exists, then f' must be continuous at 0, and so a;::: 1 +c. Now for 
x;zfO 

J'(x)- J'(O) = sgn (x) [aixia-2 sin(lxl-c)- cixia-c-2 cos(lxl-c). 
X 

Taking x = Xn, we find that this difference quotient equals 

1 ~ ~ 
y'2 [ atn c - ctn c J , 

which tends to ~ if a = c + 2 and to -oo if a < c + 2. Hence f" (0) exists only 

if a> c + 2. 
On the other hand, if a> c + 2, we have the inequality 

I J'(x): J'(O) I ::; alxla-2 + cixia-c-2, 

from which it follows immediately that f"(O) = 0. 

(f) For x # 0 we have 

f"(x) = sgn (x)[a(a- 1)lxla-2 - c2 lxla-2c-2] sin(lxl-c] 

- c(2a- c- 1)lxla-c-1 cos(lxl-cJ. 

In particular 

1 ~ 2±2c-a c±l-a 

f"(xn) = y'2[a(a -1)tnc - c2tn c - c(2a- c -1)t;c-J, 

which tends to -oo if a< 2 + 2c. On the other hand, we have the inequality 

if"(x)l::; lalla -1llxla-2 + c2lxla- 2c-2 + cj2a- c- 1llxla-c-1, 
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and the right-hand side is certainly bounded if a 2 2 + 2c. 

(g) If f" is continuous, then it is bounded, and hence a 2 2 + 2c. If a = 2 + 2c, 
we have 

1 -c-1 

!" (xn) = ~[(2c + 2)(2c + 1)t~ 2 - c2 - c(3 + 3c)t;c-], 

c2 
which tends to - .J2, so that f" is not continuous at 0. On the other hand, if 

a > 2 + 2c, the inequality 

/f"(x)/::; lalla -lllx/a-2 + c2/x/a-2c-2 + c/2a- c- l/lx/a-c-1' 

shows that f"(x)-+ 0 as x-+ 0, and hence f" is continuous. 

Exercise 5.14 Let f be a differentiable real function defined in (a, b). Prove 
that f is convex if and only if f' is monotonically increasing. Assume next 
that f" ( x) exists for every x E (a, b), and prove that f is convex if and only if 
j" (X) 2 0 for all X E (a, b). 

Suppose first that f' is montonically increasing, and that x < y. We wish to 
show that if 0 < ..\ < 1, then 

f(..\x + (1- ..\)y) ::; >-.j(x) + (1- ..\)f(y). 

y-z z-x 
Letting z = A.x + (1- A.)y, we have A.=--, 1- A.=--, and x < z < y. 

y-x y-x 
Now the required inequality can be written 

(1- A.)[f(y)- f(z)] 2 ..\[f(z)- f(x)], 

which, when we insert the values of..\ and 1- A., and multiply by the positive 
y-x 

number ( · ) ( ) , becomes z-x y-z 

f(y)- f(z) f(z) - f(x) 
~~--~> . 

y-z - z-x 

Since the left-hand side is f'(d) for some dE (z,y), the right-hand side is f'(c) 
for some c E (x, z), and f' is nondecreasing, we have the required inequality. 

By Exercise 23 of Chapter 4 we know that if f is convex on (a, b) and 
a < c < d < p < q < b, then 

c_f_.(__:....d)_-_;;__f (:_:_c) f(p) - !(d) !( q) - f(p) - < < . 
d-e. - p-d - q-p 

Hence, if f' exists, letting d -+ c and q -+ p, we find 

!' (c) $ !' (p)' 

so that f' is nondecreasing. 
Finally if f" exists, we know that f' is nondecreasing if and only if f" ( x) 2 0 

for all x E (a, b). Hence f is convex if and only if f"(x) 2 0 for all x E (a, b). 
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Exercise 5.15 Suppose a E Rl, f is a twice-differentiable real function on 
(a,oo), and Mo, M 1 , M2 are the least upper bounds of if(x)J, lf'(x)!, lf''(x)l, 
respectively, on (a, oo). Prove that 

Hint: If h > 0, Taylor's theorem shows that 

f'(x) = 2~ [f(x + 2h)- f(x)]- hf"(~) 

for some~ E (x, x + 2h). Hence 

Mo 
lf(x)l S hM2 + -;;:· 

To show that M'.f = 4MoM2 can actually happen, take a= -1, define 

{
2x2 -1, (-l<x<O), 

J(x) = x2- 1 
x2 + 1' (0:::; x < oo), 

and show that Mo = 1, M 1 = 4, M2 = 4. 
Does M[ :::; 4M1M2 hold for vector-valued functions too? 

Solution. The inequality is obvious if Mo = +oo or M2 = +oo, so we shall 
assume that Mo and M2 are both finite. We need to show that 

lf'(x)l S 2/MoM2 

for all x > a. We note that this is obvious if M2 = 0, since in that case f'(x) 
is constant, f(x) is a linear function, and the only bounded linear function is 
a constant, whose derivative is zero. Hence we shall assume from now on that 
0 < M2 < +oo and 0 < Mo < +oo. 

Following the. hint, we need only choose h = f!/i, and we obtain 

which is precisely the desired inequality. 
The case of equality follows, since the example proposed satisfies 

. 2 
f ( x) = 1 - x2 + 1 

. 4x 
for x ~ 0. We see easily that lf(x)l S 1 for all x > -1. Now f'(x) = (x2 + 1)2 

for x > 0 and J'(x) = 4x for x < 0. It thus follows from Exercise 9 above 
that f'(O) = 0, and that f'(x) is continuous. Likewise J"(x) = 4 for x < 0 
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"( ) 4- 4x2 x2 - 1 Th' h h If"( ) I c and j X = ( 2 ) 3 = -4 ( 2 )3 . lS S OWS t at · X < 4 10f X > 0 
X + 1 X + 1 

and also that lim f"(x) = 4. Hence Exercise 9 again implies that f"(x) is 
x--+0 

continuous and f" (0) = 4. 
On n-dimensional space let f(x) = (fr(x), ... ,fn(x)), Mo = supjf(x)l, 

M 1 = sup jf'(x)j, and M2 = sup jf"(x)j. Just as in the numerical case, there 
is nothing to prove if M2 = 0 or Mo = +oo or M2 = +oo, and so we assume 
0 < M 0 < +oo and 0 < M2 < oo. Let a be any positive number less than 

M1 , let xo be such that !f'(xo)l >a, and let u = lf'(~o)lf'(xo). Consider the 

real-valued function cp(x) = u · f(x). Let No, N1, and N2 be the suprema of 
jcp(x)j, jcp'(x)j, and j·cp"(x)l respectively. By the Schwarz inequality we have 
(since lui = 1) No ::; Mo and N2 :::; M2, while N1 2: cp(xo) = If' (xo) I > a. We 
therefore have a2 < 4NoN2 ::; 4MoM2· Since a was any positive number less 
than M1, we have Mf ::; 4MoM2 , i.e., the result holds also for vector-valued 
functions. 

Equality can hold on any Rn, as we see by taking f(x) = (f(x), 0, ... , 0) 
or f(x) = (f(x), f(x), ... , f(x)), where f(x) is a real-valued function for which 
equality holds. 

Exercise 5.16 Suppose f is twice-differentiable on (0, oo), f" is bounded on 
(0, oo), and f(x) __, 0 as x __, oo. Prove that f'(x) __, 0 as x __, oo. 

Solution. We shall prove an even stronger statement. If f(x) __, L as x __, oo 
and f'(x) is uniformly continuous on (0, oo), then f'(x) __, 0 as x __, oo. 

For, if not, let Xn __, oo be a sequence such that f ( Xn) 2: E > 0 for all n. 
(We can assume f(xn) is positive by replacing f with - f if necessary.) Let 8 

be such that lf'(x)- J'(y)l < ~ if !x- Yl < 8. We then have f'(y) > ~ if 
2 2 

iY- Xnl < 8, and so 

E 
lf(xn + 8)- f(xn- 8)1 2: 28 · 2 = &. 

But, since 8c > 0, there exists X such that 

1 
!f(x) - Ll < 2& 

for all x > X. Hence for all large n we have 

lf(xn + 8)- f(xn- 8)1 S lf(xn + 8)- Ll + IL- f(xn- 8)[ < &, 

and we have reached a contradiction. 
The problem follows from this result, since iff" is bounded, say lf"(x)j S M, 

then lf'(x)- f'(y)j ::::; Afjx- yl, and f' is certainly uniformly continuous. 
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Exercise 5.17 Suppose f is a real, three times differentiable function on [-1, 1], 
such that 

!( -1) = 0, f(O) = 0, j(1) = 1, f' (0) = 0. 

Prove that JCS) (x) 2:': 3 for some x E ( -1, 1). 
Note that equality holds for ~(x3 + x 2 ). 

Hint: Use Theorem 5.15 with a= 1 and j3 = +1, to to show that there are 
s E (0, 1) and t E (-1,0) such that 

jC3)(s) + f( 3)(t) = 6. 

Solution. Following the hint, we observe that Theorem 5.15 (Taylor's formula 
with remainder) implies that 

!(1) 

!( -1) 

- f(O) + f'(O) + ~f"(O) + ~j(3)(s) 

f(O)- j'(O) + ~ f"(O)- ~ JC3)(t) 
2 6 

for some s E (0, 1), t E ( -1, 0). By subtracting the second equation from the 
first and using the given values of /(1), f(-1), and f'(O), we obtain 

which is the desired result. Note that we made no use of the hypothesis f(O) = 0. 

Exercise 5.18 Suppose f is a real function on [a, b], n is a positive integer, 
and j(n-l) exists for every t E (a, b]. Let a, ;3, and P be as in Taylor's theorem 
(5.15). Define 

Q(t) = f(t) - f(/3) 
t- j3 

for t E (a, b], t =I= /3, differentiate 

f(t)- f(j3) = (t- j3)Q(t) 

n - 1 times at t = a, and derive the following version of Taylor's theorem: 

f(j3). P(j3) + ~~~1 ~~( (j3- at. 

Solution. The function Q(t) is differentiable n-1 times except possibly at t = /3, 
so we don't have to worry when differentiating n - 1 times at t = a. It is easy 
to prove by induction that 
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for 0 < k ::; n - 1. Hence 

~f(k)( )({3- a)k =- (/3- a)k+1 Q(k)(a) ...~.. (~- a)k o<k-l)fal. 
k! a kl - ' ' 1 (k- 1)! """ \ / 

Then, because the sum telescopes, we find 

n-l j(k)( ) Qn-1( ) 
""""' a (/3- a)k = f(/3)- a (!3- at, 
Lt k! (n- 1)! 
k=O 

which can be rewritten as 

Q(n-1)( ) 
f(/3) = P(/3) + (n -1)7 ({3- at. 

Exercise 5.19 Suppose f is defined in ( -1, 1) and f'(O) exists. Suppose -1 < 
O:n < f3n < 1, O:n ---+ 0, and f3n ---+ 0 as n---+ oo. Define the difference quotients 

Dn = f(f3n)- f(an). 
f3n- O:n 

Prove the following statements: 

(a) If O:n < 0 < /3n, then limDn = f'(O). 

(b) If 0 <an< /3n and f3n/(f3n- an) is bounded, then limDn = f'(O). 

(c) iff' is continuous in ( -1, 1), then lim Dn = f'(O). 

Give an example in which f is differentiable in ( -1, 1) (but f' is not contin
uous at 0) and in which an, f3n tends to 0 in such a way that lim Dn exists but 
is different from f'(O). 

Solution. We assume that o:nf3n =I 0 throughout, i.e., that neither On nor f3n is 
zero. 

(a) Write 

f(f3n)- f(O) + f(O)- f(an) 
f3n '- O:n f3n - O:n 

f3n J(f3n)- f(O) + -O:n f(an)- f(O) 
f3n - an f3n f3n - an an 

Now let c > 0. Choose 8 > 0 such that 

/ f(x): f(O) _ j'(o)/ < c 
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if 0 < Jxl <b. Then choose N so that 0 < f3n <band -b <an-< 0 for n > N. 
Then for all n > N we have 

f3n I J(f3n) - f(O) _ J' (O) I + 
f3n- an f3n 

+ -an I f(an) - f(O) _ f' (O) I 
f3n- an · an 

f3n -an 
< c-+ c 

f3n - an f3n - an 
- c. 

(b) If f3n ::; M for all n, and 0 < an < f3n, then surely f3 an < M for 
f3n - an . n - an 

all n. Hence if c > 0 is given, choose N so that 

1 f(x)- f(O) _ j'(O)I < __:__ 
I X 2M 

if 0 < JxJ <b. Then choose N so that 0 < f3n < b (hence also 0 < an < b) for 
n > N. Then for all n > N we have 

f3n I J(f3n)- f(O) _ J'(O) I + 
f3n- an f3n 

+ an I f(an)- f(O) _ f'(O)I 
f3n- an an 

f3n c an c 
< -+ -

f3n - an 2M f3n - an 2M 
< €. 

(c) By the mean-value theorem there exists 'Yn between an and f3n such that 
Dn = f'bn)· Since 'Yn ~ 0 and f' is continuous, it follows that Dn ~ f'(O). 

Let f(x) be any function such that f'(O) exists but lim J'(x) does not exist. 
x-->0 

We know that f'(x) does not tend to infinity as x ~ 0, since if it did, we 
would have Jf'(x)J > 1 + Jf'(O)J for all sufficiently small nonzero x, and this 
contradicts the intermediate-value property of derivatives. Hence there is a 
sequence Xn --t 0, Xn =/: 0, such that lim f'(xn) = L =/: f'(O). Let f3n = Xn, and 

n->oo 

let Yn be such that 0 < IYn - Xn I < ~ lxn I and 

I f(Yn)- f(xn) _ J'(xn)/ < IL- f'(O)J 
Yn- Xn 2n 

It is then immediate that 

lim f(Yn)- f(xn) = L =/: j'(O). 
n->00 Yn- Xn 

A suitable example of such a function f(x) is 

f(x) = { x2 sin (~), x # 0, 
0, X= 0. 
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In this case we can get the counterexample in a slightly different form by taking 

Xn = - 1- and Yn = 1 
1 . We then have f'(O) = 0 and 

27rn 271"( n + 4) 

f(Yn) - f(xn) 2n 

Yn-Xn -?r(n+i) 
2 ___.-
71" 

Exercise 5.20 Formulate and prove an inequality which follows from Taylor's 
theorem and which remains valid for vector-valued functions. 

Solution. There is a variety of possibilities, of which we choose just one: Suppose 
f ( x) has continuous derivatives up to order n on [a, b]. Then there exists c E 

(a, b) such that 

lf(b)- P(b)J :S /~:~c) /(b-at. 

To prove this assertion true for a vector-valued function f, we merely observe 
that it holds for each scalar-valued function u · f if u is any fixed vector of length 
1. It is obviously true if Jf(b) - P(b)j = 0, and in all other cases it follows by 

1 
taking u = Jf(b) _ P(b) I (f(b) - P(b) ). 

Exercise 5.21 Let E be a closed subset of R1 . We saw in Exercise 22, Chap. 
4, that there is a real continuous function f on R 1 whose zero set is E. Is it 
possible, for each closed set E, to find such an f which is differentiable on R 1 , 

or one which is n times differentiable, or even one which has derivatives of all 
orders on R 1? 

Solution. Yes, it is possible. The proof depends on the following lemma: 

Let a and b be any real numbers with a < b, and let f(x) be defined for all 
real numbers x by the formulas 

f(x) = { e(r-a)\x b)' 

0, 

a< x < b, 

x :S a or x 2: b. 

Then f has derivatives of all orders on R1 . 

It is obvious that f has derivatives of all orders at every point except possibly 
a and b. To prove that derivatives exist at these points we need two sublemmas: 
For each nonnegative integer n there exists a polynomial Pn ( z, w) such that 

for a< x <b. 

f(n)(x) = Pn (-1-, _l_)e<"' a}ix-b) 
x-a x-b 
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The proof of this sublemma uses only the partial-fraction decomposition 

1 1 [ 1 1 ] 
(x- a)(x- b) = b- a x- b - ~ ' 

together with the c.hain rule and the fact that the partial derivative of a poly
nomial is again a polynomial. We omit the details. 

The second sublemma is stated as a formula: For. every nonnegative integer 
n, 

e (o:-a)(o: b) 

lim = 0. 
z!a (x- a)n 

Its proof is a consequence. of Taylor's formula. To be specific, Taylor's formula 
with remainder implies the following result: 

For each nonnegative integer k and each positive number t 

t 1 k 
e > k!t . 

This last result follows easily since there is a point tk E (0, t) for which 

t . t2 tk-1 etk k 

e = 1 + t + 2! + .. · + (k _ 1)! + k!t , 

every term in this last sum is positive, and etk > 1. 

We now apply this result·with k =nand t = (x _ a)~b _ x), to obtain 

e (o: a)(o:-b) 
1 

e (o:-af(b o:) 

< n!(b- x)n(x- at 

for all n = 0, 1, .... In particular 

e<o:-a){o:-b) < n!(b- a)n(x- a)n = Kn(X- at.· 

Since the kth de~ivative of e <z-aho:-bJ is a polynomial in - 1- and - 1-, each 
x-a x-b 

derivative also satisfies such an estimate. It follows from this last result that 

( 1 1 ) l limp --,-- e<o:-a)(o:-b) = 0 
x!a z- b z- a 

for any polynomial p(z, w), and hence that f(n) (a) = 0 for all n. The proof that 
j(n)(b) = 0 is similar. We observe that the zero set of f(x) is the complement 
of the open interval (a, b). 

Identical reasoning shows that the function 

{ 

_l 
ea-o: X> a, 

f(x) = ' 

0, x :$a, 
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has derivatives of all orders, and its zero set is the complement of the semi
infinite open interval (a, +oo). A similar function can be constructed for a 
semi-infinite open interval ( -oo, b). 

Now let F be any non-empty closed set. The complement of F consists of 
a countable set of pairwise disjoint finite open intervals (ak, bk), together with 
possibly one or two semi-infinite open intervals. Define f(x) to be zero on F, 

l 

let f(x) = eC"' ak)(:r bk) in each finite open interval complementary to F with 
1 

endpoints in F, f(x) = ea=x for x > a if the complement of F contains a 
1 

semi-infinite interval (a, +oo) with endpoint a E F, and f(x) = ez=s if the 
complement ofF contains a semi-infinite interval ( -oo, b) with endpoint bE F. 

It is now obvious that f is zero precisely on F, and that F has derivatives 
of all orders at each point of the complement of F and at each interior point of 
F. 

It remains to be shown that f has derivatives of all orders at each boundary 
point x of F. There are actually 4 cases to consider, but all are handled alike, 
and we shall· settle for just one typical case, in which there is a decreasing 
sequence of points Xp E F, Xp -t x, and a decreasing sequence of points Yp ¢:. F, 
Yp -t x, but no increasing sequence of points Zp E F, Zp -t x. This means either 
x = bk for some k or x = b. Now for each y such that x < y < x 1 there is a 
complementary interval to F, say (a1, bl) C (x,x1), with ak < y < bk. Then for 
all nonnegative integers k and n we have 

where Kn,k is a positive constant independent of l, hence independent of y. It 
therefore follows, upon taking n = 2 that if x 1 > y > x, then 

I f(y)- f(x) 1\ < K ( - x) 
( ) - 2,0 y y-x . 

(We have just proved this inequality for y ¢:. F, and f(y) = f(x) = 0 if y E F.) 
Hence the right-handed derivative 

f ' ( ) _ 1. f(y)- f(x) 
+X -liD 

y!x y- X 

is zero. That the left-hand derivative is zero follows from the fact that x = bk 
or x =b. Hence f'(x) = 0. We now assume by induction that f(k-l)(x) = 0 
Then the inequality j(k-l)(y) ~ K2,k- 1(y- x) 2 shows that 

f (k-1)( ) 
f (k)( ) - l" y - 0 

..1. X - liD - . 
' ylx Y- X 

Again, the left-hand kth derivative is zero since x = bk or x = b. It follows 
easily that J(k)(x) exists and equals zero for all k. 



Exercise 5.22 Suppose f is a real function on (-oo,oo). Call x a fixed point 
of j if j (X) = X. 

(a) Iff is differentiable and f'(t) i= 1 for every real t, prove that f has at most 
one fixed point. 

(b) Show that the function f defined by 

f(t) = t + (1 + et)- 1 

has no fixed point, although 0 < f'(t) < 1 for all real t. 

(c) However, if there is a constant A < 1 such that lf'(t)l :::; A for all real t, 
prove that a fixed point x of f exists, and that x = lim Xn, where x 1 is an 
arbitrary real number and · 

for n = 1, 2, 3, .... 

(d) Show that the process described in (c) can be visualized by the zig-zag path 

(xi,xz)--+ (xz,xz)--+ (xz,x3)--+ (x3,x3)--+ (x3,x4)--+ · · ·. 

Solution. (a) If a function f(x) has two fixed points x and y, x i= y, the 
mean-value theorem implies that there exists a point z between x and y such 
that 

y- x = f(y)- f(x) = j'(z)(y- x), 

so that f'(z) = 1. 

(b) The equation j(t) = t implies that (1 +et)-1 = 0, which is clearly impossible, 
t 

while f'(t) = 1- (1 : et)Z always lies in (0, 1). 

(c) Since f' is bounded, f is uniformly continuous, and we observe that the 
sequence {xn}~=l is a Cauchy sequence. Indeed, if n > m > N, we have 

Now it is easy to show by induction, using the mean-value theorem and the fact 
that lf'(x)l $A for all x, that 

lxn+l- Xnl 5 An-1/xz- x1/ 

for n 2: 1. We therefore have 

< !x2- x1!(An-z + An-3 + ... + Am-1) 

_1_Am-llxz- xl! 
l-A 

< 

< !x2- x1! AN. 
l-A 

Since 0 5 A < 1, it follows that AN --+ 0 as N --+ oo, and so this is a Cauchy 
sequence. Let its limit be x. We claim that x is a fixed point. Indeed, x = 
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/ 

Figure 5.1: Finding a fixed point 

lim Xn = lim Xn+I = lim f(xn) = f( lim Xn) = f(x), since f is continuous. 
n-+oo n-oo n-+oo n-+oo 
There can of course be only one fixed point because of the result proved in (a). 

(d) ·The procedure described can be depicted on the graph of the function j, 
i.e., the set of points (x, f(x) ), as follows: Let x1 be any abscissa; locate the 
point (x1, j(x1)) on the graph. Thereafter, for each point (xn, Yn) located on the 
graph, let the abscissa of (xn+l, Yn+l) be the ordinate of (xn, Yn), i.e., Xn+l = Yn· 
Thus, from a point (xn, Yn) on the graph off we move horizontally to the line 
y = x, then vertically back to the graph of f. It is clear visually that this 
process leads to the point of intersection of the graph off with the line y = x, as 
illustrated in Fig. 1 for the case of f(x) = 2- ~x, where P1 = (2, l),.P2 = (1, 1), 
Pg = (1, ~), P4 = G, ~), Ps = (~, ~), and P5 = (~, ~). (The fixed point is 
(!, ~), which is the point of intersection of the graph of f and the line y = x.) 

Exercise 5.23 The function f defined by 

has three fixed points, say a, (3, "(, where 

-2 < 0: < -1, 0 < f3 < 1, 1 < "( < 2. 

For arbitrarily chosen x1, define {xn} by setting Xn+l = f(xn)· 

(a) If x1 < o:, prove that Xn--+ -oo as n--+ oo. 

(b) If o: < x1 < "(, prove that Xn --+ f3 as n --+ oo. 

(c) If"(< x1, prove that Xn --+ +oo as n--+ oo. 



Thus j3 can be located by this method, but a and 1 cannot. 

Solution. We shall make use of the auxiliary functions 

x3 + 1 a(x)=f{:r.l-x= -x 
oJ\/ .,,--; 3 

and 

{ 
g(x) - g(/3)' x # /3, 

h(x)= x-/3 

g'((3) X= (3, 
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x2 + j3x , 132· 
i.e., g(x) = 3 ' -1. We observe that the fixed points off are the zeros 

of g. Since g(-2) = -! < 0, g(-1) = 1 > 0, g(O) =! > 0, g(1) = -! < 0, 
and g(2) = 1 > 0, the intermediate value theorem shows that a, (3, and 1 are 
located in the intervals they are asserted to be in. 

Since g(a) = g(/3) = g("Y) = 0, it follows that h(a) = h("Y) = 0. Since his a 
quadratic function, it has only the two zeros a and"'(, and in particular h(x) is 
negative for a< x < "Y· Now the minimum value of h(x) is attained at x = -~, 

and this minimum value is c, where c = ~2 -1. Thus -1 < c < 0. In particular, 

for a< x < 1 there is a number r E (0, 1) such that 

· f(x)-x=r(j3-x), 

i.e., 
f(x)- /3 = s(x- j3), 

where s = 1- r is also in the interval (0, 1). This means that f(x)- f3 and x- (3 
both have the same sign, but that lf(x)- /31 < lx- /31. Thus f(x) is always 
between j3 and x. Therefore the sequence { Xn} is monotonic and converges to 
a fixed point in the interval whose endpoints are x 1 and j3. Since the only fixed 
point in this interval is /3, the sequence must converge to j3. 

If x <a (resp. x >"f), it is easy to see that f(x) < x (resp. f(x) > x). Thus 
the sequence { Xn} is monotonically decreasing ( resp. increasing), and hence 
either tends to -oo (resp. +oo) or converges to a fixed point 8 in the interval 
(-oo,x1) (resp. (x1 ,+oo)). Since there are no fixed points in this interval, it 
follows that Xn--+ -oo (resp. Xn--+ +oo). 

Exercise 5.24 The process described in part (c) of Exercise 22 can of course 
also be applied to functions that map (0, oo) to (0, oo). 

Fix some a > 1, and put 

a+x 
g(x) = --. 

1+x 
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Both f and g have fo. as their only fixed point in (0, oo ). Try to explain, on 
the basis of properties off and g, why the convergence in Exercise 16, Chap. 3, 
is so much more rapid than it is in Exercise 17. (Compare f' and g', draw the 
zig-zag suggested in Exerc.ise 22.) 

Do the same when 0 < a < 1. 

Solution. We recall that in Chap. 3 we proved that the first function leads to 
!xn- fol ~ Ar2n for some r E (0, 1), while the second leads only to lxn- fol ~ 
Arn. The exact values of A and r depend on a and x1. 

The best explanation of the difference between the two methods is that 

f(x)- va ~(1- V:)(x- ya), 

g(x)- ya - 1- fo (x _ ya). 
1+x 

The first of these makes it plain that if x > JO., the same will be true of f(x), 
though f(x) will be closer to Q than x by a factor that is at most ! and tends to 
zero as x tends to yO., i.e., the relative improvement in accuracy itself improves 
as the recursion proceeds. The second equality shows that g(x) -a is on the 
opposite side of fo from x if Q > 1, though closer by a factor that is at least 

1-ya 
the absolute value of . Hence the relative improvement in accuracy as 

1 +x1 
the recursion proceeds is limited. 

In terms of the zigzag pattern, when we use g, the zigzag keeps circulating 
around the point of intersection of the graph of g and the line y = x instead of 
moving steadily toward it in a staircase pattern. 

When 0 < a < 1, the zigzag does stay on one side of the point of intersection 
of the two curves. However, the relative improvement is still at best a factor of 
1-fo 

2 when xis close to fo. 

Exercise 5.25 Suppose f is twice differentiable in [a, b), f(a) < 0, f(b) > 0, 
f'(x) 2 8 > 0, and 0 ~ f'(x) ~ M for all x E [a, b]. Let~ be the unique point 
in (a, b) at which f(~) = 0. 

Complete the details in the following outline of Newton's method for com
puting~-

(a) Choose x1 E (~,b), and define Xn by 

f(xn) 
Xn+l = Xn- J'(xn) 

Interpret this geometrically, in terms of a tangent to the graph of f. 
(b) Prove that Xn+l < Xn, and that 

lim Xn = .;. 
n-+oo 
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(c) Use Taylor's theorem to show that 

for some tn E (~,xn). 

(d) If A= M/28, deduce that 

(Compare with Exercises 16 and 18, Chap. 3.) 

(e) Show that Newton's method amounts to finding a fixed point of the function 
g defined by 

f(x) 
g(x) = x- f'(x). 

How does g' ( x). behave for x near ~? 

(f) Put f(x) = x113 on (-oo,oo) and try Newton's method. What happens? 

Solution. We remark at the outset that x 1 can be found by trying z0 = a!b. 

If f(zo) > 0, take x1 = zo. Otherwise let Zn+l = (b + Zn)/2, and let x1 be the 
first Zn for which f(zn) > 0. (In a finite number of steps we must reach such a 
point since Zn T b and f(b) > 0~) 
(a) The tangent line to the gTaph off at the point Xn has the equation y
f(xn) = f'(xn)(x- Xn)· Setting y = 0 in this equation and solving for x gives 
x = Xn+l· Thus the interpretation of Newton's method is that we approximate 
the point where the graph of f intersects the x-axis by the point at which its 
tangent line at (xn, f(xn)) intersec~s the x-axis. 

(b) We can assume by induction that f(xn) > 0, and hence, since f'(xn) > 0, 
it follows immediately that Xn+l < Xn· Notice that there exists c between Xn 
and Xn+l such that f(xn+l) = f(xn)- f'(c)(xn- Xn+r) > f(xn)- f' (xn)(xn
Xn+l) = 0 since f'(c) < f'(xn) and Xn - Xn+I > 0. Thus it follows that 
~ < Xn+l < Xn· Hence {xn} converges to a limit 7] satisfying 7] 2: ~- Now, 
however, we have 

!('TJ) 
7] = 7]- f'('TJ)' 

from which it follows that f('TJ) = 0, i.e., 7] = ~
(c) The required equality can be written as 

f(xn) J"(tn) ( )2 
Xn- ~- J'(xn) = 2j'(xn) Xn- ~ ' 

while Taylor's theorem can be written as 



88 CHAPTER 5. DIFFERENTIATION 

Since j(t;,) = 0, it is clear that these two equations are equivalent. 

(d) Since 0:::; f"(tn) :::; M and f'(xn) > 8, we have 

0 :=:; Xn+l -~ :=:; A(xn -t;,) 2 . 

In particular 

0:::; x2 -t;,:::; A(x1 -£;,)2 = ~ [A(x1 -£;,)] 2 , 

and then an easy induction gets the general result. 
We found this kind of convergence in Exercises 16 and 18 of Chap. 3 with 

the recursion relation 

p -1 a -p+l 
Xn+l = --Xn + -Xn . 

p p 

We now recognize this recursion as Newton's method for the function f(x) = 
xP -a on the interval [1, fo + 1). Exercise 16 of Chap. 2 was the special case 
p=2. ' 

(e) Obviously the equation g(x) =xis equivalent to the equation f(x) = 0. 
f(x)f"(x) 

Since g'(x) = [f'(x)]2 , we see that g'(x) tends to zero as x tends tot;,, 

i.e., the graph of g(x) meets the line y = x at a 45° degree angle at the point 
(t;,' t;,). 
(f) The fixed point of f(x) is x = 0. However f'(x) -+ oo as x-+ 0, and f'(O) 
does not exist. This destroys the convergence of Newton's method. In fact, if 
Xn i= 0, then Xn+l = -2xn, so that Xn oscillates wildly: limsupxn = +oo, 
lim inf Xn = -oo. 

Exercise 5.26 Suppose f is differentiable on [a,bJ, f(a) = 0, and there is a 
real number A such that lf'(x)l :::; Ajf(x)l on [a, b]. Prove that f(x) = 0 for all 
x E [a, b]. Hint: Fix Xn E [a, b], let 

Mo =sup lf(x)l, M1 =sup lf'(x)l 

for a:::; x:::; xo. For any such x, 

lf(x)l S M1(xo- a) S A(xo- a)Mn. 

Hence Mo = 0 if A(xo- a) ::;: 1. That is, f = 0 on [a, xo]. Proceed. 

Solution. If we anticipate the fundamental result that the function f(x) = ex 
satisfies f'(x) = f(x), Exercise 2 above yields the result that lnx is differentiable 
and has derivative ~. Hence by the chain rule for any positive differentiable 

function f(x) the function g(x) = lnf(x) is differentiable and g'(x) = f'((x). 
f x) 

(Unfortunately this fundamental result is not proved until Chapter 7, so we shall 
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just have to wait. However, since certain other functions such as sinx and cosx 
have been introduced without any formal definition, and their derivatives have 
been assumed known, we might as well continue along this line of reasoning.) 

Now suppose there is an interval (c, d) C [a, b] such that f(c) = 0 but 
f(x) =I 0 for c < x <d. By passing to consideration of- f(x) if necessary, we 
can assume f ( x) > 0 for c < x < d. The function g( x) = In f ( x) is then defined 
for c < x < d, and its derivative satisfies 

jg'(x)j = I~(~? I ~A. 
The mean-value theorem them implies that 

(c+d) (d-e) g(x)~g -2- -A -2-

for all x E (c, d). But this is a contradiction, since g(x) ~ -oo as x ~c. 
This finishes the proof, except that it assumes we know the derivative of 

ex. If we don't assume that, we have to fall back on the hint. In that case, let 
xo =a+ 2~, and let Mo = sup{jj(x)j : a::; x::; xo}. We then have 

' 1 
lf(x)l ::; M1(x- a) ::; AMo(xo- a)= 2Mo 

for all x E [a, x0]. But by definition of Mo this implies Mo ::; ~M0 , so that 

Mo::; 0, i.e., Mo = 0. We now start over with a replaced by xo, x1 = xo + 2~. 
In a finite number of steps, we will have b < Xn + 2~, so that f(x) = 0 for 

a::; x ~b. 

Exercise 5.27 Let ¢ be a real function defined on a rectangle R in the plane, 
given by a ::; x ::; b, a ::; y ::; (3. A solution of the initial-value problem 

y' = ¢(x,y), y(a) = c (a::; c::; (3) 

is, by definition, a differentiable function f on [a, b] such that f(a) = c, a: ::; 
f(x) ::; (3, and 

f'(x) = ¢(x, f(x)) (a::; x ~b). 

Prove that such a problem has at most one such solution if there is a constant 
A such that 

j¢(x,y2)- ¢(x,y1)l::; AIY2- Y1l 

whenever (x, Yl) E Rand (x, Y2) E R. 
Hint: Apply Exercise 26 to the difference of two solutions. Note that this 

uniqueness theorem does not hold for the initial-value problem 

y' = yl/2' y(O) = 0, 
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which has two solutions: f(x) = 0 and f(x) = x2 /4. Find all other solutions. 

Solution. Following the hint, we observe that if f(x) = h(x)- !1(x), then 

jg'(x)j - lf~(x)- f{(x)l 
i¢(x,h(x))- ¢(x,fr(x))l 

< A/h(x)- fi(x)l 

- A/g(x)/. 

By the initial condition g(a) = h(a)- JI(a) = c- c = 0. Hence by the 
preceding exercise g(x) = 0 for all x E [a, b]. 

As for the equation y' = JY, if f ( x) is a solution and f ( x) > 0 on an 
interval (a, b), while f(a) = 0, we observe that g(x) = ~satisfies g'(x) = 
~(f(x))-112 f'(x) = ~' so that for some constant c we have g(x) = ~(x +c). 
Thus 

1 
f(x) = (g(x)) 2 = 4(x + cf. 

(x- a) 2 
Since f(a) = 0, it follows that c = -a, i.e., f(x) = 4 Thus the only 

possible solutions are 

{ 
0, 

f(x) = (x- a) 2 

4 ' 

0:::; x:::; a, 

a:::; x. 

Here a 2: 0 is arbitrary. 

Exercise 5.28 Formulate and prove an analogous uniqueness theorem for sys
tems of differential equations of the form 

Note that this can be rewritten in the form 

y' = ¢(x,y), y(a) = c, 

where y = (y1, ... , Yk) ranges over a k-cell, ¢ is the mapping of a ( k + 1 )-cell 
into the Euclidean k-space whose components are the functions ¢1 , ... , ¢k, and 
cis the vector (c1, ... , ck). Use Exercise 26 for vector-valued functions. 

Solution. The result is the following: 

Let¢ be a vector-valued function defined on a (k + 1)-cell D = [a, b] x C in 
Rk+l whose range is contained in Rk, and suppose that there exists a constant 
A such that 
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for all y 1 E C, Y2 E C. Then the initial-value problem 

y' = ¢(x, y) y(a) = c 

has at most one solution y: [a, b] ~C. 

The main tool needed to prove this result is 'the analogue of Exercise 26 
for vector-valued functions, which does hold. Indeed the proof is identical, 
considering that the original proof depends only on the inequality If (d)- f (c) I :::; 
!f'(r)i(d-c) for some r E (c,d), and this inequality is certainly valid for vector
valued functions. Once that result is obtained, the preceding exercise can be 
applied verbatim. 

Exercise 5.29 Specialize Exercise 28 by considering the system 

yj - Yi+l (j = 1, ... , k- 1), 
k 

Y~ - f(x)- L9i(x)yj, 
j=l 

where J, g1 , ... , 9k are continuous real functions on [a, b], and derive a uniqueness 
theorem for solutions of the equation 

y(k) + gk(x)y(k-l) + · · · + g2(x)y' + 91(x)y = f(x), 

subject to initial conditions 

... ' 

Solution. We let y = (yl,Y2,Y3, ... ,yk) = (y,y',y'', ... ,y(k-l)) and ¢(x,y) = 
k 

(y2,yg, ... ,yk,J(x)- I: gj(x)yj)· We then observe that ifyi = (Yil, ... ,yik), 
. j=l 

then 

k 

I€P(x, Y2) - cP(x, Yl)! = I (Y22 - Y12, Y23 - Y13, · · ·, L 9j(x)(Yli- Y2i)) I· 
j=l 

If M = sup{/gi(x)/: a::; x:::; b, 1:::; j:::; k}, we then have 

k 

j¢(x,y2)- cP(x,yl)l :S: (M + 1) L IY2i- Ylil :S: k(M + 1)/Y2- Yl/· 
j=l 

This provides the hypothesis of the theorem for any (k + 1)-cell [a, b] x C 
whatsoever in Rk+l. Hence there is at most one solution to this initial-value 
problem. 
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Chapter 6 

The Riernann-Stieltjes 
Integral 

Exercise 6.1 Suppose a increases on [a, b], a :5 x0 :5 b, a is continuous at x0 , 

f(xo) = 1, and f(x) = 0 if x·# xo. Prove that f E 'R(a) and that J fda= 0. 

Solution. Let e > 0, and let 8 be such that la(x) - a(xo)i < e if lx- xoi < 8. 
Now consider any partiion a= to < t1 < · · · < tn = b with n ;::: 2 such that 
lti- ti-1! < ~· There exists an index i such that ti-l < xo < ti+l (there may 
possibly be 2 such indices). We then have, for any choice of t0, ti, ... , t~, 

n 

I 2::: f(tj)(a(tj)- a(tj-1)) I < if(t:)l[a(ti)- a(ti-1)1 + 
j=l 

+IJ(t:+l)l[a(ti+l)- a(ti)] 
< a(ti+l)- a(ti-1) <e. 

By definition of the Riemann-Stieltjes integral, this means that f E 'R(a) and 
J fda= 0. 

Exercise 6.2 Suppose f :2: 0, f is continuous on [a, b], and J.' f(x) dx = 0. 

Prove that f(x) = 0 for all x E [a, b]. (Compare this with Exercise 1.) 

Solution. Suppose f(xo) #- 0 for some xo E [a, b]. Since f(x) is continuous 

on [a, b] and f(;o) > 0, there exists 8 > 0 such that if(x)- f(xo)i < f(;o) 

for all x E [a, b] such that lx- xoi < 8. Let 'fJ = min(8, max(xo- a, b- xo)), 
so that rJ > 0. Let I be the interval [xo - rJ, x0] if it is contained in [a, b]; 
otherwise let I= [xo,xo + TJ]. Whichever is the case, I~ [a,b] and f(x) = 

93 
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f(xo) 
f(xo) + (f(x)- f(xo)) 2: f(xo)- lf(x)- f(xo)l > - 2- for all x E I. The 

functions h ( x) and h ( x) defined as 

h(x) = { f(x), x E I, 
0, X~ I, 

h(x) = { f(x), x ~I, 
0, X E I, 

are both nonnegative, bounded, and continuous except possibly at the two end
points of the interval I. They are therefore both Riemann-integrable. Consid
eration of Riemann sums shows that 

1. b c 
a h (X) dx ~ 7] 2 , 

and 
b 1 fz(x)dx ~ 0, 

It therefore follows that 

1b 1b 1b c 
a f(x)dx = a h(x)dx+ a h(x)dx ~ 7]2 > 0, 

contradicting the hypothesis that 1b f(x) dx = 0. 

Exercise 6.3 Define three functions f31,{32,f3s as follows: /3j(x) = 0 if x < 0, 
f3J (x) = 1 if x > 0 for j = 1, 2, 3 and f3I (0) = 0, f32(0) = 1, f3s(O) = ~- Let f be 
a bounded function on [ -1, 1]. 

(a) Prove that f E R(f3I) if and only if f(O-) = f(O) and that then 

j f d/3i = f(O). 

(b) State and prove a similar result for /32 . 

(c) Prove that f E R(f3s) if and only iff is continuous at 0. 

(d) If f is continuous at 0, prove that 

Solution. Let to < t1 < · · · < tn-l < tn be any partition of any interval 
containing 0. Since the upper Riemann-Stieltjes sums become smaller and the 
lower ones larger when a point is added to any partition, in deciding whether 
a function is integrable or not, we may assume that 0 is one of the points of 



95 

the partition. Let k be the index such that tk = 0, so that the ·upper and lower 
Riemann-Stieltjes sums 

n 

l::Mi(/1j(ti)- jjj(ti-1)), j = 1,2,3, 
i=1 

and 
n 

L mi(/1j(ti)- /3j(ti-1)), j = 1,2,3, 
i=1 

. Mk-1 + Mk mk-1 + mk 
are respectively Mk and mk, Mk-1 and ffik-I, 2 and 2 

(a) Since mk :::; f(x) :::; Mk for 0 :::; x :::; tk+1 in the first case, the sets of 
upper and lower sums contain elements arbitrarily near to each other if and only 
if for each c there is a partition with Mk- mk < c. If such a partition exists, 
let 8 = tk+1· Then we have if(x)- f(O)I :::; Mk- mk < c for 0 ~ x :::; 8, and 
hence lim = f(O). Conversely, if lim = f(O), then for any c, let 8 > 0 be 

x-O+ x-O+ 
such that if(x)- f(O)I < 8 if 0 < x < 8, and let P be a partition with tk = 0, 
tk+1 < 8. It is then clear that both upper and lower Riemann sums differ from 

f(O) by less than c, i.e., j f d/11 = f(O). 

(b) f E R(/32) if and only if lim f(x) = f(O) and if this condition holds, 
x-o-

then j f d/32 = f(O). The. proof is identical to the proof just given, except that 

"+" is replaced by "-." 

(c) In the third case, the upper and lower Riemann-Stieltjes sums differ by 
(Mk - mk) + (Mk-1 + mk-1 If . h . . . . . 

2 . , given c, t ere exists a partition contammg 

0 for which this difference is less than ~' let 8 = min(tk+1, -tk_1). Then for 

-8 :::; x :::; 8 we certainly have 

. (Mk - mk Mk-1 - mk-1) if(x)- /(0)1::; max 2 , 2 :::; Mk-mk+Mk-1-mk-1 < c, 

so that f is continuous at 0. The same argument shows that in this case 

j f d/1s = /(0). 

(d) This result is contained in (a)-(c). 

Exercise 6.4 If f(x) = 0 for all irrational x, f(x) = 1 for all rational x, prove 
that f ~ 'R, on [a, b] for any a < b. 

Solution. Every upper Riemann sum equals b - a, and every lower Riemann 
sum equals 0. Hence the set of upper sums and the set of lower sums do not 
have a common bound. 
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Exercise 6.5 Suppose f is a bounded real function on [a, b] and f 2 E R on 
[a, b]. Does it follow that f E R? Does the answer change if we assume that 
f 3 E R? 

Solution. The integrability of f 2 does not imply the integrability of f. For 
example, one could let j(x) = -1 if xis irrational and f(x) = 1 if xis rational. 
Then every upper Riemann sum off is b- a and every lower sum is a- b. 
However, j 2 , being the constant function 1, is integrable. 

The integrability of j 3 does imply the integrability of j, by Theorem 6.11 
with cp(u) = if'U. 

Exercise 6.6 Le P be the Cantor set constructed in Sec. 2.44. Let f be a 
bounded real function on [0, 1] which is continuous at every point outside P. 
Prove that fER on [0, 1]. [Hint: P can be covered by finitely many segments 
whose total length can be made as small as desired. Proceed as in Theorem 
6.10.] 

Solution. Let·M = sup{lf(x)l : a :S x:::; b}, and let c > 0 be given. Cover 
k 

P by a finite collection of open intervals 0 = i,';;'1 (ai, bi) such that L(bi -

ai) < 4~. Let fJ = inf{lx- Yi : x E P, y E [a, b] \ 0}. Since x and y 

range over disjoint compact sets, fJ is a positive number. On the compact set 
E = {x : d(x, P) ;::: !B} the function f is uniformly continuous. Let 8 > 0 be 

such that if(x)- f(y)i < 2(b ~a) if x, y E E and ix- Yi < 8. Then consider 

any partition {tj} of [a,b] with max(tj- tj_ 1 ) < min(8, ~B). The difference 
between the upper and lower Riemann sums for this partition can be expressed 
as two sums: 

:L)Mj- mj)(tj- tj-I) = ~1 + I:2, 

where ~1 contains all the terms for which [tj-r, tj] is contained in E and ~2 all 
the other terms. It is then obvious that 

c "\:""' c 
~1 < 2(b- a) L)ti - tj-r) :S 2' 

and, since each interval [tj_1 , til that occurs in I:2 is contained in 0, 

c c 
I:2 <2M-=-4M 2· 

Therefore the upper and lower Riemann sums for any such partition differ by 
less than c, and so f is Riemann integrable. 

Exercise 6.7 Suppose f is a real function on [0, 1] and fER on [c, 1] for every 
c > 0. Define 

1·1 11 j(x) dx = lim j(x) dx 
0 c--O+ c 
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if this limit exists (and is finite). 

(a) Iff E n on [0, 1] show that this definition of the integral agrees with the 
old one. · 

(b) Construct a function f such that the above limit exists, although it fails to 
exist with lfl in place of f. 
Solution. (a) Suppose f E n on [0, 1]. Let e > 0 be given, and let M = 

sup{lf(x)l: 0::; x::; 1}. Let c E ( 0, 4~ J be fixed, and consider any partition of 

[0, 1] containing c for which the upper and lower Riemann sums 2:::: Mj(tj -tj_1) 

and 2:::: m j ( t j - t j _1) of f differ by less than ~. Then the partition of [ c, 1] formed 

by the points of this partition that lie in this interval certainly has the property 
that its upper and lower Riemann sums 2:::: 1 Mj(tj- tj-1) and 2:::: 1mj(tj- tj_1) 

differ by less than ~- Moreover, the terms of the original upper and lower 

Riemann sums not found in the sums for the smaller interval amount to less 
than :... In short, we have shown that for c < Me and a suitable partition 

4 . 4 
containing c, 

and 

I: 1 Mj(tj- tj-1)- ~ < 11 
f(x) dx < L 1mj(tj- +~. 

Moreover, we have also shown that 

and 

I """'"' M. (t. - t. 1) - """'"'I M. (t. - t. 1) I < :.. ~ J J J- L J J J- I 4 

.I L mj(tj- tj-1)- L 1mj(tj- tj_1)1 < ~
combining these inequalities, we find that 

if 0 < c < 4~.u 
(b) Let 

f(x) = ( -1)n(n + 1) 

for - 1 - < x < ~, n = 1, 2, .. . . Then if 1 < c < _!_ we have 
n+1 -n N+l- -N 

11 1 N-1 ( 1)k 

f(x)dx= (-1)N(N+l)(N -c)+ LT· 
c k=l 
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1 1 1 1 
Since 0 < - - c < - - ( ) , the first term on the right-hand 

-N -N N+1 NN+l 
side tends to zero as c 1 0, while the sum approaches ln 2. Hence this integral 
approaches a limit. However, 

t 1 . N-1 1 
}, Jf(x)Jdx= (N+1)(N -c)+ 2::: k' 

c k=l 

and in this case the first term on the right-hand side tends to zero as c l 0, 
while the sum tends to infinity. 

Exercise 6.8 Suppose f E n on [a, b] for every b > a, where a is fixed. Define 

l eo f(x) dx = lim jb f(x) dx 
a x---+co a 

if this limit exists (and is finite). In that case, we say that the integral on the 
left converges. If it also converges after f has been replaced by If!, it is said to 
converge absolutely. 

Assume that f ( x) 2:: 0 and that f decreases monotonically on [1, oo). Prove 
that 

converges if and only if 

Lf(n) 
n=l 

converges. (This is the so-called "integral test" for convergence of series.) 

Solution. Since both the series and the integral are increasing functions of 
their upper limits, it suffices to show that they are bounded together. Define 
f(x) = !(1) forb ~ x ~ 1. Then consider a partition of [0, n] consisting of the 

n-1 

n+ 1 points 0, 1, 2, ... , n. The upper Riemann sum for this partition is L f(k) 
k=O 

n 

and the lower Riemann sum is L f ( k). Hence we have 
k=l 

n n n n-,-1 n-1 

L f(k) ~ 1 f(x) dx = f(O) + .l f(x) dx ~ L f(k) = f(O) + L f(k). 
k=l k=O k=l 

This shows that 

-f(O) + t f(k) ~ [ f(x)dx ~I: f(x), 
. k=l 1 k=l 

and hence the sum and the integral converge or diverge together. 
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Exercise 6.9 Show that integration by parts can sometimes be applied to the 
"improper" integrals defined in Exercises 7 and 8. (State appropriate hypothe
ses, formulate a theorem, and prove it.) For instance show that 

roo~ dx = roo sinx dx. 
Jo 1+x }0 (l+x)2 

Solution. Without striving for ultimate generality we can get the main ideas in 
the following theorem: 

Theorem. Let f ( x) ·and g( x) be continuously differentiable functions defined on 

[a, oo) such that lim f(b)g(b) exists and the integral roo f(x)g'(x) dx converges. b---+oo Ja 
Then 100 f'(x)g(x) dx converges and 

100 f'(x)g(x) dx = lim [f(b)g(b)- f(a)g(a)] -100 f(x)g'(x) dx. 
a ~00 a 

Proof. For each finite value of b larger than a the standard rule for integration 
by parts gives 

b . b 1 J'(x)g(x) dx = [f(b)g(b)- f(a)g(a)] -1 f(x)g'(x) dx. 

The hypotheses of the theorem guarantee that the limit on the right exists. 
Therefore, by definition, the integral on the left converges. 

Applying this result with f(x) =sin x, g(x) = l~x, we find, since f(O)g(O) = 

0 and lim f(b)g(b) = 0, while roo f(x)g'(x) dx converges absolutely, that b---+oo Jo 

100 cosx d 100 sinx d -- x- x 
o 1 + x - 0 (1 + x) 2 • 

Exercise 6.10 Let p and q be positive real number ssuch that 

Prove the following statements. 

(a) If u ~ 0 and v ~ 0, then 

1 1 
-+-=1. 
p q 

uP vq 
uv< -+-. - p q 

Equality holds if and only if uP = vq. 
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(b) iff E R(o:), g E R(o:), f ~ 0, g ~ 0, and 

then 

1b f g do: ::; 1. 

(c) Iff and g are complex functions in R(o:), then 

I b I { {b }1/p{ b 11/q 
11 Jgdo: :S Ja JJJP do: 1JgJq do: . 

This is Holder's inequality. When p = q = 2 it is usually called the Schwarz 
inequality. (Note that Theorem 1.35 is a very special case of this.) 

(d) Show that Holder's inequality is also true for the "improper" integrals de
scribed in Exercises 7 and 8. 

Solution. (a) The inequality is obvious if either u = 0 or v = 0, and equality 
holds in that case if and only if u = v = 0. Hence assume v > 0. Keep v 
fixed. The inequality implies that p > 1 and q > 1, and hence the function 

uP vq 
rp( u) = - + - - uv satisfies 

p q 

lim rp(u) = +oo. 
u~+co 

We also have rp'(O) = -v < 0. Hence the function rp(u) has a minimum at some 

point uo on (0, oo) at which 0 = rp' ( uo) = ub- 1 - v, i.e., uo = v P.:_ 1 = vq- 1 and 
vq vq 

uf; = vq. Note that rp(u0 ) =-+-- vq-lv = vq- vq = 0. Since this point is 
p q 

the only critical point for rp, we have rp(u) > 0 for all u =I= u0 , as required. 

(b) Simply integrate the inequality 

f(x)g(x) ::; f(x)P + g(x)q. 
p q 

(c) The inequality is obviously equality if either of the two integrals on the right

hand side is zero. For the vaJlishing of, say 1b IJIP da implies the vanishing of 

1b Ml/1 da and hence the vaJlishing of 1b 1911/1 da if lg(x)l S M for all x. 

Hence we now assume that 1b lfiP da > 0 and 1b l9lq da > 0. In part (b) we 

replace f(x) by b lf(x)l 11 and g(x) by b Jg(x)J 11 . We then need only 
(fa JJJP do:) p (fa JgJq do:) q 

invoke the inequality 11b hda[ S 1b lhl da. 
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(d) The inequality holds on each finite interval. If either of the factors on the 
right-hand side diverges as b --l- oo, the inequality is obvious. If they both 
converge, it follows that the left-hand side converges absolutely, and to· a limit 
not larger than the limit of the right-hand side. 

Exercise 6.11 Let a: be a fixed increasing function on [a, b]. For u E 'R(a:) 
define 

llull2 . { J.' lui' da }'
12 .. 

Suppose f, g, and hE 'R(a:), and prove the triangle inequality 

as a consequence of the Schwarz inequality, as in the proof of Theorem 1.37. 

Solution. We have 

II!- hi I~ = 1b If- hl 2 do: 

- 1b IU- g)+ (g- h)l 2 do: 

- t If - gl2 da + 2 J.' If - Yllg - hi da + J.' lg - hi' da 

< II!- gil~+ 2111- gll2llg- hlb + llg- hil~ 
- (II!- gll2 + llg- hll2)2, 

from which the desired inequality follow when square roots are taken. 

Exercise 6.12 With the notations of Exercise 11, suppose f E 'R(a:) and c > 0. 
Prove that there exists a continuous function g on [a, b] such that II!- gll 2 <c. 

Hint: Let P = {xo, ... ,xn} be a suitable partition of [a, b], define 

if Xi-1 :$ t :5 Xi. 

Solution. Since g(t) is defined on [xi-1 , xi] as the weighted average of the values 
of f(x) at the endpoints, the weights being proportional to the distances from 
t to the endpoints, it is clear that g(t) is piecewise linear, hence continuous. 
For the same reason the maximum value of the function h = jg- fl on the 
interval [xi-1 , xi] will be at most Mi - mi where Mi and mi are the maximum 
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and minimum values off on this interval. Let M be the maximum of Jf(x)J for 
a~ x ~ b. If the partition is chosen so that 

then we will have 

and hence the upper Riemann integral for Jg- !1 2 for this partition will also be 
less than c:2 . Therefore llg- fl12 < E, as required. 

Exercise 6.13 Define 

f(x) = 1x+l sin(t2 ) dt. 

(a) Prove that lf(x)! < 1/x if x > 0. 
Hint: Put t 2 = u and integrate by parts to show that f ( x) is equal to 

cos(x2) _ cos[(x + 1)2] _ {(x+I) 2 cosu du 
2x 2(x + 1) .fx2 4u3/2 · 

Replace cos u by -1. 

(b) Prove that 

2xf(x) = cos(x2)- cos[(x + 1)2] + r(x), 

where Jr(x)l < cjx, and cis constant. 

(c) Find the upper and lower limits of xf(x) as x----> oo. 

(d) Does J0
00 sin(t2 ) dt converge? 

Solution. (a) This inequality is obvious if 0 < x ~ 1. Hence we assume x > 1. 
Following the hint, we observe that 

f(x) 
cos(x2 ) cos[(x + 1)2] 1 1 

< - . +-----
2x 2 ( x + 1) 2x 2 ( x + 1) 

1 + cos(x2 ) 1 + cos[(x + 1)2] 

2x 2(x + 1) 

< 1 + cos(x2) 

2x 
1 



A similar argument shows that 

J(x) > 
cos(x2) cos[(x + 1)2] 1 1 

2x - 2(x + 1) - -2x + -2(:--x-+-1-:-) 

-1 + cos(x2) -1 + cos[(x + 1)2] 
2x 2(x + 1) 

-1 + cos(x2) 1- cos[(x + 1)2] 
---~...;.. + --~~_...;..._::. 

2x 2(x + 1) 

> 
-1 + cos(x2) 

2x 

> 
-1 
X 

(b) The expression just written for f(x) shows that 

2xf(x) = cos(x2)- cos[(x + 1)2] + r(x), 

where 

( 1 ) X 1(x+l)2 
COS U 

r(x) = -- cos[(x + 1)2]- -2 ----s--;2 du. 
X+ 1 x2 U 

If we integrate by parts again, we find that 

1
(x+l)2 cos u sin[(x + 1)2] sin(x2) 31(x+l)2 sin u 

--du= - +- --du 
x2 u3/2 (x + 1)3 x3 2 x2 x5/2 . 

We now observe that the absolute value of this last integral is at most 

3100 1 100 - - du = -u-312 = x-3 . 
2 2 u5/2 x2 

X 

It then follows by collecting the terms that 

3 
jr(x)j < -. 

X 
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(c) Since r(x) ~ 0, the upper and lower limits of xf(x) will be the corresponding 
limits of 

cos(x2)- cos[(x + 1)2] . ( 2 1) . ( 1) 
2 = sm x + x + 2 sm x + 2 . 

We can write this last expression as sins sin ( s2 + i), where s = x + ~. We claim 
that the upper limit of this expression is 1 and the lower limit is -1. Indeed, 

let c > 0 be given. Choose n to be any positive integer larger than 2 ~c. 

Then the interval ( l + ( ( 2n + ~) 7l' - c) 2, l + ( ( 2n + ~) 7!' + c) 2) is longer 

than 271', and hence there exists a point t E ( ( 2n + ~ )71'- c, '( 2n + ~)7!' +c) 
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at which sin ( t2 + i) = 1 and also a point u in the same interval at which 

sin ( u2 + ~) = -1. But then tj(t) > 1- c and uf(u) < -1 +c. It follows that 

the upper limit is 1 and the lower limit is -1. (This argument actually shows 
that the limit points of xf(x) fill up the entire interval [-1, 1].) 

(d) The integral does converge. We observe that for integers N we have 

1Nsin(t2)dt = tf(k) 
k=O 

_ f(O) + t r~k) + t cos(k2)- c;s[(k + 1)2] 

k=l k=l 

_ f(O) ~ r(k) [cos 1 _ cos[(N + 1) 2] J ~ cos(k2) 
+ L._; k + 2 N + 6 k(k- 1). 

k=l k=2 

The first sum on the right converges since jr(k)l < ~' and the rest obviously 
converges. Hence we will be finished if we show that 

lim fx sin(t2) dt = 0, 
x-oo J[x] 

where [x] is the integer such that [x] ~ x < [x] + 1. But this is easily done using 
integration by parts. The integral equals 

2 
cos((x]2) _ cos(x2) _ {x ~ du 

2[x] x2 J[x]2 4u3/2 ' 

and this expression obviously tends to zero as x ~ oo. 

Exercise 6.14 Deal similarly with 

l x+l 

f(x) = x sin(et) dt. 

Show that 

and that 
ex f(x) =cos( ex)- e-1 cos(ex+l) + r(x), 

where lr(x)l < ce-x for some constant c. 
Solution. The arguments are completely analogous to the preceding problem. 
The substitution u = et changes f(x) into 

e"'+l 

f(x) = 1 sinu du, 
e"' U 
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and then integration by parts yields 

from which it then follows that 

_ 1- c~s(ex) :::;; f(x) :::;; 1 + c~s(e:z:). 
e . e 

We have the equality 

and one more integration by parts shows that 

I x le"'+l COS U d I 3 e -- u < -. 
e"' u2 eX 

In this case f(x) decreases so rapidly that there is no difficulty at all proving 
the convergence of the integral. 

Exercise 6.15 Suppose f is a real, continuously differentiable function on [a, b], 
f(a) = f(b) = 0, and 

Prove that l b 1 
a xf(x)f'(x) dx = - 2 

and that 

Solution. To prove the first assertion we merely integrate by parts, taking u = x, 
dv = f(x)f'(x) dx, so that du = dx and v = ~f2 (x). Since v vanishes at both 
endpoints, the result is 

lb . llb 1 
a xf(x)J'(x) dx = -2 a f 2 (x) dx = -2. 

The second inequality is an immediate consequence of the Schwarz inequality 
applied to the two functions x f ( x) and f' ( x). 
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Exercise 6.16 For 1 < s < oo, define 

. . .:::.... 1 
((s) = ' -. L-J ns 

n=l 

(This is Riemann's zeta function, of great importance in the study of the dis
tribution of prime numbers.) Prove that 

(a) ((s) =shoo x~xL dx 

and that 
s ;,oo x- [x] 

(b) ((s) =-- s ...~.. 1 dx, 
s- 1 1 X 8 ' 

where [x] denotes the greatest integer :::; x. 

Prove that the integral in (b) converges for all x > 0. 
Hint: To prove (a) compute the difference between the i~tegral over [1, N] 

and the Nth· partial sum of the series that defines ((s). 

Solution. (a) Ignoring the author's advice, we note that 

sj00 _E)_dx 
X s..J...l 

1 ' 

c;o ln+l 1 
- s ""' n -- dx ~ xs+I 

n=l n 

- ((s). 

(b) This result is a trivial consequence of (a) and the identity 

--= --dx. S joo X 

s- 1 1 xs+l 

Exercise 6.17 Suppose ex increases monotonically on [a, b], g is continuous, 
and g(x) = G'(x) for a:::; x::; b. Prove that 

[ a(x)g(x)dx = G(b)a(b)- G(a)a(a)- [ Gda. 

Hint: Take g real, without loss of generality. Given P = {x0 ,x1 , ... ,xn}, 
choose tiE (xi-l,xi) so that g(ti)ll.xi = G(xi)- G(xi_1 ). Show that 

n n 

L a(xi)g(ti)ll.xi = G(b)a(b)- G(a)a(a)- L G(xi_ 1 )ll.ai. 
i=l i=l 
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Solution. The identity just given is a trivial consequence of Abel's method of 
rearranging the sums: 

n n 

L a(xi)g(ti)b.xi 
i=l 

G 

G(xn)a(xn) - G(xo)a(xo)- L(xi-1) (a( xi) -ai-l)). 
i=l 

Now the fact that G(x) is continuous and a is nondecreasing means that the 
right-hand side can be rriade arbitrarily close to 

G(b)a(b)- G(a)a(a) -1b G da, 

whenever the partition is sufficiently fine. It does not follow immediately that 
the function a(x)g(x) is integrable on [a,b]. However, since a is nondecreasing, 
its only discontinuties are jumps, and for any given E > 0 there can be only a 
finite number of jumps larger than c. These can be enclosed in a finite number 
of open intervals of arbitrarily small length. We can then argue, as in Exercise 
6 above, that any partition that is sufficiently fine will have upper and lower 
Riemann sums that differ by less than c. Hence a(x)g(x) is integrable, and its 
integral is given by the stated relation. 

Exercise 6.18 Let ')'1 , ')'2, ')'3 be curves in the complex plane defined on [0, 21r] 
by 

'Yl (t) = eit, 'Y2(t) = e2it, 'Ya(t) = e27l"itsin(l/t). 

Show that these curves have the same range, that 'Yl and ')'2 are rectifiable, that 
the length of 1'1 is 21r, that the length of 1'2 is 47r, and that ')'3 is not rectifiable. 

Solution. Since eit has period 27r it is obvious that 'Yl and 1'2 have the same 
range, namely the set of all complex numbers of absolute value 1. To show that 
this is also the range of ')'3, we need to show that the mapping t ~----> 27rt sin( 1 j t), 
0 :::; t :::; 2pi, covers an interval of length 21r, i.e., that the mapping t ~----> t sin(1/t), 
0 :::; t :::; 27r covers an interval of length 1. (We naturally take the value to be 
zero when t = 0.) Since this range is connected, it suffices to find two points a 

and b in the range with a - b > 1. We choose those points to be a = ~ (the 
7r 

image oft= ~) and b = ;: , (the image oft= 327!"). We have a- b = i! > 1. 

The rectification of 1'1 and "/2 is straightforward: 

{211" 
l('Y1) = Jo i'Y~ (t)l dt = 21r, 

{271" {271" 
Z('Y2) = Jo I'Y~(t)l dt = Jo 2dt = 47r. 
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To show that 13 is not rectifiable, we observe that its length would be 

!211' 1 . 1 / ( 271' 1 cos(1/t) ! 

I sm(1/t) - - cos(l/t) dt > i 11 dt- 27!'. 
Jo 1 · • t · · '1 - Jo I t : 

By making the substitution u = t in this last integral we get 

But we already know that this integral diverges, since 

00 l.(2n+t )11' COS U 00 1 _ L - du 2: L 1 - 00. 
n=l. 2n7l' U n=l (2n + 2 )7r 

Exercise 6.19 Let /'l be a curve in Rk defined on [a, b]; let ¢> be a continuous 
1-1 mapping of [c,d] onto [a,b] such that ¢(c)= a, and define /'2(x) = ')'1 (¢(x)). 
Prove that /'2 is an arc, a closed curve, or a rectifiable curve if and only if the 
same is true of ')'1. Prove that ')'1 and /'2 have the same length. 

Solution. We know that ¢> has a continuous 1-1 inverse <p, and that the com
position of one-to-one functions is one-to-one. Hence, since /'l(x) = /'2(<p(x)), 
we see that /'l and ')'2 are both arcs (one-to-one) if either is. Since necessar
ily ¢(d) = b, we see that 11 (a) = /'1 (b) if and only if /'2( c) = "/2(d). Hence 
both are closed curves if either is. Finally, since ¢ and <p establish a one-to
one correspondence between partitions { si} of [a, b] and { ti} of (c, d] such that 
2: ii'I(si) -l'l(si-1)/ = L: h2(ti) -')'2(ti-1)J, it follows that the two curves have 
the same length. 



Chapter 7 

Sequences and Series of 
Functions 

Exercise 7.1 Prove that every uniformly convergent sequence of bounded func
tions is uniformly bounded. 

Solution. Let {in(x)}~=l be a uniformly convergent sequence of bounded func
tions, say lin(x)l ::; Mn for all x and all n. Since the sequence converges 
uniformly, it is a uniformly Cauchy sequence. Hence there exists N such that 
lim(x)- in(x)J < 1 for all m, n ~ N. In particular if m ~ N, we have lim(x)l ::; 
!iN(x)! + !im(x)- iN(x)! :5 MN + 1, and therefore if M = 1+max(Ml, ... , MN) 
we have lin(x)! ::; M for all nand x. 

Exercise 7.2 If {in} and {gn} converge uniformly on a set E, prove that {in+ 
9n} converges uniformly on E. If, in addition, {in} and {gn} are sequences of 
bounded functions, prove that {in9n} converges uniformly on E. 

Solution. Let i and g denote the limits of the two sequences. Let e > 0. 
There exist N1 and N2 such that lin(x)- i(x)! < ~ for all x if n > N1 and 
Jgn(x)- g(x)J <~for all x ifn > N2. Let N = max(NllN2)· Then for n > N 
we have, for all x, 

!Un + 9n)(x)- (J + g)(x)! :5 lin(x)- i(x)! + Jgn(x)- g(x)! <e. 

Hence {in + 9n} converges uniformly. 
Suppose now that each of the functions in and 9n is bounded. By the 

previous problem, both sequences are uniformly bounded. Hence there exists 
M such that lin(x)l ::; M and /gn(x)l ::; M for all nand all x. It follows that 
/g(x)i::; M also. Then, given e > 0, choose N1 and N2 such that lin(x)- i(x)!::; 
2~ for all x and all n > N1 and /gn(x) - g(x)! < 2~ for all x and n > N2. 

109 
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Again let N = ma:x.(N1 , N2 ). We then have, for all x and all n > N, 

< 
+!fn(x)g(x)- f(x)g(x)l 

< Mlgn(i)- g(x)l + Mlfn(x)- f(x)! 
c c 

< M2M+M2M 
- c. 

Exercise 7.3 Construct sequences {fn}, {gn} which converge uniformly on 
some set E, but such that {fn9n} does not converge uniformly onE (of course, 
{f n9n} must converge on E). 

Solution. Let fn(x) = x for all x and all n, and let 9n(x) = ~ for all x and 
all n. Then f n ( x) converges uniformly to x, and 9n ( x) converges uniformly to 
0. Therefore fn(x)gn(x) converges to 0, but not uniformly. In fact for every n 
there is an x, namely x = n, such that fn(x)gn(x) = 1. Hence, no :matter how 
larg·e n is taken, the inequality lfn(x)gn(x)l < 1 will never hold for all x. 

Exercise 7.4 Consider 
00 1 

f(x) = L 1 +n2x· 
n=l 

For what values of x does the series converge absolutely? On what intervals does 
it converge uniformly? On what intervals does it fail to converge uniformly? Is 
f continuous wherever the series converges? Is f bounded? 

Solution. The series converges for all x except 0 and x = ~' n = 1, 2, .... 
For x = 0 all the terms of the series are defined, but the terms do not tend 
to 0. For x = ~i the nth term is not defined. For all other values of x the 
series converges. By Theorem 7.10 (the Weierstrass M-test) the series converges 
uniformly on the interval [b, oo) if b > 0, since on that interval 

1 1 --..,....- <-
1 +n2x- n28" 

Likewise, the series converges uniformly on ( -oo, -8] except at the points x = 

- n12 , since for n 2:: Jj we have 

: 1 I<]_· 1 <~ 
! 1 + n2x' - n2 b - ....L - bn2 · 

n2 

The series does not converge uniformly on any interval having 0 as an end
point. This is easy to see in the case when 0 is the left-hand endpoint. For each 
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of the terms of the series is a bounded function on [ 0' 00). If the series converged 
uniformly, the limit would be bounded by Problem 1 above. But we have 

( 1 ) m 1 m 
f m2 2: 'L 1 + n2 2: 2' 

n=l ~ 

Likewise the series cannot be a uniformly Cauchy series (i.e., the sequence 
of partial sums cannot be a uniformly Cauchy sequence) on any interval ( -6, 0), 
since, no matter how large n is taken, there is a point x in this interval, namely 
x = - 2~2 , at which the nth term has the value 2. Hence, if Sn denotes the sum 
of the first n terms, then !Sn(x)- Sn-l(x)! = 2. 

The uniform convergence shows that the limiting function f(x) is continu
ous wherever it is defined on ( -oo, 6] U [6, +oo). Since 6 is arbitrary, f ( x) is 
continuous wherever it is defined. The argument given above shows that f(x) 
is not bounded. 

Exercise 7.5 Let 

0 (x<n~l), 

. fn(x) = sin2 2!. (-1- < x < 1) x n+l - - n ' 

0 (~ <x). 

Show that {fn} converges to a continuous function, but not uniformly. Use the 
series '2.:: fn to show that absolute convergence, even for all x does not imply 
uniform convergence. 

Solution. The limit of fn(x) is zero. If x :50 or x 2: 1, then fn(x) = 0 for all n, 
and so this assertion is obvious. If 0 < x < 1, then fn(x) = 0 for all n ~ ~' and 
so once again the assertion is obvious. 

The convergence is not uniform, since, no matter how large n is taken, there 
is a point x, namely x = 2n~!, for which fn(x) = 1. 

The series 2.:: fn(x) converges to 0 for x ~ 0 and x 2: 1, and to sin2 ; for 
0 < x < 1. Since the terms are nonnegative, the series obviously converges 
absolutely. Since the sum is not continuous at 0, the series does not converge 
uniformly on any interval containing 0. · 

Exercise 7.6 Prove that the series 

converges uniformly in every bounded interval, but does not converge absolutely 
for any value of x. 
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Solution. The series is the sum of two series: 

2 oo (-l)n oo (-1)n 
X L 2 + L ,.,2 n n 

n=l n==l 

The first of these converges both uniformly . and absolutely on any bounded 
interval [a, b] by the M-test (with Mn = ~:, where M = max( Ia!, lb!)). The 
second is independent of x and converges, hence it converges uniformly in x. By 
Exercise 2 above, the sum of the two series converges uniformly. 

The series does not converge absolutely since the absolute value of each term 
is at least ~ for any x. 

Exercise 7. 7 For n = 1, 2, 3, ... , x real, put 

X 

f n ( x) = 1 + nx2 . 

Show that {fn} converges uniformly to a function j, and that the equation 

f'(x) = lim f~(x) 
n-.oo 

is correct if x =I 0, but false if x = 0. 

Solution. The Schwarz inequality, which implies that lfn(x)l S: 2$Jixl = 2-fit 
2 

for x =/= 0, shows that fn(x) tends uniformly to 0. Now f~(x) = (t;;::2 ) 2 , which 
tends to 0 if x =I 0, though f~(O) = 1 for all n. 

Exercise 7.8 If 
· { 0 (x :S 0), 
I(x) = 

1 (x > 0), 

if { Xn} is a sequence of distinct points of (a, b), and if I: len I converges, prove 
that the series 

00 

f(x) = L eni(x- Xn) (as; X :S b) 
n=l 

converges uniformly, and that f is continuous for every x =/:= Xn. 

Solution. The uniform convergence is a consequence of theM-test with Mn = 
len I· Hence f is continuous wherever each of the individual terms is continuous, 
in particular, at least for x #- Xn. 
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Exercise 7.9 Let {fn} be a sequence of continuous functions which converges 
uniformly to a function f on a set E. Prove that 

for every sequence of points Xn E E such that Xn ---+ x, and x E E. Is the 
converse of this true? 

Solution. Let e > 0. Choose NI so large that lfm(x)- f(x)l < ~for all m > NI. 
Then, since f is continuous at x, choose 8 > 0 so small that lf(y)- f(x)l < ~ 
if Jy- xj < 8. Finally, choose N2 so large that lxn- xl < 8 if n > N2. Then if 
n > max(NI, N2) we have 

lfn(Xn)- f(x)J:::; lfn(Xn)- f(xn)J + lf(xn)- f(x)l <e. 

The converse is not true in general. For example let fn(x) be given by 
fn(x) = sin2 1l"X for n :::; !xi :::; n + 1 and fn(x) = 0 for !xi :::; n or !xi ~ n + 1. 
Thus fn(x) tends to zero, since fn(x) = 0 if n ~ lxl, but fn(x) does not converge 
uniformly, since f n ( n + ~) = 1 Then for any convergent sequence, say Xn ---+ x, 
let N ~ max(Jxj, !xi!, !x2!, ... , lxnl, .. . ). We then have fn(xn) = 0 for all n ~ N, 
and so fn(Xn) ---+ f(x). 

This condition does guarantee uniform convergence on any compact set, 
however. For if {fn(x)} is not a uniformly Cauchy sequence, then for some 
eo > 0 there is a sequence of integers ni < n2 < · · · and a sequence of points 
XI, x2, ... such that 

ifn2k-l (xk) - fn2k (xk) I ~ eo 

for k = 1, 2,... . Since K is compact, some subsequence of {xk} converges, 
say x k.,.. ---+ x as r ---+ oo. Now define Yn = x for all n ::f. n2k.,.., n ::f. n2k.,.. -I , 
and let Yn2k.,..-l = Yn2k = Xk.,.., so that so that Yn ---+ x. Then the sequence 
{zn} = {fn(Yn)} is not a Cauchy sequence, since lzn2k.,.. - Zn2k.,..-ll ~eo. 

Exercise 7 .·10 Let ( x) = x - n, where n is the unique integer such that n :::; 
x < n + 1. Prove that · 

f(x) = f (:~) 
n=I 

is discontinuous at a dense set of points. 

Solution. We shall prove that f(x) is discontinuous at every rational number. 
Since f(x) has period 1, it suffices to prove this for 0 :::; x < 1. To that end, let 

x = !!. where p and q are relatively prime integers, 0 :::; p < q. We "stratify" the 
q 

sum that defines f(x) by grouping all the indices n that are congruent modulo 
q, i.e., we let n = kq + r, where 1 :::; r :::; q: 

f(x) = f t ((~q + r)~) · 
k=O r=I ( q + r) 
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Reversing the order of summation, we find 

where 

f(x) = fr(x) + h(x) + · · · + fq-l(x) + Jq(x), 

fr(x) = t ((kq + r)x). 
k=O (kq + r)2 

Now it is easy to see that h(x), ... , fq- 1(x) are continuous at x =E. For if 
q 

1 ::::; r < q, then ( ( kq + r )x) is continuous at that point, since ( x) is continuous 

at the point x = (kq + r)E = kp + rp. (This point is not an integer, since p 
q q 

and q are relatively prime.) Since the series defining fr(x) converges uniformly, 
its limit is continuous at each point where all of the terms are continuous. In 

particular fr(x) is continuous at x = E, for 1 ::::; r < q. 
q 

We shall now show that Jq(x) is discontinuous at x =E. It will then follow 
q 

that f(x) is discontinuous at that point. Observe that 

f ( ) = ~ ~ ( ( k + 1 )qx) = ~ ~ ( kqx) 
q X q2 L ( k + 1) 2 q2 L k2 ' 

k=O k=l 

so that 
1 

f (E) = ~'""" (kp) = o. 
q q q2 L k2 

k=l 

We shall prove that lim Jq(x) > 0, and this will show that Jq(x) is discontinu
xw ~+ 

ous at x = E. Since all the terms of the series for Jq are nonnegative, it suffices 
q 

to show that the limit of the first term is positive. To that end. let 8 = ~. If 
' 2q 

p p 1 1 . . 
--8 < x < -,then p- -2 < qx < p, and hence (qx) > -,from which 1t follows 
q q 2 

that Jq(x) ?: 2\. Therefore the lower left-hand limit of Jq(x) at x = E is at 
q q 

1 
least - 2 . 

2q 
Since, by theM-test with Mn = ; 2 , this series converges uniformly and each 

of its terms is Riemann-integrable, it follows from Theorem 7.16 that the sum 
of the series is Riemann-integrable. 

Exercise 7.11 Suppose {fn}, {gn} are defined onE and 
(a) I: f n has uniformly bounded partial sums; 
(b) 9n ---+ 0 uniformly on E; 
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(c) 91 ( x) ~ 92 ( x) ~ 93 ( x) ~ · · · for every x E E. 
Prove that I: fn9n converges uniformly on E. Hint: Compare with Theorem 

3.42. 
N 

Solution. Following the hint, we let SN(x) = I: fn(X)9n(x) and FN(x) = 
n=l 

I::=l fn(x) (Fo(x) = 0), so that IFN(x)i :::; B for all x. Then if N > M, we 
have 

N 

I L [Fn(x)- Fn-l(x)]9n(x)! 
n=M+l 

IFN(x)9N(x)- FM(x)9M+l(x) + 
N-1 

+ I: Fn(x)[9n(x)- 9n+I(x)l 
n=M+l 

N-1 
< B{ l9N(x)J + I9M+I(x)J + L [9n(x)- 9n+l (x)]} 

n=M+l 

- B[I9N(x)J + I9M+l(x)J + 9M+I(x)- 9N(x)], 

and this last expression can be made uniformly small by choosing M sufficiently 
large by hypothesis (b). Hypothesis (c) was used in moving the summation sign 
outside the absolute value. 

Exercise 7.12 Suppose 9 and fn (n = 1, 2, 3, ... ) are defined on (0, oo ), are 
Riemann-integrable on [t, T] whenever 0 < t < T < oo, Ifni :::; 9, fn -+ f 
uniformly on every compact subset of (0, oo ), and 

100 
9(x) dx < oo. 

Prove that 

lim roo fn(x) dx = roo f(x) dx. 
n->oo Jo Jo 

(See Exercises 7 and 8 of Chap. 6 for the relevant definitions.) 
This is a rather weak form of Lebesgue's dominated convergence theorem 

(Theorem 11.32). Even in the context of the Riemann integral, uniform con
vergence can be replaced by pointwise convergence if it is assumed that f E R. 
(See the articles by F. Cunnillgham in Math. Mag., vol. 40, 1967, pp. 179-186, 
and by H. Kestelman in Amer. Math. Monthly, vol. 77, 1970, pp. 182-187.) 

Solution. We shall prove that 100 fn(x) dx converges for each n, that the limit 

lim roo fn(x) dx exists, that roo f(x) dx converges and that these last two 
n->oo Jo Jo 
quantities are equal. 



116 CHAPTER 7. SEQUENCES AND SERIES OF FUNCTIONS 

Since we obviously have lf(x)l ::; g(x) also, it follows that for any interval 
[r, s] C (0, oo) we have 

lis fn(x) dx\ ::; is g(x) dx, 

lis f(x) dxl ::; is g(x) dx, 

lis fn(x)- f(x) dxl ::; 2is g(x) dx. 

Now let c > 0. Choose a and b with 0 < a < b < oo so that if 0 < c < a < 
b < d < oo, then 

I t g( X) dx - f g( X) dx I < ~. 
It follows in particular that if d > e > b we have 

1d g(x) dx = ld g(x) dx -le g(x) dx 
2 2 

< If g(x) dx- { g(x) dx)! 
2 

+11oo g(x) dx -le g(x) dxl 
2 

< €. 

Then for any d > e > b > r and any n we certainly have 

i rd fn(x) dx _ r fn(x) dx: = 1 r fn(x) dxl ::; r g(x) dx < €. 
)r lr ! }d }d 

. ld Thus by the Cauchy criterion lim fn(x) dx exists. A similar argument d-oo r 
shows that all the improper integrals in question converge. Moreover the argu-
ment shows that 

I [ <p(x)dx- f <p(x) dxl <e 

when 0 < c <a< b < d, whether cp(x) = fn(x), cp(x) = f(x), or cp(x) = g(x). 
We now merely observe that 

If fn(x) dx- f f(x) dxl :0 If fn(x) dx- [ fn(x) dxl + 

+! [[fn(x)- f(x)] dxl + 
11d · 1oo 1 

+ c f(x) dx-
0 

f(x) dx/. 
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Given c: > 0 we can choose c and d so that the first and ·last terms on 
the right are less than ~ (for all n, in the case of the first term). Then, since 
f n ( x) ~ f ( x) uniformly on c, d, we can choose no so large that the middle term 
is less than ~ if n > no. 

Exercise 7.13 Assume that {fn} is a sequence of monotonically increasing 
functions on R1 with 0 ::::; f n ( x) ::::; 1 for all x and all n. 

(a) Prove that there is a function f and a sequence { nk} such that 

f(x) = lim fn~c(x) 
. k-.oo 

for every x E R 1. (The existence of such a pointwise convergent subsequence is 
usually called Helly's selection theorem.) 

(b) If, moreover f is continuous, prove that fn~c ~ f uniformly on R1 . 

Hint: (i) Some subsequence {fnJ converges at all rational points r, say to 
f(r). (ii) Define f(x) for any x E R 1 to be sup f(r), the sup being taken over all 
r ::::; x. (iii) Show that f ni ( x) ~ f ( x) at every x at which f is continuous. (This 
where monotonicity is strongly used.) (iv) A subsequence of {fnJ converges at 
every point of discontinuity off since there are at most countably many such 
points. This proves (a). To prove (b), modify your proof of (iii) appropriately. 

Solution. (a) Following the hint, we enumerate the rational numbers (or any 
countable dense set). as {rn} and use the well-known diagonal procedure to 
get first a subsequence that converges at r1 , then a further subsequence that 
converges at r 2 , etc. The sequence formed by taking the nth term of the nth 
subsequence is itself a subsequence and converges at each rn. (Note that we 
have not used the fact that 0 ::::; f n ( x) ::::; 1 for all x and n, only the much 
weaker fact that for each x there is an M(x) such that lfn(x)l ::::; M(x) for 
all x and n.) Let the function f(x) be defined as f(rk) = limni fni(rk) and 
f(x) = sup{f(rk) : rk ::::; x} for all other x. The second definition could be 
taken as the general one if we wished, since it is consistent with the definition 
already given at the points x = rk. 

Since each of the functions is nondecreasing, it is clear that the function f ( x) 
is nondecreasing. By its definition it is continuous from the left. Suppose f(x) 
is continuous at x 0 . Let c: > 0 be given. Choose rational numbers r and s with 
r ::::; xo ::::; s, f(xo)- ~ ::::; f(r) ::::; f(xo) ::::; f(s) ::::; f(xo) + ~· Then choose io so 
large that Ifni (t) - f(t) I < ~ for all i > io, t = r or t = s. We then have 

Hence lf(xo)- fnJxo)l < c: if i > io, which proves the convergence at points 
of continuity. One more application of the diagonal procedure now allows us 
to assure that some subsequence converges at every point (since the set of of 
discontinuities of a nondecreasing function is countable). We can then modify 
the definition of f ( x) at these points. 
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The claim that the convergence is uniform if the limit is continuous is not 
true. Let 

{ 1 , "' • r _,. 

{ 
3 -r H3Jxl' li X ::::::, n, 

fn(x) = 
1, if x > n. 

1 X 
It is clear that nl~~ fn(x) = 3 + 1 + 3lxl for each x, yet fn(Y) - f(y) 2': i if 

y > n, so that the convergence is not uniform. Here the functions fn(x) are not 
continuous, but they could easily be made so without violating the conditions 
of the problem. 

To get uniform convergence we must assume in addition that f (x) ~ 1 as 
x ~ oo and f(x) ~ 0 as x ~ -oo. Let us grant these relations and assume 
that f ( x) is continuous at all points x. To simplify the notation we shall write 

fk instead of fn~:;· Given c > 0, choose an interval [a, b] such that f(x) < ~ if 

x s a and f(x) > 1- f if x >b. Then, since f(x) is uniformly continuous on 

[a, b), let a= to < t1 < · · · < tn = b be such that f(ti) - f(ti-l) < g· Choose 
k so large that lfz(ti)- f(ti)l < g for all i = 1, ... ,nand alll > k.Then for all 
y ;::: b = tn we have 

and 
c 4c 

1 2': f(y) > 1- 2 > 1- 5' 
Hence certainly 

ifz(y)- f(y)i S 1- (1- 4;) < c 

for all l > k and all y 2: b. 
A similar argument shows that fz converges uniformly to f on ( -oo, a]. The 

argument that fz converges uniformly to f on [ti-l: ti] is identical to that given 
above. 

Exercise 7.14 Let f be a continuous real function on R1 with the following 
properties: 0:::; f(t) S 1, f(t + 2) = f(t) for every t, and 

f(t) = {: 

Put <I>(t) = (x(t),y(t)), where 

(o:::;t::;i) 

(~:::;t::;1). 

00 00 

x(t) = L 2-n j(32n-lt), y(t) = L 2-n J(32nt). 
n=l n=l 
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·Prove that q> is continuous and that q> maps I = [0, 1] onto the unit square 
! 2 c R2 • In fact, show that q> maps the Cantor set onto 12 • 

Hint: Each (xo, yo) E J 2 has the form 

00 

Xo = L 2-na2n-l, 

n=l 

where each ai is 0 or 1. If 

00 

00 

Yo= L 2-na2n, 
n=l 

to= L 3-i-1(2ai), 
i=l 

show that i(3kto) = ak, and hence that x(to) = xo, y(to) =YO· 
(This simple example of a so-called "space-filling curve" is due to I. J. 

Schoenberg, Bull. A.M.S., vol. 44, 1938, p. 519.) 

Solution. We note that 3kto is the sum of the even integer 2(3k-2a1 + · · · + 
' 00 

3ak-2 + ak-l) and a fractional part L 3i:~~ 1 . This fractional part lies in 
i=k 

[ ~, 1 J if ak = 1, while if ak = 0 it is at least 0 and at most ~. Thus it lies in the 
interval [0, lJ if ak = 0. In either case i(3kto) = ak, as claimed. We therefore 
have 

as asserted. 

00 

x(to) = L 2-na2n-l = xo, 
n=l 

00 

y(to) = L 2-na2n =Yo, 
n=l 

Exercise 7.15 Suppose i is a real continuous function on R1, in(t) = i(nt) 
for n = 1, 2, 3, ... , and {in} is equicontinuous on [0, 1]. What conclusion can 
you draw about i? 
Solution. The function i(t) must be constant on [0, oo). For if i(x) # i(y) and 
0 :S x < y < oo, say li(x)- i(y)l = e > 0, it follows that lin(;)- in(;) I= e for 
all n. Since x;_y ~ 0, it follows that the family {in} cannot be equicontinuous 
on [0, 1], or, indeed, on any neighborhood of 0. 

Exercise 7.16 Suppose {in} is an equicontinuous sequence of functions on a 
compact set K, and {in} converges pointwise on K. Prove that {in} converges 
uniformly on K. 

Solution. Let e > 0. Choose 8 > 0 such that lin(x)- in(Y)I < ~ for all n # m 
if x,y E K and lx- Yl < 8. Choose a finite number of points x1, ... ,xN such 
that for every x E K there exists j with lx- Xj I < 8. (Such a finite set exists; 
otherwise we could inductively select a sequence {xn} such that lxm- Xnl ~ 8 
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for all n, and this sequence would have no Cauchy subsequence, contradicting 
the compactness of K.) Then choose no so large that lfm(xj)- fn(xj)l <~for 
all m, n > no and all j = 1, 2, ... , N. Then for any point x E K, fix j so that 
jx- xj! < 8. If m,n > n0 we have 

lfm(x)- fn(x)j:::; !fm(x)- fm(Xj)j + lfm(Xj)- fn(Xj)j + lfn(Xj)- fn(x)j. 

The first and last terms are smaller than ~ because jx- x j I < 8; the middle term 
is smaller than ~ since m, n > no. Thus the sequence is a uniformly Cauchy 
sequence. 

Exercise 7.17 Define the notions of uniform convergence and equicontinuity 
for mappings into any metric space. Show that Theorems 7.9 and 7.12 are valid 
for mappings into any metric space, that Theorems 7.8 and 7.11 are valid for 
mappings into any complete metric space, and that Theorems 7.10, 7.16, 7.17, 
7.24, and 7.25 'hold for vector-valued functions, that is, for mappings into any 
Rn. 

Solution. Let X and Y be any metric spaces. The sequence {fn}, where fn : 
X ~ Y, converges uniformly to f : X ~ Y if for every c > 0 there exists 
N such that dy(fn(x), f(x)) < c for all x E X and all n > N. A family of 
functions :F is equicontinuous if for every c > 0 there exists 8 > 0 such that 
dy(f(x1), j(x2)) < c for all f E :F whenever dx(xl, x2) < 8. 

An immediate consequence of this definition is that {f n} converges uniformly 
to f if and only if Mn ~ 0, where Mn =sup dy(fn(x), f(x)) (Theorem 7.9). 

!rEX 
The same ~ argument that proves Theorem 7.12 shows that the uniform 

limit of a sequence of continuous functions is continuous. 
The Cauchy convergence criterion accepts the additional word uniformly 

without any change, provided Y is complete. Suppose for every c > 0 there 
exists N such that dy(Jm(x),fn(x)) < c for all m,n >Nand all x. Then, 
in particular, for each x E X, the sequence {fn(x)} is a Cauchy sequence in 
Y. Since Y is complete, this sequence converges to a value that we shall call 
f(x). We now claim that {fn} converges uniformly to f. Indeed, given c > 0 
choose N so that dy (f m ( x), f n ( x)) < ~ if m, n > N. Since a metric is a 
continuous function, it follows that dy(f(x), fn(x)) :::; ~ < c if n > N, that is 
{fn} converges uniformly to f. This is Theorem 7.8. 

Suppose now {fn} converges uniformly to j, Y is complete, xo E X, and 
lim fn(x) = An for n = 1,2, .... Then {An} converges, and lim f(x) = 

X->XQ X--+Xo 

lim An. (This is Theorem 7.11.) The proof is as follows. Given c > 0 choose 
n-oo 
N so that dy(f(x),Jn(x)) < ~ for all x if n ~ N. Let n > N be fixed. 
Choose 8 > 0 (depending on nand c in general) such that dy(fn(x),An) <~if 
0 < dx ( x, xo) < 8. (The fact that limx-xo f n ( x) = An implies that there must 
exist x satisfying these inequalities, i.e., that x 0 is an accumulation point of X.) 
We then have, for m, n > N, 
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The middle term is less than ~ for all m, n > N and all x E X. If m and n are 
then fixed integers larger than N, the first and last terms can be made smaller 
than ~ by choosing x sufficiently close to xo. Hence we have dy (A~, An) < c if 
m, n > N. Since Y is complete, the sequence {An} converges, say to A. Now 
observe that 

dy(f(x), A) ::; dy(f(x), fn(x)) + dy(fn(x), An)+ dy(An, A). 

If N is chosen sufficiently large, the first and last terms on the right-hand side 
will be less than ~ (for all x, in the case of the first term). For a fixed n satisfying 
these conditions, if 8 > 0 is sufficiently small, the second term will be less than 
~ whenever 0 < dx(x, xo) < 8, ~nd hence dy(f(x), A) < c if 0 < dx (x, xo) < 8. 

The proof of the stated theorems for vector-valued functions is a consequence 
of the obvious facts that a vector-valued function f is integrable, differentiable or 
continuous if and only if each of its components has the corresponding property, 
and that a series of vector-valued functions {fn} is Cauchy, bounded, convergent, 
uniformly convergent, majorized by a convergent sequence, equicontinuous, etc., 
if and only if each component has those properties. A typical proof proceeds as 
follows (Theorem 7.25). Suppose {fn} is a bounded equicontinuous sequence of 
vector-valued functions on a compact set K. Let l!fn(x)l! ::; M for all x E K 
and all n, and given c > 0 choose 8 > 0 such that II fn ( x) - fn (y) II < c whenever 
d(x,y) < 8. Then for each component f~ of fn we have lf~(x)l::; llfnll::; M and 
lf~(x)-f~.(y)\::; llfn(x)-fn(Y)II <cwheneverd(x,y) <8. Henceeachsequence 
of components {f~}n, i = 1, ... , k, is bounded and equicontinuous. Therefore 
for each i there is a subsequence { nr} such that f~r converges uniformly. By 
refining to subsubsequences, we can obtain a single subsequence {nr} such that 
{f~J converges uniformly for all i, say to Ji(x). Then, given c > 0, choose r0 

so large that lf~Jx)- fi(x)\ < f fori= 1, 2, ... , k and r > ro. It then follows 
that II fnr ( x) - f ( x) II < c if r > ro. The proofs of the other results all follow this 
model argument. 

Exercise 7.18 Let {fn} be a uniformly bounded sequence of functions which 
are Riemann integrable on [a, b], and put 

Fn(x) = 1x fn(t) dt (a::; X::; b). 

Prove that there exists a subsequence {Fnk} which converges uniformly on [a, b]. 

Solution. Let M be such that lfn(x)\ ::; M for all n and x. Then clearly 
IFn(x)l ::; M(b- a) for all n, so that {Fn} is uniformly bounded. Also, given 
c > 0, let 8 = fvi. Then if x < y and lx- Yl < 8, we have 

\Fn(Y) - Fn(x) I = 11Y fn(t) dtl < M\x- y\ <c. 

Hence {Fn} is also uniformly equicontinuous. Therefore by Ascoli's Theorem 
(Theorem 7.25), there exists a uniformly convergent subsequence of {Fn}· 
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Exercise 7.19 Let K be a compact metric space, let S be a subset of C(K). 
Prove that Sis compact (with respect to the metric defined in Section 7.14) if 
and only if S is uniformly closed, pointwise bounded, and equicontinuous. (If S 
is not equicontinuous, then S contains a sequence which has no equicontinuous 
subsequence, hence has no sequence that converges uniformly on K.) 

Solution. First supposeS is compact. Then we know that S has to be closed and 
bounded (in this metric bounded means the same thing as uniformly bounded). 
If S is not equicontinuous, then there exists c > 0 such that for all 8 > 0 there 
exist x, y and g E S such that d(x, y) < 8 and jg(x)- g(y)j 2: c. Let Xn, Yn E K 
and 9n E S be such that d(xn,Yn) < ~ and l9n(Xn)- 9n(Yn)! 2: c. Then 
no subsequence of {gn} can be equicontinuous, since l9nk (xnk - 9nk (Ynk) 2: c. 
Hence by Theorem 7.24 no subsequence of {gn} can converge in C(K), and so S 
cannot be compact. We conclude, then, that if S is compact, then S is closed, 
bounded, and equicontinuous. 

Conversely, if S is closed, pointwise bounded, and equicontinuous, then every 
sequence {gn} contains a subsequence that converges uniformly, hence converges 
in the metric of C(K) (by Ascoli's theorem). Since Sis closed, the limit belongs 
to S, and so Sis compact by Exercise 26 of Chapter 2. 

Exercise 7.20 Iff is continuous on [0, 1] and if 

fo 1 
f(x)xn dx = 0 (n = 0, 1, 2 ... ), 

prove that f(x) = 0 on [0, 1]. Hint: The integral of the product off with any 

polynomial is zero. Use the Weierstrass theorem to show that fo 1 J2 (x) dx = 0. 

Solution. There exists a sequence of polynomials Pn(x) such that Pn(x) con
verges uniformly to f(x). Since f is bounded, {Pn} is uniformly bounded, and 
hence Pnf converges uniformly to f 2 . Then by Theorem 7.16 

t f 2(x) dx = lim t Pn(x)f(x) dx = 0. lo n-->OO lo 

But we know already (Exercise 2 of Chapter 6) that this implies j 2 (x) = 0. 

Exercise 7.21 Let K be the unit circle in the complex plane (i.e., the set of 
all z with lzl = 1), and let A be the algebra of all functions of the form 

N 

f(eiB) = L CneinB (() real). 
n=O 



123 

The A separates points on K, and A vanishes at no point of K, but nevertheless 
there are continuous functions on K which are not in the uniform closure of A. 
Hint: For every f E A · 

12-;r f(ei9)ei9 d() = 0, 

and this is also true for every f in the closure of A. 

Solution. The function f(z) = z E A separates points on K and never vanishes. 
The equality given in the hint is a straighforward computation. It implies that 
the continuous function ~' which is e-ie, is not in the uniform closure of A, 
since 

Exercise 7.22 Assume f E R(o.) on [a, b], and prove that there are polynomials 
Pn such that 

lim lb If- Pnl 2 do.= 0. 
n->oo a 

(Compare with Exercise 12, Chap. 6.) 

Solution. The parenthetical remark refers to the proof that there is a sequence 
of continuous functions {fn} such that 

,!_i_.ll,;, [If- fnl 2 da = 0. 

All that is now needed is to note that one can find polynomials Pn such that 
lfn(x)- Pn(x)i < ~ for all x E [a, b] and all n. 

Exercise 7.23 Put Pn = 0, and define, for n = 0, 1, 2, ... , 

Prove that 
lim Pn(x) = !xi, 

n-+oo 

uniformly on [-1, 1). 
(This makes it possible to prove the Stone-Weierstrass theorem without first 

proving- Theorem 7.26. 
Hint: Use the identity 
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to prove that 0 s; Pn(x) s; Pn+l(x) s; Jxl if Jxl s; 1, and that 

if !xi s; 1. 

Solution. The identity given in the hint is a trivial consequence of the identity 
x2 - P,;(x) ~ [lxJ- Pn(x)][Jxl + Pn(x)]. Then, granting that 0 s; Pn(x) s; lxl, 

Jxl + Pn(x) 
we conclude that 0 s; 1 - 2 < 1 for Jxl s; 1, and hence that 0 s; 
Jxl- Pn+l(x) S Jxl- Pn(x), which gives all of the desired inequalities. An 
immediate corollary of the same identity (obtained by replacing P n ( x) by 0 in 
the second factor on the right-hand side) is 

( Jxl) Jxl- Pn+l(x):::; [Jxl- Pn(x)] 1- 2 , 

and this inequality makes it possible to obtain the inequality 

by induction on n. Finally, by symmetry, the maximum of Jxl (1 - 1~1 r on 
[-1, 1] is its maximum on [0, 1], and this can be found by simple calculus to 
occur at x = n!l. Since this function is always less than JxJ, the final inequality 
now follows. 

Exercise 7.24 Let X be a metric space, with metric d. Fix a point a E X. 
Assign to each p EX the function fp defined by 

fp(x) = d(x,p)- d(x, a) (x EX). 

Prove that lfp(x)l:::; d(a,p) for all x EX, and therefore JP E C(X). 
Prove that 

for all p, q E X. 
If <I>(p) = jp, it follows that <I> is an isometry (a distance-preserving mapping) 

of X onto <I>(X) C C(X). 
Let Y be the closure of <I>(X) in C(X). Show that Y is complete. 
Conclusion: X is isometric to a dense subset of a complete metric space Y. 

(Exercise 24, Chap. 3 contains a different proof of this.) 

Solution. The inequality 1/p(x)l S d(a,p) is well-known, i.e., the fact that 

Jd(x,p)- d(x, a)l S d(a,p) 



125 

and follows from the triangle inequality by merely transposing a term. (The 
left-hand side ~s either d(x,p)- d(x,a) or d(x,a)- d(x,p). Whichever is the 
case, if the subtracted term is moved to the other side, we have the ordinary 
triangle inequality.) 

As for the isometry, we certainly have, for all x, 

1/q(x)- /p(x)l = ld(x, q)- d(x,p)l ~ d(p, q) 

and equality holds here if x = q or x = p. Hence the supremum over all x is 
exactly d(p, q). 

As for the closure Y of ~(X) being complete, it is a closed subset of a 
complete metric space, hence necessarily complete. By definition of closure, 
~(X) is dense in Y. 

Exercise 7.25 Suppose ¢ is a continuous bounded real function in the strip 
defined by.O ~ x :S 1, -oo < y < oo. Prove that the initial-value problem 

y' = ¢(x, y), y(O) = c 

has a solution. (Note that the hypotheses of this existence theorem are less 
strigent than those of the corresponding uniqueness theorem; see Exercise 27, 
Chap. 5.) 

Hint: Fix n. Fori= 0, ... , n; put Xi = ifn. Let fn be a continuous function 
on [0, 1] such that fn(O) = c, 

and put 
.6.n(t) = f~(t)- ¢(t, fn(t)), 

except at the points Xi, where .6.n(t) = 0. Then 

fn(x) = C + 1x [¢(t, fn(t)) + .6.n(t)] dt. 

Choose M < oo so that 1¢1 :5 M. Verify the following assertions. 

(a) If~ I :5 M, l.6.nl :5 2M, .6.n E 'R, and Ifni :5 lei+ M = M1, say, on [0, 1] for 
all n. 

(b) {fn} is equicontinuous on [0, 1], since If~ I ~ M. 

(c) Some {fn,J converges to some J, uniformly on [0, 1]. 
(d) Since¢ is uniformly continuous on the rectangle 0 ~ x ~ 1, IYI :5 M1, 

¢(t, fnk (t)) ~ ¢(t, f(t)) 

uniformly on [0, 1]. 



126 CHAPTER 7. SEQUENCES AND SERIES OF FUNCTIONS 

(e) .6.n(t)-+ 0 uniformly on [0, 1], since 

in (xi, Xi+I)· 

(!)Hence 

f(x) = c + 1x ¢(t, f(t)) dt. 

This f is a solution of the given problem. 

Solution. It will save trouble if we assume that ¢ is a bounded continuous 
mapping from [0, 1] x Rk into Rk and that c is a vector in Rk. That way we 
can do Exercise 26 simultaneously with this one. Since we are defining the 
functions fn(t) to be piecewise-linear, there is no difficulty in doing this with 
vector-valued functions. We simply define fn(t) = c + t¢(0, c) for 0 :::; t :::; x1 , 

and then, by .induction on i, 

for xi < t :s; Xi+l· 
Then, if .6.n(t) is defined as indicated, we have f~(t) = An(t) + ¢(t,fn(t)) 

except at a finite set of points, and therefore 

fn(x) = fn(O) + 1x [¢(t, fn(t)) + An(t)J dt. 

(a) The assertions If~!:::; M and l.6.nl :s; 2M are immediate consequences of 
the definitions of these two functions and the fact that i¢(x,y)J ::; M for all x 
and y (here in general y E Rk). Since .6.n(t) is bounded and continuous except 
at xi, it is Riemann-integrable. The inequality Ifni :s; lei + M = M1 is then 
immediate. 

(b) lfn(x)- fn(Y)I::; J: lf~(t)j dt :S Mix- yj. 
(c) This is Ascoli's Theorem (Theorem 7.25). 
(d) Given i > 0 let 8 > 0 be such that l¢(t, y)- ¢(t, z)l < e if IY- zl < 8, 

for all t E [0, 1], and y, z E Rk. Then if lfn"' (t) - f(t) I < 8 for all t (which is the 
case if k is large), we have j¢(t, fn,. (t))- ¢(t, f(t))i < c for all t. 

(e) For each t and n let i(n) be chosen so that t E [xi(n), Xi(n)+l], so that 
!t-xi(n)! :s; ~· Since fn,.(t) converges uniformly to j(t) and Xi(n)-+ t, it follows 
that ¢(xi(n),fn(Xi(n)))- ¢(t,fn(t))-+ 0. 

(!) We now invoke Theorem 7.16 to get 

f(x) = c + 1x ¢(t, j(t)) dt. 

Clearly f(O) = c, and since the right-hand side has a continuous derivative, so 
does the left-hand side, and f'(x) = ¢(x, f(x)). 
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Exercise 7.26 Prove an analogous existence theorem for the initial-value prob
lem 

y' = q,(x, y), y(O) = c, 

where now c E Rk, y E Rk, and q, is a continuous bounded mapping of the part 
of Rk+l defined by 0:::; x:::; 1, y E Rk into Rk. (Compare Exercise 28, Chap. 
5.) Hint: Use the vector-valued version of Theorem 7.25. 

Solution. Since we were foresightful enough to make all the necessary notes in 
the solution of the previous problem, there is nothing to be done. Observe that 
an k-th order initial-value problem 

y(k) = <P(x, y, y', y", ... , y<k-1)) 

with y(O) = c0, y'(O) = c1, ... , y(k-l)(Q) = ck-l falls under this theorem if we 
let 

q,(x, Y1, Y2, · · ·, Yk) = (y2, Y3, · · ·, Ykl </J(x, Y1, .. ·, Yk-1) ), 

y(O) = (co, ... , Ck·-l) Any solution of this problem provides a solution of the 
k-th order equation (namely Yl if y = (yl, ... , Yk)). 
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Chapter 8 

Son1e Special Functions 

Exercise 8.1 Define 
{ 

1/x2 

f(x) = ~- (x # 0), 
(x = 0). 

Prove that f has derivatives of all orders at x = 0 and that f(n) (0) = 0 for 
n= 1,2,3, .... 

Solution. We have lim xke-11x2 = 0 for all k = 0, ±1, ±2, ... by L'Hospital's 
x-o 

rule. It is easily shown by induction that there is a polynomial Pn such that 
J(n)(x) = Pn(~)e- 1 fx2 for x # 0. Assuming (by induction) that f(n)(O) = 0, 

we then have f(n+ 1)(0) =lim qn(~)e- 1fx2 = 0, where qn(x) = XPn(x). 
X-+0 X 

Exercise 8.2 Let aij be the number in the ith row and jth column of the array 

-1 0 0 

1 -1 0 2 

1 1 -1 4 2 

1 1 1 
8 4 2 

so that 

Prove that 
2:: L aij = -2, 

i j 

12~ 

0 

0 

0 

-1 

(i < j), 
(i = j), 
(i > j). 

2::2:: = 0. 
j i 
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Solution. This is a routine computation: 

while 

j 

Exercise 8.3 Prove that 

co 

i=l 
co 

2:::: -21-i = -2, 
i=l 

co 

2)-1+1] 
j=l 

0. 

2:2:aij = L::L::aij 
j j i 

if aij 2: 0 for all i and j (the case +oo = +oo may occur). 

Solution. In fact the only case that we need to consider is the case when one 
of the two sums is infinite. If either sum is finite, we merely invoke Theorem 
8.3, which explicitly states that the two sums are equal. Hence if either sum is 
infinite, then both are. 

Exercise 8.4 Prove the following limit relations: 
bx - 1 

(a) lim =1ogb (b > 0). 
x-0 X 

(b) lim log(1 + x) = 1. 
x-0 X . 

1 

(c) lim (1 + x)x =e. 
;;- x-o 

(d) . lim ( 1 + ~) n = ex. 
n-+co n 

Solution. (a) Consider the function f(x) - bx 
considering is f' (0). By the chain rule 

f'(x) = exiogblogb. 

ex log b. The limit we are 
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Now take x = 0. 
(b) Let y = log( 1 + x), so that x = eY - 1. It is easy to justify the relation 

lim log(1 + x) = lim y - . 1 1 = 1, 
x--+0 X y---.0 eY- 1 hmy .... O ev::T 

y 

. l' eY - 1 E'(O) smce 1m = . 
y .... O y 

I log(l+o:) l 
(c) Consider the function (1 + x) 1 x = e "' . By part (b) lim(1 + x)'" = . x-o 

e1 =e. 
. ( x)n [( x)l/(x/n)lx (d) As above, we have 1 +-;;; = 1 +-;;; , and by part (c) the 

limit of the expression inside the brackets is e. 

Exercise 8.5 Find the following limits 

( ) l. e-(l+x) 11"' 
a lmx---.0 x. . 

(b) lim · .....1L[n11n- 1]. n--+oo logn 

( ) r ta.nx-x 
C lmx--+0 x(l-cosx)' 

(d) l . x-sin x 
lmx--+0 tan x-x' 

Solution. (a) This limit is f'(O), where f(x) = (1 + x) 11x (by part (c) of the 
previous problem). Now for x =/: 0, we have 

Since we know that the limit of the first factor is e, we need only consider the 
limit inside the brackets. Since 

(1+x)log(1+x)=(x-~2 + .. ·)+x(x-~2 + .. ·), 

we can cancel x 2 from the numerator· and denominator of the expression in 
brackets, and we see that the limit of this expression is ~· Hence the limit of 
f'(x) as x ~ 0 exists and equals~· It then follows from the mean-value theorem 
that f'(O) equals this limit (see the corollary to Theorem 5.12). 

(b) Write this expression as 

logn 
e n -1 

logn 
n 

Since lo~ n tends to 0 as n ~ oo, this fraction tends to the derivative of ex at 0, 
i.e., it tends to 1. 
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(c) Write this expression as 

sinx- xcosx 
X COS X ( 1 - COS X) • 

We can then use either Maclaurin series or L'Hospital's rule to prove that the 
limit is ~· 

(d) Write this expression as 

(x- sinx) cosx 
sinx- xcosx 

and again either by Maclaurin series or L'Hospital's rule the limit is ~· 

Exercise 8.6 Suppose f(x)f(y) = f(x + y) for all real x andy. 
(a) Assuming that f is differentiable and not zero, prove that 

J(x) = ecx 

where c is a constant. 
(b) Prove the same thing, assuming only that f is continuous. 

Solution. (a) Since f is not 0, it follows that f(O) = 1 (take x = y = 0 in the 
basic relation that defines f). It then follows that f' ( x) = f ( x) f' ( 0), and hence 
that the function g(x) = e-xf'(O) f(x) satisfies g'(O) = 0 for all x. Therefore 
g(x) = g(O) = f(O) = 1 for all x, i.e., f(x) = ecx, where c = f'(O). 

(b) The relation f(x)f(y) = f(x + y) shows that either f(x) is always zero, 
or it is never zero. In the latter case, since f is continuous, it cannot change 
sign, and therefore (since f(O) = 1) it is always positive. Let g(x) = log[f(x)]. 
Then g(x + y) = g(x) + g(y), and g is continuous. It suffices then to show that 
g(x) = ex for some constant c = g(l). To this end, we note that the additive 
property of g implies that g(O) = 0, g( -x) = -g(x), and (by an easy induction) 
g(nx) = ng(x) for all integers n = 0, ±1, ±2, .... Consider the set of x such 
that g(x) = g(1)x. Obviously 0 and 1 belong to this set. If a belongs to this set, 
so does na for any n, since g(na) = ng(a) = ng(l)a = g(l)(na). Finally, if a 
belongs to this set, so does;, n = 1, 2, ... , since g(a) = g(n;) = ng(;). That 
is, g(;) = ~g(a) = ~g(1)a = g(l);. It now follows that r belongs to this set 
for all rational numbers r, that is, the two continuous functions g(x) and g(l)x 
have the same values at all rational numbers r. Since the rational numbers are 
dense, and the set of points at which two continuous functions are equal is a 
closed set, it follows that g(x)'t g(l)x for all x. 

Exercise 8.7 If 0 < x <~'prove that 

2 sinx 
-<--<1. 
1T' X 



133 

Solution. To show the left-hand inequality, consider the function f(x) = sinx-
2: on the interval 0 :::; x :::; I· We have f(O) = f(I) = 0. Since f"(x) = 
- sin x :::; 0, the function f' ( x) is strictly decreasing on this interval. Therefore 
it has at most one zero on this interval; by Rolle's theorem, it has exactly one 
zero. Since f"(x) < 0 at that point, the function f(x) has a maximum at that 
point. Therefore f(x) > 0 for 0 < x < I· 

The proof of the right-hand inequality is similar, but easier. The function 
g(x) = x- sinx has derivative 1- cosx, which is nonnegative. Therefore g(x) 
is strictly increasing, and so g(x) > g(O) = 0 for all x > 0 (the restriction x < ~ 
is superfluous in this case). 

Exercise 8.8 For n = 0, 1, 2, ... , and x real, prove that 

I sin nxl :::; nl sin xi. 

Note that this inequality may be false for other values of n. For instance, 

Solution. The inequality is obvious if n = 0 or n = 1. Then by induction we 
have 

I sin nx I - I sin ( ( n - 1) x + x) I 
- I sin((n- 1)x) cosx + cos((n- 1)x) sin xi 
< I sin((n- 1)x)j +I sinxj 

< (n -1)1 sin xi+ I sinxl = lnll sinxl. 

A stronger remark can be made: If c is not an integer, then I sin C7T' I > 
lei I sin 1!'1. Hence this inequality fails for x = 7l' unless cis an integer. 

Exercise 8.9 (a) Put SN = 1 + (~) + · · · + (1/N). Prove that 

lim (sN -log N) 
N--+oo 

exists. (The limit, often denoted by "/, is called Euler's constant. Its numerical 
value is 0.5772 .... It is not known whether"/ is rational or not.) 

(b) Roughly how large must m be so that N =10m satisfies SN > 100? 

1N+l 1 
Solution. (a) We observe that log(N +1)-logN = -dt, so that (sN+l-

N t 
log(N + 1))- (sN -log N) = N~l - J;+l t dt < 0. Thus the sequence is a 
decreasing sequence. On the other hand, it consists of positive numbers, since 
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{N 1 1 1 
log N = /. - dt < 1 +- + · · · + < SN· It follows that the sequence 

..,.L t 2 N-1 
must converge to a nonnegative number 'Y· 

(b) The answer here depends on how "rough" an estimate is desired. We 
observe that s10N+l - s10N lies between 9 · 10N ( 10~+1) and 9 · 10N ( 1JN), i.e., 
between 0.9 and 9. Hence by an easy induction 0.9N < SlQN < 9N. Thus 
m = 112 will certainly work, and m must be at least 12. 

Exercise 8.10 Prove that I: 1/p diverges; the sum extends over all primes. 
(This shows that the primes form a fairly substantial subset of the positive 

integers.) 
Hint: Given N, let p1 , ... , Pk be those primes that divide at least one integer 

:::; N. Then 

N 1 
L:;;: 
n=l 

k 2 
< expL~· 

j=l PJ 

The last inequality holds because 

if 0:::; X:::;!-" 
(There are many proofs of this result. See, for instance; the article by I. 

Niven in Amer. Math. Monthly, vol. 78, 1971, pp. 272-273, and the one by R. 
Bellman in Amer. Math. Monthl~, vol. 50, 1943, pp. 318-319.) 

Solution. We observe that the primes p1 , ... ,pk form the set of all primes not 
greater than N. Each of them is at least 2, and therefore each integer from 
1 to N is a unique product of the form p~ 1 · · · p~k for nonnegative integers ej, 
0 :::; ej :::; log2 N. For simplicity let m be the greatest integer in log2 N. Then 
certainly 

N 1 

L:-n 
n=l 
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To establish the inequality (1- x)- 1 :::; e2x on [0, ~],we simply observe that the 
function j(x) = (1- x)e2x has derivative (1- 2x)e2x, which is positive on this 
interval. Hence the smallest value this function has on the interval is its value 
at x = 0, which is 1. 

We have now established the inequality 

k 1 1 ( N 1) I: --:- 2 2 log I: :;:; 
j=l PJ n=l 

for any integer N less than Pk+l· Since the right-hand side of this inequality 
tends to oo, so does the left. 

Exercise 8.11 Suppose f E n on [0, A] for all A < oo, and J(x) ~ 1 as 
x ~ +oo. Prove that 

lim roo e-tx J(x) dx = 1 (t > 0). 
t-+O } 0 

Solution. We first observe that the improper integral converges absolutely for 
all t > 0, since 

Ls e-'"lf(x)J dx :S ~ (e-Rt- e-St)~ 0, 

where M =sup lf(x)l, as R, S ~ oo. 
x?:.R 

We also note that 

t roo e-tx J(x) dx = roo e-u !(!!:.) du, 
Jo Jo t 

and this last improper integral also converges for all t > 0. Hence we have 

It loo e-tx J(x) dx- 11 11oo e-u J(T) du -11 
< 100 

e-u J(T) - 11 dx. 
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Since f(x) has a limit at infinity and f(x) is Riemann- integrable on [0, 1], 
it follows that f(x) ::; K for some constant K and all x. Thus for any YJ > 0 we 
have 

It 100 
e-tx f(x) dx -1! < (K + 1) 1

0
"1 e-u du + 100 jJ(¥) -1j du 

' 0 I 'I 

< ry(K + 1) + M"~,t' 

where MT},t = sup !f(z) - 11- Hence, given c > 0 we take rJ = 2cif +1). We then 
z>!l. -t 

choose X> 0 so large that !f(z)- 11 < ~ if z >X, and we let 8 = *· It then 
follows that MT},t < ~ if 0 < t < 8. 

Exercise 8.12 Suppose 0 < 8 < 7r, f(x) = 1 if !xl :::; 8, f(x) = 0 if 8 < lxl < 7r, 
and f(x + 27r) = f(x) for all x. 

(a) Compute the Fourier coefficients of f. 
(b) Conclude that 

~ sin(n8) __ 7r- 8 
L n 2 (0 < 8 < 7r). 
n=l 

(c) Deduce from Parseval's theorem that 

(d) Let 8 --+ 0, and prove that 

-- dx= -. 100 (sinx)2 7r 
0 X 2 

(e) Put 8 = 7r /2 in (c). What do you get? 

Solution. (a) Since f(x) is an even real-valued function, it makes sense to use the 
real form of the Fourier series, since symmetry shows that bn = 0 for all n. Then 

ao = ~, and for n ~ 1 we have an= .!_ 11!' f(x) cosnx dx = ~ (
8 cosnxdx = 

7r -7!' 7r Jo 
2 sin n8 

7rn 
(b) Since f(x) satisfies the Lipschitz condition of Theorem 8.14 at x = 0, it 

follows that the series actually converges to f(O) at that point, i.e., 



137 

so that 
~ sin( no) = 7r - 0 . 
L n 2 
n=l 

(c) Parseval's theorem now implies that 

2o = ]:_ 16 lf(x)l2 dx = ~ (2o)2 + ~ 4sin2(no). 
7r 7r -6 2 7r ~ 7r2n2 

2 
Now multiplying both sides by ~8 gives the required result. 

(d) Let R be any fixed number, N any positive integer, and let ON= ~· As 

~ sin2(noN) 1R (sinx)2 . N ~ oo we have L 20 ~ -- dx, smce the left- hand side of 
n=l n N o X 

this equality is a Riemann sum for this integral. Note that 

(The inequality results from the fact that L::=k ~ < Jk~l fr dt = k.:_l .) Given 
e, choose R > ~ such that 

If ("~x)2 dx- [ ("~x)" dxl < ~ 
if S > R. Then choose No > ~ so large that 

whenever N >No. Then for N >No, ON=~ we have 

Consequently 

100 (sinx)2d l' 1r-0N 1r 
-- X= 1m =-2 . 

0 . X N-oo 2 

(e) Taking o = 1r /2 yields 

00 1 7r2 

2:: (2k- 1)2 = s· 
k=l 
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Exercise 8.13 Put f(x) = x if 0 :::; x < 211, and apply Parseval's theorem to 
conclude that 

Solution. By computation we see that an = 0 for n > 0, and ao = 211. Compu
tation shows that bn = -;.2 . Hence Parseval's relation gives 

so that 

There is another way of deriving this result. Since 

00 1 1 00 1 
~ (2n)2 = 4 ~ n2' 

denoting this last sum by X, we find that 

1 00 1 712 

x- 4x = 2:::: (2k- 1)2 = 8 
k=l 

and hence, by part (e) of the previous problem 

4 7r2 712 

x = . .ss = 5· 

Exercise 8.14 If f(x) = (11 -lxl)2 on [-11, 1r], prove that 

2 00 4 
f(x) = ~ + L n 2 cosnx 

n=l 

and deduce that 
00 1 2 00 1 7!"4 

L n2 = ~' L n4 =go· 
n=l n=l 

(A recent article by E. L. Stark contains many references to series of the 
form :L n-s, where s is a positive integer. See Math. Mag., vol. 47, 1974, pp. 
197-202.) 

Solution. Since f(x) is an even function, bn = 0 for all n. The an's are computed 
in a straightforward manner: 

ao = - f ( x) dx = - ( 7r - x) 2 dx = - x 2 dx = -7!"2 ; 211f 211f 211f 2 
7ro 7ro 7ro 3 
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and 
21'lr 21'lr an = - ( 1r - x )2 cos nx dx = ( -1 t- x2 cos nx dx, 
1r 0 1r 0 

so that, eventually, we find an = -:!:r· 
This gives the stated Fourier series, and since f(x) satisfies the Lipschitz 

condition of Theorem 8.14, the series converges to f(x) at every point. Taking 
x = 0 gives the first of the two desired equalities: 

2 00 1 
2 1r """ 1r = f(O) = 3 + 4 L n2. 

n=l 

Parseval's theorem yields 

which easily transforms to the desired relation. 

Exercise 8.15 With Dn as defined in (77), put 

Prove that 

and that 

(a) Kn 2::: 0, 

1 N 
Kn(x) = N + 1 L Dn(x). 

n=O 

KN(x) = 1 1- cos(N + 1)x 
N + 1 1- cosx 

1 l'lr (b) -2 KJi(x) dx = 1. 
1r -'lr 

(c) Kn(x) :::; N 1 
1 

2 
8 if 0 < 8 ::=:; lxl :::; 1r. + 1- cos 

If BN = sN(f; x) is the Nth partial sum of the Fourier series off, consider 
the arithmetic means 

So+ 81 + · · · + SN 
(J --------
N- N+I 

Prove that 
1 {'lr 

aN(f;x) = 21!" ./_'lr f(x- t)KN(t) dt 

and hence prove Fejer's theorem: 

Iff is continuous, with period 21r, then CJN(f;x) ---> f(x) uniformly on 
[-1r, 1r]. 
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Hint: Use properties (a), (b), (c) to proceed as in Theorem 7.26. 

Solution. Using the formula 1- cosO = 2sin2 ~B, and the formula Dn(x) = 
sin(n+l ):r d d h 

. 1 2 , we e uce t at 
sm 2:z: 

1 N 1 1 
( 1 - cos x )K N ( x) = L sin -2 x sin ( n + 2 )x. 

N + 1 n=O 

Now, however, sinasin,B =! cos(a- ,8)- cos(a + ,8), so that 

1 N 
(1- cosx)KN(x) = N L ( cos(nx)- cos((n + 1)x)) = 

+ 1 n=O 

1 
= N (1- cos(N + 1)x). 

+1 

The formula is now established. Notice that it could also be written 

1 [ sin ( N + 1 x) J 2 
KN(x) = N . i . + 1 sm 2x 

(a) The nonnegativity of KN(x) is an immediate consequence of either of 
the formulas just written. 

(b) It was established in the text that 2
1 17r Dn(x) dx = 1, and so the 
7r -7r 

same result for KN(x ), which is an aveqtge of the Dn(x), must follow by routine 
computation. 

(c) This inequality is an immediate consequence of the facts that cos(N + 
1)x 2: -1 and that cosx is decreasing on [0, 1r]. 

The formula for aN(!; x) is an immediate consequence of the definition of 
cr N (f; x) and the corresponding formula for sn (f; x). 

Now let M =sup !f(x)j, the supremum being taken over all x. By (a) and 
(b) we have 

JaN(x)- f(x)l ~ 2~ 1: [f(x- t)- f(x)]KN(t) dtl 

1 {7r 
< 27r .J_7r lf(x- t)- f(x)JKN(t) dt 

< 2~ i: lf(x- t) - f(x )IKN(t) dt + 

1 1 2 
+ ; ( 7r - b) N + 1 1 - cos 8 2M 

< sup lf(x- t)- f(x)l + N Q8 

jtJ~8 + 1 
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h Q 4M(7r-6') 
w ere 6' = 1r(N+l)(l-cos6') · 

Given c > 0, we first choose 8 > 0 so small that sup lf(x- t),.... j(x)l < ~ 
. !t1:56' 2 

for all x. With this 8 fixed, we then have laN(f;x)- f(x)l < c for all N > 2~6 

and all x. 

Exercise 8.16 Prove a pointwise version of Fejer's Theorem: 

Iff E Rand f(x+), f(x-) exist for some x, then 

lim O'N(f; x) = -2
1 [f(x+) + f(x- )]. 

N-+oo 

Solution. We need only a slight modification of the argument just given, namely 
the formula 

1 
aN(!; x)- 2[f(x+) + f(x- )] = 

1 111" ' 1 10 = -2 [f(x- t) - f(x- )]KN(t) dt + -2 [f(x- t) - f(x+ )]KN (t) dt. 
1i 0 1i -11" 

Each of these two integrals can be broken up into an integral over a half
neighborhood of 0 and an integral outside that neighborhood. The first of 
the integrals can be made small if the neighborhood is taken small enough 
(independently of N). With that neighborhood fixed, the second integral in 
each case can be made small if N is large enough using the same inequalities 
just stated. 

Exercise 8.17 Assume f is bounded and monotonic on [-1r, 1r) with Fourier 
coefficients en, as given by (62). 
(a) Use Exercise 17 of Chap. 6 to prove that {ncn} is a bounded sequence. 
(b) Combine (a) with Exercise 16 and with Exercise 14( e) of Chap. 3, to conclude 
that 

lim sN(f; x) = -2
1 [f(x+) + f(x- )] 

n-+oo 

for every x. 
(c) Assume only that fER on [-1i, 1r] and that f is monotonic in some segment 
(a.,/3) C [-7i,1i]. Prove that the conclusion of (b) holds for every x E (o:,/3). 

(This is an application of the localization theorem.) 

Solution. (a) by Exercise 17 of Chap. 6 we have 

1 111" ' -1 111" ' - f(x)e-~nx dx = - e-mx df(x), 
21i -1r 21in -1r 

from which it follows that 

1 
lncn I :5 21i [f(?r) - f( -1i)]. 
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(b) Since j(x+) and f(x-) exist at every point, it follows- from the previous 
exercise that o-N(f;x)--+ ~[f(x+) + J(x-)]. Then Exercise 14(e) of Chap. 3 
assures us that sn(f; x) ha,; the same limit. 

(c) Let g(x) = J(x) for a :::; x :::; (3, g(x) = f(a) for 0 < x ::; a and 
g(x) = J(/3) for f3 s x s 27r. Then sN(g; x) -+ ! [g(x+) + g(x- )] for all x by 
part (b). Since sN(g; x) - sN(J; x) -+ 0 for a < x < f3 by the Corollary to 
Theorem 8.14, it follows that sN(J; x) -+ ~[g(x+) + g(x- )] = ~[f(x+) + J(x- )] 
for these values of x. 

Exercise 8.18 Define· 

j(x) - x3 - sin2 x tan x 

g(x) - 2x2 - sin2 x- xtanx. 

Find out, for each of these two functions, whether it is positive or negative for 
all x E (0, 7I/2), or whether it changes sign. Prove your answer. 

Solution. Both functions tend to -oo as x -+ %. Hence the only question is 
whether they ever become positive. We note that the derivative of the first 
function is 3x2 - sin2 x- tan2 x. By writing sin2 x as ! - ! cos 2x and making 

repeated use of the formula d~ tank x = ktank-l x + ktank+l x, we find that 

the first six derivatives of this function vanish at 0, and that the sixth derivative 
is 

-32sin2x- 272 tanx- 1232 tan3 x- 1104tan5 x- 144 tan7 x, 

which is negative on ( 0, %) . Hence all of the first six derivatives are negative on 
this interval, and therefore the function itself is negative. 

The same technique applies to the second function. All of its first five deriva
tives vanish at x = 0 and the fifth is 

-[16sin2x + 16x + 80tanx + 136xtan2 x + 
+ 200tan3 x + 240xtan4 x + 120tan5 x + 120xtan6 x], 

which is negative on ( 0, ~). Hence this function is always negative on that 
interval. 

Exercise 8.19 Suppose f is a continuous function on R1, f(x + 27r) = j(x), 
and aj1r is irrational. Prove that 

1 00 1 111" 
lim N L f ( x + na) = - f ( t) dt 

N ->OO n=l 27f -11" 

for every x. Hint: Do it first for f(x) = eikx. 
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Solution. Following the hint, we observe that both sides of the desired equality 
equal 1 trivially when k = 0. In any other case the right-hand side is zero, and 
the left-hand side is 

which tends to zero as N ---+ oo. 
Since both sides are linear functions of f, it now follows that the relation 

holds for all trigonometric polynomials. Finally, since both sides are bounded 
by the supremum of f, given c, we can approximate f uniformly within c by a 
trigonometric polynomial. It then follows that all the means on the left, for N 
sufficiently large, are within 2c of the integral on the right. Since c is arbitrary, 
it follows that the limit on the left equals the integral on the right. 

Exercise 8.20 The following simple computation yields a good approximation 
to Stirling's formula. 

For m = 1, 2, 3, ... , define 

f(x) = (m + 1....: x) logm- (x- m) log(m + 1) 

if m 5 x 5 m + 1, and define 

X 
g(x) =- -1 + logm 

m 

if m- ~ 5 x < m+~. Draw the graphs off and g. Note that f(:,r;) 5 log x 5 g(x) 
if x ;::: 1 and that 

j n 1 1 rn 
1 

f(x) dx = log(n!) - 21ogn > - 8 + }
1 

g(x) dx. 

Integrate log x over [1, n]. Conclude that 

~ < log(n!)- (n+ ~) logn+n < 1 

for n = 2, 3, 4, .... (Note: log .J21r rv 0.918 .... ) Thus 

7/8 nl 
e < (n/e)nyln <e. 

Solution. We first draw the graphs of f and g in the range x = 1 to x = 10. We 
note that f is merely the broken set of chords joining the points on the graph 
of log x at integer values of x, and g is made up of segments of the tangents at 
these points (g is not continuous). Because the downward side of the graph of 
log x is convex, f(x) ~log x:::; g(x) for all x. The estimate for the integral off 
is straightforward: The integral is the sum of the areas of one triangle and n- 2 
trapezoids with base 1 and parallel sides log k and log(k + 1) (k = 2, ... , n -1). 
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vVe find it equal to ~log 1 +log 2 +log 3 + · · · + log(n- 1) +~log n = log(n!)
~ log n, as asserted. Meanwhile the integral of g( x) is also a sum of trapezoids 
and two triangles and equals t + log(n!)- ~ logn- 8~. Hence ·we have 

1 ln 1 1 1 1 1 log(n!)--logn < logxdx < -+log(n!)--logn-- < -+log(n!)--logn. 
2 1 8 2 8n 8 2 

Now straightforward computation reveals that 

ln logx dx-:- (nlogn- n)- (llog 1- 1) = n logn- n + 1. 

The desired inequalities are now deduced by taking exponentials of the three 
expressions. 

Exercise 8;21 Let 

1 171" Ln = 27r -71" JDn(t)J dt (n = 1, 2, 3, ... ). 

Prove that there exists a constant C > 0 such that 

Ln>Clogn (n=1,2,3, ... ), 

or, more precisely, that the sequence 

is bounded. 

Solution. We observe that 

11· 2;~1 sin(n + ~ )t 
Ln =- . 1 dt+ 

1r o sm 2t 
n-1 211'(k+l) k 1 
"' 1 ;·2n+'l' ( -1) sin(n + 2 )t 1 /71" ( -l)n sin(n + ~)t + L_., - dt + - ~__:__ _ __;__.=:.:.__ dt 

, 7r ~ sin -21 t 7r ~ sin -21 t 
k=l 2n+l 2n+l 

The su bsti tu tion u = ( n + ~) t changes the first and last terms into the sum 

The first of these terms tends to - sin u du = - as n """""' oo. The second . 1 171" 1 
27T 0 7T 

tends to 0 (for u E [n1r, (n + ~ )1r] we have sin( 2n~l) ~ sin 2~:1 , which tends to 
lasn"""""'oo). 
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Thus we find that 

where en ~ 0 as n ~ oo. 
If we take out the first two terms of the sum instead of just the first, we find 

similarly that 

112~~1 I sin(n + ~)tl 
Ln =- . 1 dt + 

1r o sm 2t 

nL-1 1 ; 2~~'::11 ) (-l}ksin(n+ ~)t 1 171' (-1)nsin(n+ ~)t 
+ - . 1 dt + - . 1 dt. 

1r ~ sm -2 t 7r 2....... sm -2 t 
k=2 2n+l 2n+l 

Again the substitution u = ( n + ~ )t changes the first and last terms into 
the sum 

11271' sinu 1(n+!)11' (-1)nsinu 
- 1 du + 1 du. 
7r o (n+ 2)sin( 2n~ 1 ) n11' (n+ 2)sin( 2n~1 ) 

1 1271' 2 The first of these terms tends to -2 I sin ul du = - as n -+ oo, and once 
' 7r 0 7r 

again the second tends to zero. 
Thus we find that 

where 7]n ~ 0 as n ~ oo. 
Once again, in each of the integrals under the sigma in the last two inequal

ities we make tlie substitution u = (n + ~)t. When we do so, we have 

where en ~ 0 and 7]n ~ 0. It therefore follows that 

1 n-1 2 1 2 1 
; + en < Ln - L ; ' 1 . ~ < - + 7]n - ( 1) . ( 11'n ) • 

k=1 (n + 2) sm( 2n+1 ) 7r n + 2 sm 2n+1 

The extremes in these inequalities are both bounded. Hence we will be done if 
we can show that 
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remains bounded. To do this, we use the fact that there is a constant K such 
that 

I si~ x - ; I ~ K x 

for 0 < x ~ ~· This fact in turn is a consequence of the fact that, by L'Hospital's 
rule, 

x- sinx 
lim 2 . 
x-+0 x smx 

We thus have 

where 

lEn I< K-· _1_ I: 7r(k + 1) = 
- n + -21 2n + 1 

k=1 

= 2K ~ k + 1 = 2K [ ( n + 1) ( n + 2) _ 1] 
7r(2n + 1)2 6 1r(2n + 1)2 2 · 

Since the right-hand side tends to ! as n ---+ oo, we see that En remains 
bounded as n ---+ oo. We will be finished if we can show that 

n-1 

loo· n - "'""' - 1-
o L..-k~1 

k=l I 

remains bounded. But this was done in Exercise 9 above. 

Exercise 8.22 If o: is real and -1 < x < 1, prove Newton's binomial theorem 

~a:( a:- 1) .. ·(a:- n + 1) 
(1 + x)a = 1 + L 1 xn. 

n. 
n=l 

Hint: Denote the right side by f ( x). Prove that the series converges. Prove 
that 

(1 + x)j'(x) = o:f(x). 

and solve this differential equation. 
Show also that 

(1 _ )-a: = ~ f(n + o:) n 
X L,.. n!f(o:) X 

n=O 

if -1 < x < 1 and o: > 0. 
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Solution. Following the hint, we use the ratio test to establish that the radius 
of convergence of the power series that defines f(x) is 1. This amounts merely 
to the statement that 

lim I a: - n1 I = 1. 
n->00 n + 

The differential equation then results from termwise operations on the series 
and the fact that 

a:( a- 1) ···(a-n) a( a- 1) ···(a:- n + 1) a( a- 1) ···(a-n+ 1) .........;_ _ __;_--:-....;..._--'- + = a: ----'--__;_-7------=-
n! (n- 1)! n! 

Then, given that f(O) = 1 # 0, it follows that for x near 0 we have 

f'(x) a 
f(x) = 1 + x 

so that log f(x) and log(1 + x)a: have the same derivative, and hence differ by 
a constant, which turns out to be zero, since both equal 1 at x = 0. It thus 
follows that f(x) = (1 + x)a:. 

To prove the other relation, we merely observe that 

Exercise 8.23 Let "'( be a continuously differentiable closed curve in the com
plex plane with parameter interval [a, b], and assume that "Y(t) # 0 for every 
t E [a, b]. Define the index of "Y to be 

1 lb "Y'(t) 
Ind ("'!) = -2 . -() dt. 

m a. 1t 

Prove that Ind (!) is always an integer. 
Hint: Thereexists r.p on [a, b] with r.p' = 1' /1, r.p(a) = 0. Hence 1exp( -r.p) is 

constant. Since "Y(a) = !(b), it follows that exp(r.p(a)) = exp(r.p(b)) = 1. Note 
that r.p (b) = 27rilnd ("'!). 

Compute Ind ("'!) when "'((t) = eint, a= 0, b = 27r. 
Explain why Ind ("'!) is often called the winding number of 1 around 0. 

Solution. Again, following the hint leaves very little to do. We define 

r.p(x) = 1x ~g} dt, 

so that we automatically have r.p'(t) = ~cW· The fact that 1exp(-r.p) is con
stant is now a consequence of the chain rule. It then follows immediately that 
exp( r.p( b)) = 1, so that r.p( b) = 27rin for some integer n. 

Routine computation shows that Ind ("'!) = n if 1(t) = eint, 0 ::; t ~ 27r. 
Since this curve winds counterclockwise about 0 a total of n times, the name 
winding number is appropriate. 
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Exercise 8.24 Let 1 be as in Exercise 23, and assume in addition that the 
range of 1 does not intersect the negative real axis. Prove that Ind ( 1) = 0. 
Hint: For 0 < c < oo. Ind h +c) is a continuous integer-valued function of c. 

- I \1 ,/ '-" 

Also, Ind ( 1 +c) -> 0 as c-> oo. 

Solution. Following the hint, we observe that 

1 lb 1'(t) c =- dt, 
j( ) 27ri a 1(t) + C 

is a continuous function of c on [0, oo), since 

b 

where K = ~ 111' (t) I dt and r is the supremum of the integrand for c1, c2 ~ 
27rr a 

0 and 0 ::; t ::; 27r. (This supremum is finite, since the integrand tends to zero 
as either c1 or c2 tends to infinity.) Furthermore 

1 1b h'(t)i 
IJ(c)J::; 27rc I lillJ dt, 

a 1+ c 

and this last expression tends to 0 as c -> oo. It follows, since f assumes only 
integer values, that f(c) = 0. In particular J(O) = Ind ("f)= 0. 

Exercise 8.25 Suppose 11 and 12 are curves as in Exercise 23, and 

l11(t)- 12(t)l < bi(t)J (a::; t::; b) 

Prove that lrid (11) = Ind (12). 
Hint: Put 1 = 12/11 . Then 11- 1! < 1. Hence Ind b)= 0 by Exercise 24. 

Also, 
1' 1~ 1~ -=---
1 12 11 

Solution. The hint leaves almost nothing to be done. The inequality established 
for 1 shows that the real part of 1 is always positive, so that the hypotheses 

I 

of Exercise 24 are satisfied. The relation for ~ is a routine computation, and 
shows in general that Ind ( "(8) = Ind ( 1) + Ind ( 8). 

Exercise 8.26 Let 1 be a closed curve in the complex plane (not necessarily 
differentiable) with parameter interval (0, 21r], such that 1(t) =/: 0 for every 
t E [0, 27r]. 
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Choose 8 > 0 such that i"Y(t)i > 8 for all t E [0, 211"]. If P1 and P2 are 
trigonometric polynomials such that IPi(t) -')'(t)j < 8/4 for all t E [0, 271"], (their 
existence is assured by Theorem 8.15), prove that 

by applying Exercise 25. 
Define this common value to be Ind ( "Y). 
Prove that the statements of Exercises 24 and 25 hold without any differen

tiability assumptions. 

Solution. Since IP1(t)...:. P2(t)j < ~ < IP1(t)l, (because IP1(t)l ~ if(t)l-lf(t)
P1(t)1 > 3f), the equality of the indices follows from Exercise 25, as stated. 

Exercise 24 remains valid, since if ')'(t) does not intersect the negative real 
axis, there is a positive number 8 > 0 such that h(t) - xl ~ 8 for all x :5 0. 
Then if IPj(t)- "Y(t)l < 8 for all t E [0, 27T'], it follows that Pj(t) also does not 
intersect the negative real axis, hence has winding number 0. 

Exercise 25 remains valid, since if 11'1 ( t) - 1'2 ( t) I < 11'1 ( t) I for all t, we can let 
8 =mint I"Yl(t)l- h1(t) -"Y2(t)1. Then if IPi(t) -"Yi(t)i < 8/4 for all t, it follows 
that IP1(t)- P2(t)l :5 h1(t)- 12(t)l + (8/2) < I"YI(t)i- (8/4) :5 IP1(t)j, and so 
Ind (P1) = Ind (P2), by Exercise 25. 

Exercise 8.27 Let f be a continuous complex function defined in the complex 
plane. Suppose there is a positive integer n and a complex number c =f. 0 such 
that 

lim z-n"Y(z) = c. 
lzl-+oo 

Prove that f(z) = 0 for at least one complex number z. 
Note that this is a generalization of Theorem 8.8. 
Hint: Assume f(z) =f. 0 for all z, define 

"Yr(t) = f(reit9) 

for 0 :5 r < oo, 0 :5 t < 271", and prove the following statements about the curve 

"Y· 
(a) Ind ("Yo) = 0. 

(b) Ind br) = n for all sufficiently large r. 

(c) Ind ("Yr) is a continuo~s function of ron [0, oo). 

[In (b) and (c), use the last part of Exercise 26.] 
Show that (a), (b), and (c) are contradictory, since n > 0. 

Solution. (a) Since "Yo(t) = f(O) for all t, we have "Yo(t) = 0 for all t, and hence 
by definition Ind (1'0 ) = 0. 

(b) Choose R so large that jz-n f(z) - cl < ~ whenever lzl > R. Then 
for all r we have Ind ( "'fr) = Ind ( "Yrl) + Ind ( "Yr2), where "Yrl ( t) = rn eint and 
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rf1 
~ 

g(x) 

Figure 8.1: The Brouwer fixed-point theorem 

rr2(t) = T-ne-int j(Teit). By Exercise 25 we have Ind hr2) = 0 forT > R, and 
by direct computation .we have Ind hr1) = n for all T. 

(c) Fix To > 0, and let c = min lf(Toeit)l. Then choose 8 E (O,To) such 
o::;t::;21r 

that lf(Toeit) - f(Teit) I < c if IT- Tol < 8. Then by Exercise 25 we again have 
Ind( rr) = Ind ( lro) for IT- To I < 8. Hence Ind ( /r) is a locally constant function 
ofT. By the connectivity of [0, oo), it follows that it is globally constant, which 
contradicts (a) and (b). 

Exercise 8.28 Let D be the closed unit disc in the complex plane. (Thus 
zED if and only if lzl ::; 1.) Let g be a continuous mapping of D into the unit 
circleT. (Thus lg(z)l = 1 for every zED.) 

Prove that g( z) = - z for at least one z E T. 
Hint: For 0 ::; T ::; 1, 0 ::; t::; 2n, put 

rr(t) = g(Teit), 

and put 7/J(t) = e-it11(t). If g(z) =J=. -z for every z E T, then '!/;(t) =J=. -1 for 
every t E [0,2n]. Hence Ind('ljJ) = 0, by Exercises 24 and 25. It follows that 
Ind ( 11) = 1. But Ind (ro) = 0. Derive a contradiction, as in Exercise 27. 

Solution. The hint tells us that 'lj;(t) does not meet the negative real axis, hence 
has index o; by Exercise 24. Hence by Exercise 25, 11 has index 1. Again, since 
/o = g(O) =1- 0 (since g(O) =1- -0 = 0), it follows that Ind ('Yo) = 0. But, as 
before, since lg(z) I = 1 for all z, it follows that Ind br) is locally constant and 
hence by the connectivity of [0, 1], globally constant. Thus, once again, we have 
a contradiction. 

Exercise 8.29 Prove that every continuous mapping f of D into D has a fixed 
point in D. 

(This is the 2-dimensional case of Brouwer's fixed-point theorem.) 
Hint: Assume f(z) =J=. z for every z ED. Associate to each z E D the point 

g(z) E T which lies on the ray that starts at f(z) and passes through z. Then 
g maps D into T, g(z) = z if z E T, and g is continuous,. because 

g(z) = z- s(z)[f(z)- z], 
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where s(z) is the unique nonnegative root of a certain quadratic equation whose 
coefficients are continuous functions off and z. Apply Exercise 28. 

Solution. The number s = s(z) is a nonnegative real number because of the 
geometry of the situation (see figure). The quadratic equation in question is 
given by the relation jg(z)j2 = 1, i.e., 

lf(z)- zj 2s2 + 2(lzl 2 - Re (zf(z)))s + lzl2 - 1 = 0. 

It is well-known that a quadratic equation az2 + bz + c = 0 has one and only 
one nonnegative root if a, b, and c are real and ac < 0. We can write explicitly 

s(z) = lz/ 2 - Re (zf(z)) + J(iz/2 - Re (zf(z)) 2 + lf(z)- zj2(1 -jzj2) 
if(z) - z/ 2 . 

which makes it clear that s(z) is a continuous function of z. Hence g(z) rs 
continuous. 

We now know that there must be a value at which g(z) = -z. But this is 
impossible, since jg(z)l = 1 for all z and g(z) = z if lzl = 1. 

Exercise 8.30 Use Stirling's formula to prove that 

for every real constant c. 

lim f (X + C) = 1 
x-oo xcr(x) 

Solution. We need Stirling's formula in the form 

r(z) 
1 =1. 
J2rr(z- 1) 

Applying this result with z = x + c and z = x, we get 

lim r(x +c) = 
.:c--oo xcr(x) 

. r(x +c) ( x-l y-l J2rr(x- 1) 
= hm f(x) · . ---=e'-------

x--oo (x+c 1)x+c-1J2rr(x+c-1) r(x) 
.e 

where 

Since xx --> 1 as x --> oo, it now follows that lim f(x) = 1, which, combined 
X->00 

with Stirling's formula, gives the desired result. 
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Exercise 8.31 In the proof of Theorem 7.26 it was shown that 

!1 ( 2)n 4 l-x dx ?_ --. 
v -1 3ft 

for n = 1, 2, 3, .... Use Theorem 8.20 and Exercise 30 to show the more precise 
result 

Solution. Let u = x 2 in the integral, so that dx = ~u-~ du. We then have 

and taking c = ~ in Exercise 30, we find that this last expression tends to 
r(~) =ft. 



Chapter 9 

Functions of Several 
Variables 

Exercise 9.1 If Sis a nonempty subset of a vector space X, prove (as asserted 
in Sec. 9.1) that the span of Sis a vector space. 

Solution. We need only verify that the span of S is closed under the two vector 
space operations. All the other properties of a vector space hold in the span of 
S, since it is contained in a vector space in which they hold. 

To that end, let x andy be elements of the span of S, and let c be any real 
number. By definition there are elements x1, ... , Xm, Yll· .. , Yn, and scalars 
c1, ... , Cm, d1, ... , dn such that X= C1X1 +· · ·+CmXm andY= d1Y1 +· · ·+dnYn· 
We then have 

X+ Y = C1X1 + · · · + CmXm + d1Y1 + · · · + dnYn, 

which is a finite linear combination of elements of S, hence belongs to the span 
of S. Likewise, by the distributive law, 

ex= c(c1X1 + · · · + CmXm) = (cc1)x1 + · · · + (ccm)Xm, 

which belongs to the span of S. 

Exercise 9.2 Prove (as asserted in Sec. 9.6) that BA is linear if A and B are 
linear transformations. Prove also that A-1 is linear and invertible. 

Solution. Let A : X ~ Y and B : Y ~ Z be linear transformations, and let x 
andy be any elements of A and c any scalar. Then BA: X~ Z satisfies 

BA(x+y) - B(A(x+y)) 

- B(A(x) + A(y)) 

- B(A(x)) + B(A(y)) 

- BA(x) + BA(y). 
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Similarly, 

CHAPTER 9. FUNCTIONS OF SEVERAL VARIABLES 

BA(cx) - B(A(cx)) 

- B(cA(x)) 

- cB(A(x)) 

- cBA(x). 

If A is a one-to-one mapping of X onto Y, and z and w are any elements 
of Y, let x = A- 1(z) and y = A- 1 (w). Then by definition A(x) = z and 
A(y) = w. It therefore follows from the linearity of A that A(x + y) = z + w. 
Again, by definition, this means that A-1 (z +w) = x+y = A- 1 (z) +A-1 (w), 
so that A- 1 preserves vector addition. Similarly, A(cx) = eA(x) = cz, so that 
A-1 (cz) =ex= eA-1(z), and hence A-1 also preserves scalar multiplication. 

Exercise 9.3 Assume A E L(X, Y) and Ax= 0 only when x = 0. Prove that 
A is then 1-1. 

Solution. Suppose A(x) = A(y). It then follows that""A(x-y) = A(x)- A(y) = 
0. Hence by assumption x- y = 0, and sox= y; therefore A is one-to-one. 

Exercise 9.4 Prove (as asserted in Sec. 9.30) that null spaces and ranges of 
linear transformations are vector spaces. 

Solution. Let N be the null space of the linear transformation A : X -+ Y, let x 
andy be elements of N, and let c be any scalar. By definition A(x) = 0 = A(y), 
and A(x + y) = A(x) + A(y) = 0 + 0 = 0, so that, by definition, x +yEN. 
Likewise A(ex) = eA(x) =cO= 0, and so ex EN. Therefore N is a subspace 
of X. 

Let R ·be the range of A, let z and w be any elements of R, and let e be any 
scalar. By definition, there exist vectors x E X andy EX such that z = A(x) 
and w = A(y). Then A(x + y) = A(x) + A(y) = z + w, and hence z +wE R. 
Likewise A( ex)= eA(x) = cz, so that cz E R. Therefore R is a subspace of Y. 

Exercise 9.5 Prove that to every A E L(Rn, R1) corresponds a unique y ERn 
such that Ax= x · y. Prove also that IIAII = jyj. 

Hint: Under certain conditions, equality holds in the Schwarz inequality. 

Solution. Let e1 , ... , en be the standard basis of Rn, ·and let y = A( e 1 )e1 + 
· · · + A(en)en. Then for any x = c1e1 + · · · + Cnen we have 

A(x) - e1A(e1) + · · · + cnA(en) 

- y·x. 
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There can be at most one such y, since if A(x) = z · x, then IY -· zl 2 = y · y
y · z- z · y + z · z = A(y)- A(y)- A(z) + A(z) = 0. 

By the Schwarz inequality we have 

IA(x) I = IY · xl ::; IYIIxl 

for all x, so that II All ::; IYI· On the other hand A(y) = y · Y = IYI 2 , so that 
IIAII ~ IYI· 

Exercise 9.6 If f(O, 0) = 0 and 

xy 
f(x, y) = x2 + y2 if (x, y) =/= (0, 0), 

prove that (D1f)(x, y) and (D2f)(x, y) exist at every point of R2 , although f 
is not continuous at (0, 0). 

Solution. At any point (x, y) except (0, 0) the differentiability of f(x, y) follows 
from the rules for differentiation and the principles of Chapter 5. At (0, 0) it is 
a routine computation to verify that both partial derivatives equal zero: 

(Dlf)(O, 0) = lim f(h, 0)- f(O, 0) = 0. 
h-+0 h 

However, f(x, y) is not continuous at (0, 0, since f(x, x) = ~ for all x =/= 0, 

and hence lim f(x, x) = -2
1 =/= f(O, 0). 

x-+0 

Exercise 9.7 Suppose that f is a real-valued function defined in an open set 
E C Rn, and that the partial derivatives D1 J, ... , Dnf are bounded in E. Prove 
that f is continuous in E 

Hint: Proce~d as in the proof of Theorem 9.21. 

Solution. Let e > 0 be given, and let x 0 = (x~, ... , x~) be any point of 
E. First choose 8o > 0 so that y E E if IY- x0 1 < 28o. Then, if M = 

max((D1f)(x), ... ,(Dnf)(x)), choose 8 = min(8o, ( e )M). It then fol-
xeE . n + 1 
lows that if IY- x 0 1 < 8, we have 

lf(y)- f(x0 )1 - if(yl, · .. ,yn)- f(x~, .. · ,x~)l 
' 0 . 

< lf(yl, Y2, · .. , Yn) - f(xl, Y2, .. ·, Yn)i + 
+if(x~, Y2), · .. , Yn)- f(x~, xg, · · ·, Yn)i + .. · 
· · · + if(x~, xg, · ·., x~-1, Yn) - f(x~, xg, ... , x~-l, x~)l, 

where the ellipsis indicates terms of the form 

if(x~, xg, · · ·, x~-1, Yk, Yk+l' · · ·, Yn) - f(x~, xg, .. ·, x~-1, x~, Yk+l, ... , Yn)l. 
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By the mean-value theorem there is a number ck between x~ and Yk such that 
this last difference equals 

E 
which is at most M 8. Since by definition M 8 is at most --, and there are 

n+l 
only n such terms, it follows that Jf(x0)- f(y)J <E. Thus f is continuous. 

Remark: We have actually shown that f(x) satisfies a Lipschitz condition 
on any convex subset of E, i.e., that Jf(x)- f(y)J ~ nMJx- yJ on each convex 
subset. 

Exercise 9.8 Suppose that f is a differentiable real function in an open set 
E c Rn, and that f has a local maximum at a point x E E. Prove that 
f'(x) = 0. 

Solution. Let y be any element of Rn, and consider the real-valued function 
cp(t) = f(x+ty), defined near t = 0. This function is differentiable (by Theorem 
9.15 cp(t) = f'(x + ty)(y)). Since cp(t) has a maximum at t = 0, it follows that 
cp'(O) = 0, i.e., that f'(x)(y) = 0. Since y is arbitrary, it follows by definition 
of the zero linear transformation that f'(x) is the zero linear transformation. 

Exercise 9.9 Iff is a differentiable mapping of a connected open set E C Rn 
into Rm, and iff' (x) = 0 for for every x E E, prove that f is constant in E. 

Solution. The mean-value argument given in Exercise 7 above, applied to each 
component of f, shows that f is locally constant (the partial derivatives are all 
zero). Hence, if x 0 is any point of E, the set of x such that f(x) = f(x0 ) is an 
open set. Since this set is also closed in E, and E is connected, it follows that 
it must be all of E. 

Exercise 9.10 Iff is a real function defined in a convex open set E C Rn, such 
that (D1f)(x) = 0 for every x E E, prove that f(x) depends only on x2, ... ,xn. 

Show that the convexity of E can be replaced by a weaker condition, but 
that some condition is required. For example, if n = 2 and E is shaped like a 
horseshoe, the statement may be false. 

Solution. We need to show that f(x~, x2, ... , Xn) = f(xi, Xi, ... , xn) whenever 
x 0 = (x~,x2, ... ,xn) and x 1 = (xi,x2, ... ,xn) both belong to E. Since E 
is convex, the line segment joining x 0 and x 1 is contained in E. The mean
value theorem applies on this line segment, showing that f(x0)- f(x1 ) = (x~
xi)(D1f)(x) for some point x on this interval. Hence the result now follows 
from the hypothesis. 
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Note that convexity is needed only on each line segment· through E parallel 
to the x1-axis. Thus if the intersection of E with each line parallel to the x1-axis 
is an interval and (D1f)(x) = 0 for all x E E, then f is independent of x1. 

If we define f(x, y) on all of R2 except the nonnegative portion of they-axis 
by specifying 

{ 0 if y < 0 or x < 0, 
j(x, y) = y2 if y 2:: 0 and X > 0, 

then J(x, y) is continuously differentiable on its domain, (D1J) (x, y) = 0 ev
erywhere on that domain, yet f( -1, 1) == 0 =I= 1 = f(l, 1), so that f is not 
independent of x. 

Exercise 9.11 Iff and g are differentiable real functions in Rn, prove that 

V'(Jg) = f'lg + g'V f 

and that 'V(l/ f) = - f- 2 'V f wherever f # 0. 
Solution. This is a routine computation applied to the ith component of the 
various quantities. 

Exercise 9.12 Fix two real numbers a and b, 0 < a < b. Define a mapping 
f = (]1, ]2, is) of R2 into R3 by 

]I ( s, t) - ( b + a cos s) cos t 
]2 ( s, t) - ( b + a cos s) sin t 

is ( s, t) - a sin s 

Describe the range K of f. (It is a certain compact subset of R3 .) 

(a) Show that there are exactly 4 points p E K such that 

(\7]1)(f-1(p)) = 0. 

Find these points. 
(b) Determine the set of all q E K such that 

(\7fs)(f-1(q)) = 0. 

(c) Show that one of the points p found in part (a) corresponds to a local 
maximum of h, one corresponds to a local minimum, and that the other two 
are neither (they are so-called "saddle points"). 

Which of the points q found in part (b) correspond to maxima or minima? 
(d) Let A be an irrational number, and define g(t) = f(t, At). Prove that g is a 
1-1 mapping of R 1 onto a dense subset of K. Prove that 

I g' ( t) 12 = a 2 + A 2 ( b + a cos t) 2 . 
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Solution. The range K is a torus obtained by moving a circle of radius a 
with center on a circle of radius b, always keeping the planes of the two circles 
perpendicular and each plane passing through the center of the other circle. 
This can be seen by observing that in cylindrical coordinates the parametric 
equations say r = b +a cos s, z =a sin x, i.e., (r- b )2 + z2 = a2, which, together 
with the equation () = const, gives the equation of a circle with center at (b, 0) 
and radius a in the half-plane()= const. 
(a) The equation (''V ]I)(8, t) = 0 says -a sins cost= 0 and -(b+ a cos s) sin t = 
0. This second equation requires t = k1r, and since these functions have period 
21r in both s and t, we may as well assume t = 0 or t = 1r. In that case the 
first equation implies 8 = 0 or 8 = 7r. Hence the only points p satisfying this 
equation are the images of the points (0,0), (O,n), (n,O), and (1r,1r), i.e., the 
points (b+a,O,O), (b-a,O,O), (-b+a,O,O), and (-b-a,O,O). 

(b) The equation (V' ]3)(8, t) = 0 says only that acoss = 0, i.e., 8 =~or s = 3;. 

The image of these two conditions consists of the two ci'tcles of radius b about 
the z-axis in the planes z = ±a. 

(c) The point (a+ b, 0, 0) is the maximum possible value of h (s, t), and occurs 
only when cos s = 1 and cost = 1. Likewise the point (-a - b, 0, 0) is the 
minimum possible value, and occurs only when cos s = 1 and cost = -1. The 
other two points, which occur when 8 = 0, t = 1r and when s = 1r, t = 0, lie near 
points of both larger and smaller values of h(s, t). For example, when 8 = 0, 
the point t = 1r is a minimum for the function r.p(t) = h(O, t) = bcost; but when 
t = n, the point 8 = 0 is a maximum of'ljJ(8) = h(s,7r) = -(b+acoss). Hence 
the point (0, n) is neither a maximum nor a minimum for fi (s, t). 

The points with z = +a are obviously absolute maxima of ]3(s, t), while 
those with z = -a are the absolute minima. 

(d) Suppose g(t1 ) = g(t2). Then because a sin t1 =a sin t2, and 

(that is, b + acost1 = b + acost2), we have sint1 = sint2 and cost1 = cost2. 
Therefore sin(t1 - t2) = 0, which means t2 = t 1 + k1r for some integer k. 
Because sin t1 = sin t2, it follows that k is an even integer, say k = 2m. It 
then follows, since /i(tl, )..tl) = /i(t2, A.t2), >.. = 1, 2, that cos A.t1 = cos >..t2 and 
sin A.t1 = sin A.t2. This in turn implies that A.t2 = A.t2 + 2r7r for some integer r. 
Combining these two results, we find that m>.. = r. Since >.. is irrational, this 
means that m = 0 = r, i.e., t2 = t1 . Thus g(t) is one-to-one. 

To show that the range is dense in K, we need only show that the numbers 
21rnA., n = 0 ± 1, ±2, ... , are dense "modulo 2n," meaning that for any real 
number() and any c > 0 there is are integers m and n such that 121rnA.- 21rm
Bl <c. A proposition easily seen to be equivalent is that for any TJ > 0 and any 
real number c there exist integers m and n such that ln.A- m- cl < "7· (This 
statement is obvious (m = n = 0) if c = 0.) To prove that, fix an integer r 
larger than ~, and consider the numbers 0, >..- [A.], 2>..- [2>..], ... , r ,\- [r >..]. There 
are r + 1 such numbers, all lying in the interval [0, 1). Hence two of them must 
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be closer than ~ to each other, say 0 <sA- [sA]- t>.. + [t>..] < ~· In particular, 
the number (s- t)>.. lies within ~ of an integer (namely [sA]- [t>..]. Thus we 
have, say (s- t)>.. = k + 6, where 0 < 6 < ~· Let p be the unique integer such 
that p6 :::; c < (p + 1)6. We then have p(s- t)>.. = pk + p6, and hence, taking 
n = p(s- t) and m = pk, we find InA.- m- c[ = [p6- cj < 6 < ~ < ry. 

This being established, consider any point in K, say the point p = (b + 
a cos s0 ) cos to, ( b + a cos s0 ) sin to, a sin so), and let c > 0 be given. According 
to what was just established, there are integers m, n such that 121rm>..- 27Tn
(to - so>..) I < 3a~3b. It then follows that 

I cos ( (so + 27Tm) >..) - cos to I 
< 

I cos ((so+ 21rm)>..- 21rn)- costal 
c 

3a + 3b' 

where we have used the inequality Jcosu- cosvJ:::; Ju- vJ, with u =(so+ 
21rm)>..- 27Tn and v = t 0 . A similar inequality applies with sin in place of cos. 
It then follows that lg(so + 21rm) -PI :::; 2{ < c. Therefore the range of g is 
dense inK. 

The equation 

is a routine, though tedious, computation. 

Exercise 9.13 Suppose f is a differentiable mapping of R1 into R3 such that 
Jf(t)J = 1 for every t. Prove that f'(t) · f(t) = 0. 

Interpret this result geometrically. 

Solution. This result is obtained by merely differentiating the relation f(t)·f(t) = 
1. Geometrically it asserts that the velocity vector of a point moving over a 
sphere is tangent to the sphere (perpendicular to the radius vector from the 
center of the sphere to the point). 

Exercise 9.14 Define f(O, 0) = 0 and 

x3 
f(x, y) = x2 + y2 if (x, y) ::/= (0, 0). 

(a) Prove that D1 f and D2f are bounded functions in R 2 . (Hence f is contin
uous.) 
(b) Let u be any unit vector in R 2 . Show that the directional derivative 
(Duf)(O, 0) exists, and that its absolute value is at most 1. 
(c) Let "/ be a differentiable mapping of R1 into R2 (in other words, "/ is a 
differentiable curve in R2), with "!(0) = (0, 0) and I!'(O)J > 0. Put g(t) = f("!(t)) 
and prove that g is differentiable for every t E R1 . 

If 1 E C', prove that g E C'. 
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(d) In spite of this, prove that f is not differentiable at (0, 0). 
Hint: Formula ( 40) fails. 

Solution. (a) For (x, y)-:/= (0, 0) we have 

x2 (x2 + 3y2 ) 2x3y 
Drf(x, y) = (x2 + y2)2 ' D2j(x, y) = - (x2 + y2)2 · 

It follows that 

and 

3x2 
0::; Drf(x, y) ::; . 2 + 2 :S: 3 

X y 

x2 
ID2f(x, Y)l ::; 2 + 2 :S: 1. 

X y 

Also D1 f(O, 0) = lim f(x, O)- f(O, O) = lim x- 0 = 1, and D2/(0, 0) -
' x-+0 X x-->0 X 

lim f(O, y)- f(O, O) = lim Q = 0. Hence, as asserted, f(x, y) is continuous. 
y-+0 y y-+Oy 

(b) -( () . ()) Th D f(O O)-l" j(tcos(),tsinB)-f(O,O) _ Let u - cos , sm . en u , - 1m -
t-o t 

cos3 e. 
(c) Suppose u(t) and v(t) satisfy u(O) = 0 = v(O), u'(t) and v'(t) exist for 

every t, and u'(t) and v'(t) do not both vanish at the same value oft. Setting 
g( t) = f ( u( t), v( t)), we find that g( t) is obviously differentiable at any value of 
t where u(t) and v(t) are not both zero. Now suppose u(to) = v(to) = 0. Then, 
since one of u(t) and v(t) is one-to-one on a neighborhood of t0 , it follows that, 

for small non-zero values oft- t 0 we have (u(t)) 2 + (v(t)) 2 > 0, and then 

so that 

g(t) - g(to) 
t- to 

-

f(u(t),v(t))- f(u(to),v(to)) 
t- to 

( u(t)-u(to))3 
t-to 

( u(t)-u(t0 ))2 + (v(t)-v(t0 ))2' 
t-to t-to 

1 t ) = lim g(t)- g(to) = (u'(to)) 3 

g ( 0 t-+to t- t 0 (u'(to))2 + (v'(to))2 · 

Thus g(t) is differentiable. Observe that if "!(t) # (0, 0), then 

'(t) = (u(t)) 4u'(t) + 3(u(t)v(t))2u'(t)- 2(u(t)) 3v(t)v'(t) 
9 ((u(t))2+(v(t))2)2 , 

The same argument used above to prove that g' ( t 0 ) exists shows that 

l . , (u'(to)) 5 + (u'(to)) 3 (v'(to)) 2 (u'(to)) 3 , 
lm g ( t) - - - g ( t ) 

t-to - ((u'(to))2 + (v'(to))2)2 - (u'(to))2 + (v'(to)) 2 - 0 ' 
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so that g' is continuous at t0 if u' and v' are. Continuity of g' at other points 
follows from the chain rule. 

Iff is differentiable at (0, 0), we necessarily have 

f(x, y) = f(O, 0) + [xDif(O, 0) + yD2f(O, 0)] + c(x, y), 

where 
lim c(x, y) = 0. 

(x,y)---+(0,0) J x2 + y2 

Since D1 f(O, 0) = 1 and D2J(O, 0) = 0, it follows that 

-xy2 
c(x, y) = 2 2' 

X +y 

and so we must have 
2 

l. -xy 0 
liD = . 

(x,y)-(0,0) (x2 + y2)3/2 

But this is clearly not the case, as we see by taking x = y. (The limit is then 
-2-3/2.) 

Exercise 9.15 Define f(O,O) = 0, and put 

4 6 2 
2 2 2 X Y f (X' y) = X + y - 2x y - ( 4 2 )2 

X +y 

if (x, y) =I= (0, 0). 
(a) Prove, for all (x, y) E R2 , that 

4x4y2 :::; (x4 + y2)2. 

Conclude that f is continuous. 

(b) For 0 :::; () :::; 2n, -oo < t < oo, define 

ge(t) = f(tcosfJ,tsinfJ). 

Show that ge(O) = 0, g~(O) = 0, g~(O) = 2. Each ge has therefore a strict local 
minimum at t = 0. 

In other words, the restriction of f to each line through (0, 0) has a strict 
local minimum at (0, 0). 

(c) Show that (0, 0) is nevertheless not a local minimum for f, since f(x, x2 ) = 
-x4. 

Solution. (a) This inequality follows by squaring the inequality 2x2 1yl:::; x4 +y2 , 

which in turn is equivalent to the inequality (x2 -lyl) 2 2: 0. Then, since f(x, y) 
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is obviously continuous except at (0, 0), the continuity at the remaining point 
follows frem the inequality 

which is easily derived from the inequality just proved and the definition of 
f(x, y). 

(b) We observe that for t =f. 0 we have 

6 e . 2 e 2 3 2 • 4 cos sm 
ge(t) = t - 2t cos e sm e- 4t ( 2 4 . 2 )2' 

t cos e + sm e 
from which it is routine computation to show that ge(O) = 0 = g~(O) and 
g~(O) = 2. 
(c) The assertion that f(x, x2 ) = -x4 is routine computation. It implies that 
f(x, y) assumes negative values in any neighborhood of (0, 0), and hence that 
the f(x, y) does not have a local minimum at (0, 0). 

Exercise 9.16 Show that the continuity off' at the point a is needed in the 
inverse function theorem, even in the case n = 1: If 

f ( t) = t + 2t2 sin ( ~) 

fort =f. 0, and f(O) = 0, then f'(O) = 1, f' is bounded in ( -1, 1) but f is not 
one-to-one in any neighborhood of 0. 

Solution. The assertion that f'(O) = 1 is proved by direct computation: f(t) = 
t 

1 + 2t sin ( ~) _... 1 as t _... 0. Since f' (t) = 1 + 4t sin ( ~) - 2 cos ( ~) fort"/= 0, 

it follows that If' ( t) I ::; 7 for all t E ( -1, 1). To show that f is not one-to-one 
in any neighborhood of 0, we observe that f'(k17r) = 1 + 2(-1)k, so that f(t) is 
decreasing at t = k11r if k is odd and increasing if k is even. It follows that the 
minimum value of f(t) on the interval [(2k~l)1r' 2~1rJ is assumed at an interior 
point, so that f(t) cannot be one-to-one on this interval. 

Exercise 9.17 Let f = (h, h) be the mapping of R 2 into R 2 given by 

fr(x,y) =ex cosy, h(x,y) = exsiny. 

(a) What is the range of f? 
(b) Show that the Jacobian of f is not zero at any point of R 2 . Thus every 
point of R2 has a neighborhood in which f is one-to-one. Nevertheless, f is not 
one-to-one· on R 2 . 

(c) Put a= (0, 1r /3), b = f(a), let g be the continuous inverse off, defined in a 
neighborhood of b, such that g(b) = a. Find an explicit formula for g, compute 
f'(a) and g'(b), and verify the formula (52). 
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(d) What are the images under f of lines parallel to the coordinate axes? 

Solution. (a) The range off is all of R 2 except the point (0,0). Indeed if 
( u, v) # (0, 0), choose y so that 

u . v 
cosy= ...ju2 + v2' smy = ...j 2 2' u +v 

and let x = In ...ju2 + v2, so that ex = ...)u2 + v2. It is then obvious from the 
equations defining y and x that u = ex cosy and v = ex sin y. Hence every point 
except (0, 0) is in the range of f. The point (0, 0) is not in the range, since 
u2 + v 2 = e2x > 0 for ariy point (u, v) = f(x, y). 

(b) The Jacobian of f(x, y) is e2x, which is never zero. However, since f(x, y+ 
27r) = f(x, y), it follows that f is not one-to-one. 

(c) By our definition b = ( ~, :if). We can therefore take y = arctan ( ~) 
for (u, v) near b, the arctangent being between -~ and ~· Thus we have 

g(u, v) = ( ln ...Ju2 + v2, arctan ( ~). We then have 

f'( ) (ex cosy -ex sin Y) '( ) ( u2~v2 
x, y = ex sin y ex cosy ' g u, v = u2-:;_vv2 

u2~v2) u . 
u2+v2 

When we take u = ex cosy and v = ex sin y, we find that 

'(f( · )) _ ( e-x cosy e-x siny) 
g x, y - -e-x sin y e-x cosy · 

It is then a routine computation to verify that g'(f(x, y))f'(x, y) = ( ~ ~). 
Likewise we find 

f'(g(u, v)) = ( ~ ~v) , 

and a routine computation shows that f' (g( u, v) )g' ( u, v) = ( ~ ~) . 
(d) The family of lines x = c maps to the family of concentric circles u2 + v2 = 
e2c. The lines y = c map to half-lines v = Ku, u ~ 0, where K =tan y. (If y is 
an odd multiple of~' the half-line is either the positive or negative u-axis. 

Exercise 9.18 Answer analogous questions for the mapping defined by 

u = x2 - y2 , v = 2xy. 

Solution. (a) the range of the mapping f(x, y) = (x2 - y2 , 2xy) is the entire 
plane R2. Indeed, every point ( u, v) except ( 0, 0) has two distinct preimages, 
one of which is 

X= 
...Ju2 + v2 + u 

2 
j../u2 +v2 - u y = (sgnv) 2 . 
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(The other preimage is -x, -y, with this x and this y.) 

(b) The Jacobian off vanishes onlv at x = 1J = 0. Indeed, 
\ / .... 'V • 

Hence the Jacobian is 4(x2 + y2). 

(c) Taking a= (3,4), so that h= (-7,24), we can take, locally 

g(u,v) = ( 
v'u2 + v2 + u ./ v'u2 + v2 - u). 

2 'y 2 

We then have 

( 1/ 2 (1 + u ) 
'( ) 4 ~+u ~ g u,v =· 

1 2 -1+ u 
4 J vfu2+V2 -u ( vfu2+v2) 

iJ ~+u (v~)'+vz)) 
tJ ~-u CruhV2) 

Noting that the defining relations imply u 2 + v2 = (x 2 + y2 ) 2 , we see that 

from which we see easily that g' ( f ( x, y)) f' ( x, y) = ( ~ ~ ) . The corresponding 

equality with g and f interchanged is likewise simple, though more cumbersome 
to write out. 

Exercise 9.19 Show that the system of equations 

3x + y - z + u 2 - 0 

x -y+2z+u - 0 

2x + 2y - 3z + 2u 0 

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms 
of x; but not for x, y, z in terms of u. 

Solution. Adding the last two equations and subtracting the first yields 3u-u2 = 
0, whence either u = 0 or u = 3. Hence unless u has one of these two values, 
there are no solutions at all. Therefore the system cannot generally be solved 
for x, y, z in terms of u. If one of these two equations holds, we can solve just 
the last two equations for any two of the variables x, y, z in terms of the third. 
The remaining equation will then automatically be satisfied. For example, 

z 7z 
X= -4, y = 4' U = 0; 

9 + z 3 + 7z 
X=---, y= u=3. 

4 4 
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We could also have 

y 4y 
X= --, Z = -, U = 0; 

7 7 

60 + 4y 4y- 3 
X = 7 , Z = 7 , U = 3. 

Finally, we could also have 

y = -7x, z = -4x, u = 0; 
7x- 60. 

y = 4 , z = 9 - 4x, u = 3. 

Note that the matrix of the derivative of the transformation f(x, y, z, u) = 
(3x + y- z + u2 , x- y + 2z + u, 2x + 2y- 3z + 2u) is 

· (3 1 -1 2u) 
f' (X, y, Z, U) = 1 -1 2 1 

2 2 -3 2 

and any 3 x 3 submatrix containing the last column is invertible when u = 0 
or u = 3. However, the first three columns of this matrix does not form an 
invertible mat:r;ix. 

Exercise 9.20 Taken= m = 1 in the implicit function theorem, and interpret 
the theorem (as well as its proof) graphically. 

Solution. The theorem asserts that if f(x, y) is continuously differentiable in a 
neighborhood of (xo, Yo), f(xo, Yo) = 0, and D2J(xo, Yo) # 0, then there exist 
1) an interval I = (xo- 8, xo + 8), 2) an interval J = (Yo -1], Yo+ rJ), and 3) 
a continuously differentiable function r.p : I ~ J such that for all ( x, y) E I x J 
the equation f ( x, y) = 0 holds if and only if y = r.p( x). 

The proof amounts to the argument that, since D2J(xo, Yo) # 0 and f is 
continuously differentiable, it must be that D2f(x, y) # 0 for all (x, y) near 
(xo, Yo). Hence the function g(y) = f(xo, y) is strictly monotonic near y = y0 . 

Therefore, since g(yo) = 0, there is a small interval [y0 - 1], y0 + 77) such that 
g(yo -1]) and g(yo + rJ) have opposite signs. By the continuity of f(x,y), it 
follows that f(x, Yo -17) has the same sign as f(xo, Yo -17) if x is near x0 , and 
similarly f(x, Yo + 77) has the same sign as f(xo, Yo+ rJ) for x near xo. That 
is, f(x, Yo - 17) and f(x, yo+ 17) have opposite signs if x is near xo. It follows 
that there is a point r.p(x) E (yo - 1], Yo+ 17) such that f(x, cp(x)) = 0. By 
restricting the neighborhood so that D2 f(x, y) is of constant sign, we assure 
that 9x(Y) = f(x, y) is monotonic on [Yo -77, Yo+ 17] for each x near xo. It then · 
follows that there can be at most one value of y in (Yo - 1J, Yo + 1J) satisfying the 
equation f(x, y) = 0. That is, the function r.p(x) is unique. This proves all but 
the differentiability of r.p. 

The gTaphical interpretation is that, near a point on a smooth curve f(x, y) = 
0 where the tangent is not vertical (D2f(xo, Yo)# 0) the curve intersects each 
vertical line exactly once. 
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Exercise 9.21 Define fin R2 by 

(a) Find the four points in R2 at which the gradient of f is zero. Show that f 
has exactly one local maximum and one local minimum in R 2 . 

(b) Let X be the set of all (x, y) E R2 at which f(x, y) = 0. Find those points of 
S that have no neighborhoods in which the equation f(x, y) = 0 can be solved 
for yin terms of x (or for x in terms of y). Describe S as precisely as you can. 

Solution. (a) We have \lf(x,y) = 6(x2 -x)i+6(y2 +y)j. Hence \lf(x,y) = 0 
precisely at the four points (0, 0), (1, 0), (0, -1), (1, -1). Since the Hessian 
matrix of f is 

( 12x- 2 0 ) 
0 12y + 2 

this matrix has a positive determinant when x > ~ and y > (/ or when x < i 
andy< f,1 . Thus (1, 0) and (0, -1) are possible extrema. Since 12x- 2 > 0 at 
(1, 0), that point is a minimum. Likewise (0, -1) is a maximum. 

(b) Since f(x, y) = (x+y)[2x2 -2xy+2y2 -3x+3y], the equation f(x, y) = 0 has 
the real solution y = -x for every real value of x. In addition, if -~ :::; x :::; ~' 
it has the real solutions 

2x- 3 + v/9 +12x- 12x2 
y= 

4 

2x - 3 - v/9 + 12x - 12x2 
y= 

4 

According to the implicit function theorem, the only possible points near which 
there miglit not be a unique solution are for y in terms of x are those where 
y = 0 or y = -1. The corresponding values of x are x = 0 and x = ~ for y = 0 
and x = 1 and x = - ~ for y = -1. 

2x - 3 + v/9 + 12x - 12x2 
We observe that both solutions y = -x andy=----------

4 
tend to 0 as _x --r 0. Hence there is no unique solution for y near (0, 0). As 
x T ~, the quantity under the radical sign tends to zero, and hence these two 
solutions converge toward the common value y = 0. Hence the point (~,0), is 
another point around which the solution for y is not unique. The two radicals 
also tend to zero as x 1 -~, causing the two values of y both to tend toward 
-1, so that (- ~' -1) is not a point of unique solvability. Finally, as x --r 1, 
the three y values tend toward -1, ~' and -1. Since two of these values are 
identical, there is no unique solution around the point (1, -1). 

Finally, the three x-values corresponding to any y are 

- 2y + 3 ± )9 - 12y- 12y2 
X= -y, X= 4 , 

where the quantity under the radical is nonnegative in the range - ~ :::; y :::; ~. 
The values where D1J(x, y) = 0 are x = 0 and x = 1, and the four points 
near which a solution for x might not be unique are (0, 0), (0, -~), (1, -1), and 
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(1, ~).As y tends to zero, two of these tend to zero. Hence (0,0) is not a point 
of unique solvability for x in terms of y. As y tends to -1, two of the x-values 
tend to 1, so that (1, -1) is not a point of unique solvability for x. Finally, as y 
tends to - ~ or ~, the radical disappears, and so once again two of the x values 
tend to the same value, namely 1 as y ~ ~ and 0 as y ~ -~. Thus these four 
points are not points of unique solvability for x. 

In sum, the points near which the equation f(x, y) = 0 does not define either 
y as a function of x or x as a function of yare (0, 0) and (1, -1). 

Exercise 9.22 Give a similar discussion for 

Solution. The gradient is 

'V6(x2 + y2 - x)i + 6(2xy + y)j 

As we see from solving the appropriate equations, this gradient vanishes at 
the points (0, 0) and (1, 0). The point (0, 0) is a saddle point, since f(x, 0) 
is negative for x < 0 and f(O, y) is positive for y near zero. The Hessian 
determinant is positive at (1, 0), and the upper left-hand entry is also; hence 
(1, 0) is a minimum. 

Because the equation f(x, y) = 0 can be written as 

(6x + 3)y2 = (3- 2x)x2 , 

there will be real solutions y if and only if-~ < x :::; ~- (When x = -~, the 
equation does not contain y.) In this range there are two distinct values of y 
except for x = 0 and x = ~. Hence the two points on the locus of f ( x, y) = 0 
at which the equation cannot be solved for yare (0, 0) and G, 0). 

Since the equation is cubic in x, its solvability is more complicated from 
this point of view. Every value of y gives at least one value of x (but those x
values always lie between-~ and ~). To find the points where two of the three 
(complex) x-roots coincide, we observe that at such points D1 j(x,y) = 0, and 
hence also 3f(x, y)-xD1f(x, y) = 0. This last equation says x2 -4xy2+3y2 = 0, 

2 
i.e., y2 = 4xx + 3 . Substituting this value of y2 into f(x, y) = 0, we get either 

x = 0 and y = 0 or 
3 

x2 = -. 
4 

Since we have to have-~ < x, we must have x = {/,and this gives y2 = 2V:-s. 
Hence the points near which f(x, y) = 0 cannot be solved uniquely for x are 

(0, 0) and ( 1, ± Y21-3 ). 
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Exercise 9.23 Define fin R3 by 

j(x, Yl, yz) = X 2Yl +ex+ Y2· 

Show that f(O, 1, -1) = 0, (D1J)(O, 1, -1) =f. 0, and that there exists therefore 
a differentiable function g in some neighborhood of (1, -1) in R2 such that 
g(1, -1) = 0 and 

f(g(yl, Yz), Y1, Yz) = 0. 

Find (D1g)(1, -1) and (Dzg)(1, -1). 

Solution. The proof that f(O, 1, -1) = 0 is a routine computation. We have 
(D1 f)(x, Yl, yz) = 2xy1 +ex, so that (D1J)(O, 1, -1) = 1 =/:. 0. To find the partial 
derivatives of g we use the chain rule. Let '1/J(yl, yz) = J(g(yl, yz), Yl, yz) = 0. 
Then 

so that 
0 = ( 2ylg(yl,Y2) + eg(y1 ,y2 ))Dlg(yl,Y2) + (g(yi,Y2)) 2. 

· Similarly, setting 

we find 
0 = ( 2ylg(yl, Y2) + eg(y 1 ,y2 )) D2g(y1, Y2) + 1. 

Taking Yl = 1, Yz = -1, g(y1, Y2) = 0, we get 

D1g(1, -1) = 0, D2g(1, -1) = -1. 

Exercise 9.24 For (x, y) =f. (0, 0), define f = (]I,J2) by 

xy 
h(x, y) = 2 + 2 · 

X y 

Compute the rank of f'(x, y), and find the range of f. 

Solution. The matrix of f'(x, y) is 

Its determinant is 0 at every point. Hence its rank is either 0 or 1 at every 
point. Since the point (0, O) is excluded from the domain, the rank is 1 at every 
point. The range must therefore be 1-dimensional, i.e., there is some non-trivial 
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relation connecting fi and [2. Indeed, it is easy to verify that if u = !I (x, y) 
and v= !2(x,y), then 

Thus the range off is a subset of this ellipse. In fact, it is all of this ellipse. The 
point (1, 0) is its own image, and the point ( -1, 0) is the image of (0, 1). For 
any other point (u, v) on this ellipse we have -1 < u < 1 and v = ±~v'1- u2 . 

The point (u,v) is the image of the point ( 1, ±~ (and, of course, many 

other points as well). 

Exercise 9.25 Suppose A E L(Rn,Rm), let r be the rank of A. 
(a) DefineS as in the proof of Theorem 9.32. Show that SA is a projection in Rn 
whose nullspace isN(A) and whose range is R(S). Hint: By (68), SABA= SA. 
(b) Use (a) to show that 

dimN(A) +dim R(A) = n. 

Solution. We recall that S is defined by first choosing a basis for the range of 
A, say {Yl, ... , y r}, then choosing vectors { z1, ... , Zr} such that Azi = Yi for 
i = 1, 2, ... , r. We then define Syi = Zi on the vectors Yi (and S arbitrary 
on any set of vectors y r+l, ... , y m that can be adjoined to {Yl, ... , y r} so as 
to make a basis of Rm). Thus S is a left inverse of the restriction of A to the 
subspace spanned by z1 , ... , Zr· Since Ax belongs to the range of A, it follows, 
as in (68), that ASAx = Ax, from which we conclude that SASAx = SAx, 
i.e., SA is a projection. Then every vector x has the unique decomposition 
x =SAx+ (x- SAx), where the first vector on the right belongs to the range 
of SA and the second to the nullspace of this projection. The two subspaces 
have only the zero vector in common. Since S is an isomorphism of the range of 
A, the range of SA has the same dimension as the range of A. Since A= ASA, 
the nullspace of SA is the same as the nullspace of A. Thus n = dimN(SA) + 
dim R(SA) = dimN(A) +dim R(A). 

Exercise 9.26 Show that the existence (and even the continuity) of D12! does 
not imply the existence of Dlf. For example, let f(x,y) = g(x), where g is 
nowhere differentiable. 

Solution. The second sentence in the exercise is its solution. Since D2! is 
identically zero, D12f is also identically zero, hence certainly continuous. 

Exercise 9.27 Put f(O, 0) = 0, and 

f( ) = xy(x2 - y2) 
x,y x2 + y2 
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if (x, y) =I= (0, 0). Prove that 
(a) j, Dd, and D2f are continuous in R2; 
(b) D12 f and D21 f exist at every point of R2, and are continuous except at 
(0, 0); 
(c) (D12!)(0,0) = 1, and (D21!)(0,0) = -1. 

Solution. (a) The continuity off is obvious at every point except (0, 0); at 
(0, 0) it follows from the inequality if(x, y) I ~ ~(x2 + y2). It is also clear 
that D1f(O, 0) = 0 = D2f(O, 0). For (x, y) =I= (0, 0) we have D1J(x, y) = 
x4y + 4x2y3 _ y5 xs _ 4x3y2 _ xy4 . . 

( 2 2)2 and D2f(x, y) = ( 2 2)2 . The contmmty of the 
X +y X +y 

partial derivatives at every point except (0, 0) is obvious. It is easy to see that 
these derivatives satisfy the inequalities ID1J(x, y)l ~ 2lyl and ID2j(x, y)i ~ 
2Jxl, so that D1f and D2f are also continuous at (0, 0). 

(b) Since f(x, y) is a rational function with non-zero denominator for (x, y) =I= 

(0, 0), it has continuous partial derivatives of all orders on this set. 

(c) Since D1f(O, y) = -y and D2f(x, 0) = x, it follows that D21f(O, y) = -1 
for ally and D12J(x, 0) = 1 for all x. 

Exercise 9.28 Fort 2:: 0 put 

<p(x, t) = { ~x + 2y't 

and put <p(x, t) = -<p(x, Jtl) if t < 0. 
Show that <p is continuous on R2, and 

(0 ~X~ vft) 
( y'i ~ X :5 2vft) 
(otherwise), 

(D2<p)(x, 0) = 0 

for all x. Define 

f(t) = {
1

1 
<p(x, t) dx. 

Show that j(t) = t if It! < i· Hence 

J'(O) =I= 11

1 
(D2<p)(x, 0) dx. 

Solution. This function is zero in the (closed) left half-plane of the xt-plane and 
on the positive x-axis. Since the functions by which it is defined are continuous, 
we need only verify that they agree on the boundary curves x = y'i and x = 2y't 
in the first quadrant that separate the three different regions of definition. This 
is a routine computation. 

Likewise the computation showing that (D2<p)(x, 0) = 0 is routine, since for 
each x > 0 <p(x, t) = 0 for 0 ~ t ~ ix2, while <p(x, t) = 0 for all t if x ~ 0. 



If 0 < t < t, then 

j(t) - r..fi X dx + 12-.fi -X + 2Vt dt 
lo ..;t 
1 1 . 

- -t- -(4t- t) + 2Vt(2Vt- Vt) 
2 2 
t 3t - 2 - 2 + 4t - 2t = t. 
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Obviously f(O) = 0, and if t < 0, then f(t) = - f( -t) = t. Therefore f' (0) = 1. 
However 1: (D2cp)(x, 0) dx = 0. 

Note: This result is possible only because D2c.p(x, t) is not bounded on [-1, 1] x 
[-a, a] for any a > 0. Also note that having -1 as the lower limit of the integral 
was a needless complication. The problem would have been more effective it 
the lower limit had been 0. 

Exercise 9.29 Let E be an open set in Rn. The classes C'(E) and C"(E) 
are defined in the text. By induction C(k)(E) can be defined as follows for all 
positive integers k: To say that f € C(k)(E) means that the partial derivatives 
D1f, ... , Dnf belong to C(k-l)(E). 

Assume f E C(k)(E), and show (by repeated application of Theorem 9.41) 
that the kth-order derivative 

is unchanged if the subscripts i 1, ... , ik are permuted. 
For instance,· if n ;::: 3, then 

for every f E C(4). 

Solution. If the permutation leaves ik fixed, this follows from the result for k-1 
applied to Dik f. To get the general result, we observe that by the case k = 2 
we have Dik-likf = Dikik-if· Hence the result holds for any permutation 
that maps ik-1 to ik. But any permutation that maps ij to ik (j =I= k, k -
1) can be written as the composition of a permutation that maps ij to ik_1, 

leaving ik fixed, followed by the interchange of ik-1 and ik, followed by a second 
permutation that leaves ik fixed. Therefore the result applies to all permutations 
whatsoever. 
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Exercise 9.30 Let f E cCm)(E), where E is an open subset of Rn. Fix a E E, 
and suppose x E Rn is so close to 0 that the points 

p(t) =a+ tx 

lie in E whenever 0 ~ t ~ 1. Define 

h(t) = f(p(t)) 

for all t E R1 for which p(t) E E. 
(a) For 1 :s; k :s; m, show (by repeated application of the chain rule) that 

The sum extends over all ordered k-tuples ( i 1 , ... , ik) in which each ij is one of 
the integers 1, ... , n. 
(b) By Taylor's theorem (5.15) 

m-1 h(k)(O) h(m)(t) 
h(1) = L k! + m! 

k=O 

for some t E (0, 1). Use this to prove Taylor's theorem inn variables by showing 
that the formula 

m-1 l 
f(a + x) = I: k! L(Di1 ... ikf)(a)Xi1 ••• Xik + r(x) 

k=.O 

represents f(a + x) as the sum of its so-called "Taylor polynomial of degree 
m- 1," plus a remainder that satisfies 

. r(x) 
hm I I 1 = o. x-o X m-

Each of the inner sums extends over all ordered k-tuples (i1 , ... , ik), as in 
part (a); as usual, the zero-order derivative off is simply j, so that the constant 
term of the Taylor polynomial off at a is f(a). 
(c) Exercise 29 shows that repetition occurs in the Taylor polynomial as written 
in part (b). For instance Dn3 occurs three times, as Dn3, D131 , D3ll· The 
sum of the corresponding three terms can be written in the form 

Prove (by calculating how often each derivative occurs) that the Taylor polyno
mial in (b) can be written in the form 
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Here the summation extends over all ordered n-tuples ( 81,: . . , 8n) such that 
each Si is a nonnegative integer, and 81 + · · · + Sn ~ m - 1. 

Solution. (a) This formula is a simple application of the chain rule together 
with the fact that Dp(i) (t) =Xi. The proof proceeds by induction on k. 

(b) The formula is an immediate application of the fact that p(1) = a+ x, so 
that h(1) = f(a + x). The right-hand side is then an immediate application 
of the fact that p(O) = a. The only assertion that requires verification is that 
on the order of the remainder. The one-variable Taylor's theorem gives r(x) = 
~(Di1 , ... ,imf(p(t))xi1 · .. Xim for some t E (0, 1), so that Jr(x)J < KJxJm for 
some constant K. The. assertion as to the order of r follows from this fact. 

(c) If 81 +· · ·+8n ~ m-1, the number of terms having the derivative combination 

( 81 + · · · + 8 ) ( s1 + · · · + 8 ) 1 D~1 • • • D~n f is n = 1 1 n · . Thus the k! that occurs 
81, ... ,8n 8l·"·8n. 

in the one-variable Taylor's theorem is (81 + · · · + 8n)!; and when the terms 
are consolidated, this factor cancels the numerator of the multinomial symbol, 
effectively being replaced by s1! · · · 8n!. 

Exercise 9.31 Suppose f E C(3) in some neighborhood of a point a E R2 , the 
gradient off is 0 at a, but not all second-order derivatives off are 0 at a. Show 
how one can then determine from the Taylor polynomial of f at a (of degree 2) 
whether f has a local maximum or a local minimum, or neither, at the point a. 

Extend this to Rn in place of R 2 . 

Solution. Let us simply do Rn in the first place and save the trouble of doing 
R2 . According to Taylor's theorem 

1 
f(a+x)- f(a) = 2 L(Di1 i 2 /)(a)Xi1 Xi2 +r(x), 

il ,i2 

where JxJ-2r(x) ---+- 0 as x ---+- 0. Note that the Taylor polynomial can be 
concisely written as ~(Ax,x), where A is then x n Hessian matrix whose i,j 
entry is Dijf(a) and the angle brackets denote the inner product. If A is 
positive-definite, i.e., if (Ax, x) > 0 when x :/:- 0, there is a positive constant c 

-such that (Ax, x) 2:: cJxJ 2 . (The constant c is the minimum value of (Ax, x) on 
the unit sphere JxJ = 1.) Hence if 8 > 0 is chosen so that Jr(x)J < cJxJ 2 when 
0 < JxJ < 8, we see that f(a + x) - f(a) > 0 if 0 < JxJ < 8, i.e., a is a local 
minimum of f. Likewise if A is negative-definite, then a is a local maximum of 

f. 
It is well-known from linear algebra that a necessary and sufficient condition 

for positive-definiteness of the matrix A is that the principal minors be positive, 
i.e., the k x k-submatrix consisting of the elements in the first k rows and columns 
of A has a positive determinant. For negative-definiteness the corresponding 
criterion is that this minor have the same sign as (-l)k. 

There are no other resonably regular cases that guarantee a maximum or 
minimum. A nonnegative-definite or nonpositive-definite matrix may well fail 
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to guarantee a ma.Ximum or minimum, even in R 1 . If the quadratic form (Ax, x) 
assumes both signs, then the point a is definitely not either a maximum or a 
minimum. (If (Ax,x) > 0, then f(a+tx)- f(a) > 0 for small values oft, while 
if I Lt...,...,.\/ n t'ha..-. ;r.,. _]__ +...,\ .;r..,.\ __... n +~~ n~nll vnl .. nn ~f + \ 
u\.<.LJ>.l.n../-.....v)~UvUJ\U.I ,_...._)-J\O.)"'V~V~"~llO,U O,!Uv"V L.j 



Chapter 10 

Integration of Differential 
For Ins 

Exercise 10.1 Let H be a compact convex set in Rk with nonempty interior. 
Let f E C(H), put f(x) = 0 in the complement of H and define JH f as in 
Definition 10.3. 

Prove that J H f is independent of the order in which the integrations are 
carried out. 

Hint: Approximate f by functions that are continuous on Rk and whose 
supports are in H, as was done in Example 10.4. 

Solution. We first give the definition of JH J, namely J1 j, where I is any k-cell 
containing H. This definition is unambiguous, since if I and J are both k-cells 
containing H, each of the single integrals carried out is an integral over the same 
line segment for both cells, namely the intersection of the path of integration 
with H. 

There seems to be no way to avoid somehow proving that the boundary 
of H, denoted 8H, has "measure zero." The definition of the integral as an 
iterated integral makes that problem slightly more difficult than it would be 
otherwise, although we can show how to avoid this approach in two dimensions. 
We shall reserve that discussion until after the proof, which is rather lengthy. 
The length of the proof is due to the fact that integrals are really defined only 
over parallelepipeds. The point of the exercise is to enlarge the class of sets 
over which one can integrate. Our challenge is to show that the boundary of 
H can be enclosed in a finite set of parallelepipeds whose total volume can be 
arbitrarily small. 

Our first job is to show that the hypersphere in Rk has measure zero. As 
the proof of that fact involves some work with ( k- 2)-dimensional hyperspheres 
in k-dimensional space, we need to make several definitions in order to express 
these ideas properly. 

First, for each real number z and each positive number r, s~-2 (z) denotes 
the ( k - 2)-dimensional hypersphere in Rk having radius r and center at the 
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point (0, 0, ... , 0, z), that is, 

s:-2(z) = {x: xr + · · · + x%-1 = r 2 , Xk = z}. 

When z = 0, we shall write simply s:-2 and identify this sphere with the 
same (k-2)-dimensional hypersphere in Rk-l. We observe that S~(z) consists of 
the two points (r, z) and ( -r, z) in R2 • Another way of defining the set s~-2 (z) 
is as the intersection of the (k- I)-dimensional sphere of radius r centered at 
(0, 0, ... , 0, z) in Rk with its equatorial hyperplane Pz = { (xr, ... , xk) : Xk = z }. 

Second, for each a E Rk and each o > 0, I! ( o) is the closed hypercube of 
side o in Rk whose "lower left'' corner is a, that is 

I!(o) = {x: aJ ~xi ~ ai + o, j = 1, ... , k}. 

Third, the set of points ( m1, ... , mk) E Rk having integer coordinates will 
be denoted zk. 

Fourth, for all real numbers r and o such that 0 < o < r, c:,c is the set of 
lattice points m E zk for which the closed hypercube of side 8 with lower left 
corner om intersects the hypersphere s~- 1 in Rk. That is, 

c:,o = {m: Iim(o) n s:-r =/= 0}. 

Fifth, N(r, o, k) is the number of points in c:,8(z), that is, the number of 
hypercubes of side o with lower left hand corner at a point om, m E zk, that 
intersect the hypersphere s;-1 . Our main goal in the first stage of the proof 

will be to prove the estimate N ( r, o, k) ~ 6k2 (f) k-l. (A smaller constant than 

12k2 could easily be attained, but we have no need of any improvement, and 
this constant seems to be the one that makes the argument simplest.) 

Sixth, and finally, A~,o is the union of all the hypercubes r;m) ( o) that inter-

sect the hypersphere s~-1 , that is, for which mE c:,8 . This set is a finite union 
of compact sets, hence is compact. Obviously it contains the hypersphere s:-r. 
What is slightly less obvious is that its interior contains this sphere. In fact no 
point of the sphere can be a limit point of points exterior to A~,o, since if { Xn} 
is a sequence of points such that each Xn belongs to a hypercube limn ( o) not 
contained in A~,8 , and Xn _, x, some set r;mno ( o) must occur infinitely often. 
(Any bounded neighborhood of x intersects only finitely many of these hyper
cubes.) Since I%mno ( c5) is closed, this implies that x belongs to Iimno ( c5). Since 

I~m ( o) is not contained in A~ 0 it follows that X t/:. s~- 1 . Thus no sequence 
u no ' 

of points exterior to A~,o can approach a point of s:- 1 . It follows that s~- 1 

contains no points of the boundary of A~ 8 and is therefore contained in the 
interior of this set. ' 

With these definitions out of the way we can proceed to the proof, which 
we break into several stages, each broken into several steps, in order to make 
navigating easier. 

Stage 1. Establish that the sphere s:- 1 in Rk has k-dimensional content 0. 
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Step 1. Establish that A~,o U A;+o contains the closed k-dimensional annulus 

consisting of the region between s:-l and s::l' that is, all the points X E Rk 
such that r :::; /xi ::; r + 8. 

To this end, let x belong to this annulus, so that r ::; /xi ::; r + 8. Since 
sk-1 c Ak ~ for each s, we can assume r < lxl < r + 8. Let m = (mr, ... , mk) s s,u 

be a lattice point in zk such that x E Jtm(8). Let nj = mj if mj ~ 0 and 
nj = mj + 1 if mj < 0, so that (6n1, ... , 6nk) is a corner of Jsm(8). Since 
!nil= min(lmil, lmj + 11) for all j, (6n) is the unique point of Jgm(8) closest to 
the origin. In particular j6nj::; jxj. The lattice point n' = (n1 +c:1(n1), ... ,nk+ 
c:k(nk)), where C:j(t) is 1 if t ~ 0 and -1 if t < 0, is such that 8n' is the corner 
of Iom(6) opposite to 8n and is the unique point of Ksm(8) farthest from the 
origin. In particular j8n'l ~ jxj. 

We claim first that jn'l - jnj 2:: 1. Indeed, we have 

/n'l 2 = ( ni+· · ·+nn +2(nici (n1) +· · ·+nkc:k(nk)+ ( (c1 (ni)) 2 +· · ·+(c-k(nk))2) 

= (ni + .. · + nn + 2(ln1/ +···+Ink/)+ k, 

and 

(In/+ 1) 2 = (ni + · · · + n~) + 2Jni + · · · + n~ + 1, 

so that the desired inequality follows from the two inequalities k > 1 and 
J nr + · · · + n~ ::; jn1 ! + · · · + !nk j. This argument shows in general that, for any 
m E zk, if b and e are the points in Jim ( 8) of minimal and maximal absolute 
value respectively, then lei - !hi 2:: 8. 

From this we deduce a corollary: Let r be any positive real number larger 
than 8. If r S s S r + 8 and m E c:,s, then either m E c;,o or m E c;+o,o. 
In plain words, if Jim (8) meets s:-1 for somes E [r, r + 8), it must meet either 
Sk-1 sk-1 

r or r+8. 

To prove this corollary, we note that the assumption m E c:,s says that 
there exists X E Rk such that X E s:-1 n Jtm(8). Now suppose m belongs to 
neither of the sets c;,o and c;+o,c. Then the set Jim ( 8) contains no points of 
s;-1 . If b is the point of Jtm(8) of smallest norm, it follows that jbj > r. (For 
Jtm(8) contains the point x of norms 2:: r. Since Itm(8) is a connected set, if it 
contained a point of norm less than or equal to r it would also contain a point of 
s;-1.) Similarly, if the set Itm(8) contains no points of s;~_"J, then lei< r + 6. 
But then it follows that jej -/bl < r + 8- r = b, contrary to what has been 
proved. 

Another way of stating what was just proved is that if x E Rk is such that 
r S jxj S r + b, then x E A;,8 U A;+o,o. That is, the union A;,o U A~+o,c contains 
the entire annulus of points x such that r S /xi S r + 6. Step 1 of the proof is 
now complete. 

Step 2. Assuming k > 1, estimate the number of k-dimensional hypercubes 
Jim(8) that intersect various zones on the (k- 1)-sphere s;-1 in Rk. 
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We divide the upper hemisphere, consisting of x such that lxl = r and Xk ?:: 0 
into half-open zones 

Zp = {(xr, ... ,Xk-r,xk): xi+···+ x~ = r, pb :S Xk < (p + l)b}, 

for 0 ~ p ~ [f] - 1. Here [a] denotes the integer part of a, that is, the integer q 
such that q ~a< q+ 1, and we assume 0 < b < r. Between the top zone Z[f]-l 

and the "north pole" (the point (0, 0, ... , r), there is a closed "cap" of height TJ 

for some TJ E [0, 8). The hypercubes Itm(8) (where m~r. = [~] - 1 or mk = [~]) 
intersecting this cap must be handled separately from those intersecting the 
other zones. 

We shall prove t·hat the lattice points m E zk for which m~r. = p and 
Ifm(8) intersects Zp are precisely those whose bottom face Xk = pb intersects 
the half-closed (k- I)-dimensional annulus between s:-2(pb) and Sf-2 (p8) in 
the hyperplane Xk = pb. (This annulus is closed at t and open at s, where 
s = Jr2 - ((p + l)b)2 and t = Jr2 - (pb)2.) 

Indeed, this fact is nearly obvious, as the zone Zp is the union of the (k- 2)
dimensional spheres S~~i_u2 (u) for pb ~ U < (p+ 1)8. If (x1, ... ,Xk-1,u) E 

IZm(b) n Zp and mk = p, then p8 ~ u < (p + 1)8 and xy + · · · + x~_ 1 = 
r 2 -u2 , so that s < jxi+···+x~_ 1 ~ t. Thus the point (x1, ... ,Xk-1,8p) 

belongs to both IZm ( 8) and to the annulus. Conversely, if IZm (b) with mk = p 
intersects the annulus, then this hypercube contains a point (x1 , ... , Xk_ 1,pb) 

with s2 <xi+···+ x~_ 1 ~ t 2 . Setting u = jr2 - (xi+···+ x~_ 1 ), we have 

pb ~ u < (p + 1)8, and therefore (xi, ... ,Xk-l,u) E Zp n IZm(b). 
To estimate the total number of hypercubes IZm (b) that intersect the hyper

sphere s:-l, we need an estimate of the number that intersect each zone Zp. 
If IZm(8) intersects Zp, then m1r. = p or m~r. = p- 1. If It8m 1 , ••• ,t5mk_1 ,8(p-l))(8) 
intersects Zp, the intersection must be in the hyperplane Xk = p8, and hence 
Itomr; ... ,cmk_1,op)(8) also intersects Zp. Hence we can get a (loose, but safe) 

upper bound on the number of hypercubes Ihn. ( 8) that intersect Zp by counting 
those for which mk = p and doubling. (The case of the bottom layer Zo is 
special, and the ~'northern cap" mentioned above will be handled separately.) 

The fact that a hypercube Ifm ( 8) intersecting Zp must intersect the annulus 
shows that we need only estimate of the width of the annulus, that is, the 
number t- s = Jr2 - (p8)2 - Jr2- ((p + 1)8)2. For that width we have the 
following simple result: 

jr2- (p8)2- Jr2- ((p + 1)8)2::; (2p + 1)82 . 
. jr2- (pb)2 

The proof of this inequality is straightforward: 

Jr2 - (pb) 2 - Jr2 - ((p + 1)8)2 = 

< 

(r2 - (p8)2) - ( r 2 - ( (p + 1)8)2) 

Jr2- (p8)2 + Jr2- ((p + 1)8)2 

(2p + 1)82 

Jr2- (p8)2. 
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Now let j be the largest integer not larger than J (Jj) 2 - (p + 1)2 and l the 

smallest integer not smaller than J ( z) 2 - p2 . We have just shown that 

It is this inequality that provides the required estimate of the width of the 
annulus corresponding to the zone Zp· 

Step 3. Prove the estimate N:,8 ::::; 6k2 (Z) k- 1 . 

We first do the case k = L This case is very straightforward. If I~m,z) ( 8) n 
s~, then either m8::::; r::::; (m + 1)8 or m8::::; -r::::; (m + 1)8. If r = k8 for some 
integer k, there are four values of m for which one of these two sets of inequalities 
hold, namely -k-1, -k, k-1, and k. Otherwise there are only two such integers 
m, namely [rg] and [8r]. Thus we actually have N~8 ::::; 4 < 61 (Jj) 0 . 

We now proceed by induction, supposing the theorem proved for dimensions 
less than k, and we assume k 2: 2. We consider all the lattice points m E Rk 
such that mk = p and IZm ( 8) intersects Zp. From what we have shown above 
in Step 1 and Step 2, if m has this property, then the bottom face of Ifm ( 8) 
intersects one of the spheres s;-5 2 (p8), where sis an integer such that j ::;; s ::;; l. 
The number of such m is at most N;8-l and hence is at most 6(k-I) 2 sk-2 , which 
is certainly no larger than ' 

Because of our estimate of l - j, we see that the total number of m for which 
mk = p and IZm ( 8) intersects Zp is at most 

where we have used the inequality (1 + t)q ::;; 2q + (2t)q with q = k- 2. We 
expand this last product into a sum of six terms: 

We need to estimate the sum of each of these terms over p from 0 to [rg] - 1. 
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For h (p) we have the simple estimate 

[f]-1 

L: h(p) = 2k-l[iJ ~ 2k-l(i) < 2k-l(i)k-1, 
p=O 

since k > 1 and r > b. 
For fz (p) we have 

Here we have used the fact that 0 < 1- (rf) 2 :::; 1 for the values of p in the 
range of summation, as we shall do twice more below. 

For Is (p) we have 

[f]-1 

2:: fs(p) 
p=O . 

Since J4(p) :::; 1h(p) for p = 1, 2, ... , [i] - 1, it is clear that 

m-1 
L I4(P) < 2k-2 + 2k-2(i)k-l < 2k-l(i)k-l. 
p=O 

For J5(p) we have 

[f]-1 (~]-1 k-3 

L I5(P) = 2k-l (~)k-3 L P( 1- P:) -2 

p=O p=O 

< 2k-2(i)k-3(i)2 = 2k-2(i)k-l. 
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For !5(p) we have 

Adding all these estimates, we find a sum that is at most 

6(k-1)2 (2k-l +2k-l +2k.-1 +2k-2 +2k-2 +2k-2) ( i) k-1 5 6(k-1)2 +12k-1 ( i )'k-1. 

If we wish to count the total. number of hypercubes Jfm ( 8) that intersect the 
zones Z1 , .•• , Z[~J- 1 , we recall our previous observation that such a hypercube 
can intersect Zp only if mk = p or mk = p- 1, and if a hypercube Ifm(8) with 
mk = p-1 intersects Zp, then so does the hypercube Ik(m+ek)(8), and the latter 
has already been counted. Hence in estimating the total number of hypercubes 
that intersect one of these zones we are more than safe in simply doubling the 
estimate we have already obtained. 

As for the zone zo·, any hypercube Ifm ( 8) with mk = -1 that intersects 
its bottom edge (the hypersphere s:-2 ) also meets the reflection of Zo through 
the plane Xk = 0, and hence the reflection of that hypercube has already been 

·counted among those that meet Zo. When we double our count to include 
the hypercubes meeting the "southern" hemisphere, all these hypercubes will 
automatically be counted. Thus it remains only to estimate the hypercubes that 
meet the "northern arctic zone," then double the count. 

Hence we now consider the cap at the top of the hemisphere, whose boundary 
is the (k- 2)-dimensional hypersphere 

where 

If m is such that Igm (8) meets this set, then we must have [~] - 1 :$ mk 5 [~], 
so that there are only two possible values for mk. As for mj, j < k, we certainly 

(
8 )k-1 

have - i -1 5 mj 5 i, so that there are at most 2k '8 + 1 such hypercubes 

not already counted. 
Since [i] 5 ~ < [~] + 1, we easily find that 

s52M, 

so that i + 1 5 2.jf + 1. Once more using the inequality (l+t)q :$ 2q(l +tq) for 
positive t, with q = k ·- 1, we find that the number of hypercubes meeting the 

k-l . 
northern polar cap is at most 22k-1 (1 + (~)-2-), which is less than 22k(~)k-l 
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Adding the numbers up and then doubling to count the hypercubes that meet 
the southern hemisphere, we find that the hypersphere s:-l meets at most 

[6(k-1) 2 +12k + 22k+l) (~)k-1. 

The constant coefficient here is less than 6k2
• This is directly computable for 

k = 2 and k = 3. Indeed, the quantity 22k+l is less than 6k, while 2k. < 6~. 
The extremely weak inequality a+ b < ab, which is valid for positive integers a 
and b both larger than 1, then implies that fork~ 4 the coefficient is at most 

6(k-1)2 +l.+(k/2)+k = 6k 2 -kf2+2 :::; 6k2 • 

Stage 1 in the proof is now complete. We have shown that the (k -1)-sphere 

s~- 1 intersects at most 6k2 (J)k-l hypercubes from the family Iim(8). As the 
volume of each hypercube is 8k, it follows that the (k- 1)-sphere is contained 
in a finite union of cubes of total k-dimensional volume 6k2 rk- 18. Since 8 is an 
arbitrary positive number, the k-dimensional volume of s:-l is zero. 

We now move on to the second stage of the proof. 

Stage 2. Given any convex set H in Rk with non-empty interior, construct a 
homeomorphism T of Rk onto itself that maps sk-1 = s~- 1 to 8H, the inside 
of the unit ball to the interior of H, and the outside to the exterior of H, and 
satisfies a Lipschitz condition on a neighborhood of sk-1. To get this result we 
need some more backgTound work on general convex sets in Rk. 

Let C be a bounded convex set in Rk, and let z be an interior point of C. 
For each point X on the unit sphere sk-I in Rk' let '1/J(x) be the distance from 
z to the complement of C in the direction of x, that is, 

'1/J(x) = inf{t > 0: z + tx rf. C} = sup{t > 0: z + tx E C}. 

Step 1. Prove that the function '1/J: sk-l -+ (0, +oo) is continuous, in fact, that 
it satisfies a Lipschitz condition: for some constant K, 1'1/J(x) -'1/J(y)i :::; Klx-yj. 

There exist positive numbers a and b such that a :::; '1/J(x) :::; b for all x E sk-I. 

Indeed we can let a be the radius of the largest open ball about z that is 
contained in C and b the radius of the smallest closed ball about z containing 
c. 

The result now follows from a lemma. 

Let 0 :::; s :::; 'lj;(x). Then C contains the open ball of radius ( 1 - 7/J;x)) a about 

z+sx. 

Proof: If s = '1/J(x), this ball is empty, and if s = 0 the assertion is merely 
the definition of a. Hence assume 0 < s < 7/J(x). Now suppose jy - (z + 

sx)! < ( 1 - 7/J(x) )a. Let t = 1 - 7/J(x), so that 0 < t < 1, and let r = 

1 . ( IY- (z + sx)j s) h 0 L y- (z + sx) 
- mm a - - so t at r > . et w = + rx, 
2 t 't ' t 
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s-& . 
and let u = T=t' We claim that z + w E C and that z + ux E C, so that 

y = t(z + w) + (1- t)(z + ux) E C. 
The first claim will follow if we show that jwJ <a. In fact 

jwj < Jy- (z + sx)l + r (since Jxl = 1), 
t ' 

< jy- (z + sx) I +~(a_ jy- (z + sx) II) 
t 2 t 

jy- (z + sx)j · jy- (z + sx)j 
< t +a- t =a. 

The second claim will- follow if we prove 0 < u < '1/J ( x). In fact u = ( s -
tr). - 1- = (s- tr) · '1/J(x) = (1- tr)'t/J(x) < '1/J(x). Since r :5 2

8t' we have 
1-t s s 
1 

u;?: 2'1/J(x) > 0. 

Finally, the last claim is a routine computation: 

t(z + w) + (1- t)(z + ux) - z + tw + (1- t)ux 

- z + y- (z + sx) + trx + (1- t)ux 
- y + (tr- s + (1- t)u)x 
- y (since (1- t)u = s- tr). 

The lemma is now· proved. 
Taking y = z + sv in this lemma (where Jvl = 1), we see that y E C (and 

hence 1/J( v) ;?: s) if 

Jv- xJ < (~- - 1-)a. 
s '1/J(x) 

Now lett> '1/J(x), JvJ = 1, and Jv-xJ < ('1/J~)- I )a. Choose t' E ('1/J(x), t) 

such that 

Jv - xJ < ( t~ - I) a. 

If '1/J(v) ;?: t, we have a fortiori '1/J(v) > t' and 

Jx- vJ < (.!.- - 1-)a 
t' '1/J(v) ' 

which, as already shown, implies '1/J(x) ;?: t', contradicting the choice oft'. There
fore '1/J(v) < t. 

To summarize, if s < '1/J(x) < t, then s :5 '1/J(v) < t provided 

Jx- vJ <min ( (~- '1/J!x))a, ('1/J!x)- I)a). 

This proves that '1/J is continuous. Specializing to the case where s = '1/J(x) -c: and 

t . '1/J(x) + c:, we see that J't/J(x)- '1/J(v)J :5 c: provided Jx- vJ < '1/J(x)(;(:) + c:)' 
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Again, a fortiori, 

ac 
Jx- vi < b(b +c) =? j'ljl(x) -'ljl(v)J :::; E. 

We now claim that 

aE 
lx- vi :::; 2b2 =? /'ljl(x) -'ljl(v)l :::; E. 

This follows from the previous statement and the continuity of 'ljl (together with 
the fact that a closed ball on the sphere S is the closure of the open ball with 
the same center and radius) if E s; b- a. If E > b- a, the second inequality 
automatically holds because 'ljl(x) and 'ljl(v) differ by at most b- a. Specializing 
to equality in the hypothesis, we deduce the Lipschitz inequality 

2b2 
j'ljl(x)- 'ljl(v) I :::; -lx- vJ. 

a 

We remark that the statement that y belongs to the interior, boundary, and 

( y-z) (y-z) exterior of C is equivalent to Jy- zi < 1P jy _ zl , IY- zi = '1/J Jy _ zj , or 

( y-z) 
Jy- zi > ¢ IY- zl · 

Step 2. Use the function 'ljl(x) to define a homeomorphism of Rk onto itself 
that maps sk-I to aH and is Lipschitz in a neighborhood of sk-I. Such a 
homeomorphism T(x) is defined for all x E Rk as follows. We set T(O) = z and 

T(x) = z + 7PC:, )x 

if x =J 0. Since JT(x) - T(O)J s; MJxJ, where M = sup{¢(y) : 1YI = 1}, 
it is clear that T is continuous at 0. At all other points it is a composition 
of continuous functions, hence continuous. Since 1 i~:~::::: 1 = 1~ 1 , we have the 
continuous inverse function 

T(x)- z 
X = ---:------'--'-------,-

'~j~( (T(x)- z)/JT(x)- zi)' 

That is, for y =J z, 
T-l(y) = y-z 

¢((y- z)/!Y- zl)' 

which is not 0. Thus the mapping is one-to-one and onto. 
The mapping also satisfies a Lipschitz condition on the exterior of each ball 

about 0; that is, on the set E17 = {x: Jxl 2:: 17} for each 17 > 0. To see this we 
observe that for any x and y in this set, 
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Here we have used the fact that 

1 
lxiiYI/IYix- lxiyJ 

1 
- lxiiYI/ (IYI-Ixl)x + lxl(x- Y) J 

< 
1 1 

IYf/IYI-Ixl/ + TYilx- Yl 
2 

IYTIY- xj. 

The statements about the images of the inside of the unit ball, the unit 
sphere, and the outside are now obvious. For example, as remarked above, 

y E 8H if and only if Jy - zl = '1/J ( ~~ = :, ) . But this is equivalent to the 

statement that T-1 (y) = 1y::=:1 , which says precisely that T-1 (y) belongs to 
the unit sphere. 

We have now finished Stage 2 of the proof and are ready for the third and 
final stage. 

Stage 3. For each 8 > 0, approximate a function f(x) that is continuous on H 
by a function fo(x) that is continuous on all of Rk and such that the iterated 
integrals off and fo differ by at most a fixed multiple of 8 no matter what order 
they are taken in. 

To that end, we first let 8 E (0, 1/Vk) be given. According to what was 
proved in Stage 1, the hypersphere sk-I is contained in the interior of the set 
of hypercubes !Jm ( 8) that intersect it, and there are at most 6k2 81-k of these 
hypercubes. In each hypercube Jim ( 8) from this family we choose and keep 
fixed one point Xm belonging to sk-l. The image of these hypercubes under T 
is a compact set containing 8H in its interior, and each of them is contained in 
a hypercube of side at most 2LVk8 centered at T(xm) E 8H, where L is the 
Lipschitz constant for the mapping Ton the set E1-o, so that the total volume 
of these hypercubes is at most 6k2 (2L-./k)k8. Let c > 0 be the distance from H 
to the complement of the union of these hypercubes. 

We define j 0 (x) as a continuous function that equals f(x) for x E H, while 
for x not in the interior of H we set f0(x) =max (0, 1- d(x~H))f(B(x)). Here 
B(x) is the unique point of H closest to x and d(x, H) is the distance from x to H. 
On the boundary of H, where we have apparently given two definitions of fo we 
have d(x, H) = 0, so that the two definitions are consistent. Hence the piecewise
defined function will be continuous if each of the pieces is. The piece defined 
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on His continuous by assumption, so that we need only concern ourselves with 
the second definition. It is well-known that d(x, H) is a continuous function of 
x. It is somewhat less obvious that B(x) is continuous, so that we must prove 
+-l-. .... r + .... ~+
li.J..J.a.u .la.\....L. 

First we show that there is a unique point B(x) in H closest to x. This 
is obvious if x E H, so we assume x f. H. Let c = min{jx - zi : z E H}, 
and suppose z and w are two points of H such that jx- zj = c = jx- wj. 
Then the point w + t(z- w) belongs to H for 0::; t::; 1, and so the quadratic 
function jx- w- t(z- w)j 2 = jx- wj 2 - 2t(x- w) · (z- w)) + t2 jz- wj 2 

has its minimum value con [0, 1] at both endpoints. But this is impossible for 
a non-constant quadni.tic function whose leading coefficient is positive. Hence 
the function is constant, that is, z = w. Now suppose Xn -+ x. We claim 
B(xn) -+ B(x). 

Since His compact, we can pass to a subsequence if necessary and assume 
that B(xn) -+ z for some point z E H. Certainly lxn - B(xn)l -+ jx- zj. But 
Jxn - B(xn) I = d(xn, H) -+ d(x, H), so that jx- zj = d(x, H) = jx- B(x) j. As 
H contains only one point satisfying this equality, we must have z = B(x). Thus 
B(x) is a continuous function, and therefore fs(x) is continuous on all of Rk. 

It is now clear that lf(x)j and l!a(x)i have the same maximum value, say J 1 

and that f and fa differ only on the finite set of hypercubes covering 8H. The 
iterated integrals of the two functions, taken in any order, over this finite set 
of hypercubes differ by at most 6k2 JL(2Vk)k8. Thus the iterated integral off 
differs from the iterated integral of fs by at most this amount, and since all the 
iterated integrals of fs are equal, it follows that any two iterated integrals off 
differ by arbitrarily small amounts, hence are equal. 

The proof is, at long last, complete. 

Because this proof is so long and involved, it may be worthwhile to look at 
an alternative proof that works only for the case k = 2 and does not generalize 
to higher dimensions. To this end, let k = 2. we define two functions m(x) and 
M(x), as follows: The domain of both functions is the projection of H on the 
x-axis, that is, the set TI(H) consisting of x such that there exists y for which 
(x, y) E H. By definition m(x) is the minimal y for which (x, y) E H, and 
M(x) is the maximal y for which (x, y) E H. We claim that these functions are 
continuous on TI(H). Indeed, suppose (xCn), y(n)) E Hand xCn) -+ x. Without 
loss of generality we can assume that xCn) > x for all x. (By passing to a 
subsequence if necessary, we can have either x(n) < x for all n or xCn) > x or 
xCn) = x for all n. The last case is trivial, and the other two cases are handled 
by identical arguments.) Some subsequence of M(xCn)) converges to a value 
z. Since (x(n), M(xCn))) E H, and His closed, it follows that (x, z) belongs to 
H. It is clear then that the assumption z > M(x) contradicts the definition of 
M(x) as the maximal number y for which (x, y) E H. Hence it suffices to prove 
that z ~ M(x). This will certainly be the case if M(x(n) ~ M(x) for all n. 
Hence assume that n 0 is an index for which M(x<no)) < M(x). Now x<no) > x, 
since if the two were equal, M(xCno)) would equal M(x). We observe that if 
t E [0, 1], then the point (txCno) + (1 - t)x, tM(xCno)) + (1 - t)M(x)) belongs 
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to H. In particular, taking t = ;~n;)-_~, we find that tx<no) + (1 - t)x = x(n). 
( ) (n) ( ) (no) (n) 

It therefore follows that M(x n ) ~ x~no)-_xxM(x no + x x<noJ~x M(x)- M(x). 
Therefore z ~ M(x). 

(It is this part of the argument that does not generalize to R3 , as shown by 
the the convex set 

H = { ( 1 - t, ty, tz) : 0 5: t ::5 1, -1 ::5 y 5: 1, y2 ::5 z ::5 1}. 

On this set, if we define M(y, z) = sup{x: (x, y, z) E H}, we have M(s, s2 ) = 0 
for s =f. 0, but M(O, 0) = 1.) 

It now follows that· M(x) ,is continuous on H, and the proof that m(x) is 
continuous is similar. 

Now let H be a convex closed set in R2 containing an interior point. For each 
8 > 0, we let Hs .be the 8-neighborhood of H, that is, the set of points whose 
distance from H is at most 8. It is clear that Hs is a convex set containing H 
in its interior. Iff is a continuous function on H, we extend f to a function fo 
defined on all of R2 , as above. 

By our definition 

J 1b1M(x) 
f(x, y) dydx = f(x, y) dydx, 

a m(x) 
H 

where [a, b] is the projection of H on the x-axis and for each x E [a, b] 

m(x) = min{t: (x, t) E H} 

and 
M(x, y) = max{t: (x, t) E H}. 

We intend to show that the when these integrals are evaluated, the resulting 
value is the limit of the same integrals evaluated for fo, and of course the same 
for the integrals in reverse order. Hence these two iterated integrals are equal. 

To that end, let A be the maximal value of lf(x, y)j, which is also the maxi
mal value of lfs(x, y)j. As we have set f(x, y) = 0 on the complement of H, the 
two functions f(x, y) and fs(x, y) differ only on the set Hs \ H, and by no more 
than A at any point. 

Let P0 = [a- >.(8), b + J.L(8)] be the projection of H8 on the x-axis. We claim 
that >.(8) and J.L(8) both tend to zero as 8 tends to zero. For certainly >.(8) 
decreases as 8 decreases. Let its limit be c. There is a point (a- .A( 8), Yo) E Hs 
for each 8 > 0. If y is a limit point of Yo as 8-0, then, since (a- .A(1J),y11 ) E 
H71 C Hs for 1J < 8 and Hs is closed, it follows that (a- c, y) E Hs for all 6 > 0, 
and therefore, since n Hs = H, that (a- c, y) E H. By definition of a, it then 

. c5>0 
follows that a 5: a- c 5: a, and so c = 0. The proof that J..L ----+ 0 is similar. 

Let m0(x) and M0(x) be the functions corresponding to m(x) and M(x) for 
H0. For x E [a,b) we have m0(x) < m(x) 5: M(x) < M0(x). An argument 
similar to the one just given shows that m(x)- m0(x) and M0(x)- M(x) tend 
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monotonically to zero for each x E [a, b]. Since these are continuous functions, 
this convergence is uniform. let tp(8) = max {m(x)- ms(x),Ms(x)- M(x)}, 

xE[a,b] 

so that tp(8) ~ 0 as 8 ~ 0. 
Now the double integrals that we wish to evaluate are 

1b1M(x) 
f(x, y) dydx 

a m(x) 

and 1b+J.L(8) 1M.s(x) 
fs(x, y) dy dx. 

a->.(8) m.s(x) 

Now fix a number N larger than twice the absolute value of any coordinate 
of any point in H 1 , and assume 8 < min(l, N). We observe that the difference 
between the two integrals is · 

la 1N lb 1m(x) . fs(x, y) dy dx + fs(x, y) dydx 
a->.(8) -N a m.s(x) 

1b 1M.s(x) 1b+J.L(8) 1N 
+ fs(x,y)dydx+ fs(x,y)dydx. 

a M(x) b -N 

This expression is assuredly not larger than 

2AN (A( 8) + tp( 8) + J.L( 8)), 

and hence it tends to zero as 8 ~ 0. The same is true of the integral in the 
reverse order, and for the same reasons. Since the integral of fs is the same in 
either order, it follows that the integral off is also the same in either order. 

Exercise 10.2 For i = 1, 2, 3, ... , let 'Pi E C(R1 ) have support in (2-i, 21-i), 
such that] 'Pi= 1. Put 

00 

f(x,y) = L ['Pi(x)- 'Pi+l(x)]'Pi(y). 
i=l 

The f has compact support in R 2 , f is continuous except at (0, 0), and 

j dy .lf(x, y) dx = 0 but j dx j f(x, y) dy = 1. 

Observe that f is unbounded in every neighborhood of (0, 0). 

Solution: The computation is straightforward: 

J f(x, y) dx = f 'Pi(y)[1- 1] = 0; 
i=l 
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00 j f(x, y) dy = L ['Pi(x)- 'Pi+l (x)] = 'Pl (x). 
i=l 

To justify the first of these, we observe that the sum is finite for each fixed y, 
since 'Pi(Y) = 0 for i > -log2 (y) if y > 0. Likewise the second sum is finite 
for each fixed x. The result now follows. The function must be unbounded, 
since the integral of 'Pi must be 1, even though the support of that function has 
length 2-i. 

Exercise 10.3 (a) IfF is as in Theorem 10.7, put A - F'(O), F 1(x) -
A-1F(x). Then F~(O) =I. Show that 

F1(x) = Gn o Gn-1 o · · · o G1(x) 

in some neighborhood of 0, for certain primitive mappings G1, ... , Gn. This 
gives another version of Theorem 10.7: 

F(x) = F'(O)Gn o Gn-1 o · · · o G1(x). 

(b) Prove that the mapping (x, y) --+ (y, x) of R2 onto R2 is not the composition 
of any two primitive mappings, in any neighborhood of the origin. (This shows 
that the flips B1 cannot be omitted from the statement of Theorem 10.7.) 

Solution: (a) According to the proof of Theorem 10.7, the flips are needed only 
to interchange m and k, where k is the first index not less than m for which 
Dmak(O) =/= 0. Here 

n 

F~(O)em = L (Dmai)(O)ei. 
i=m 

But in that proof F 1 = F, and since in the present case F'(O) is the identity, 
B1 is the identity. But then the definition of G1 (x) as 

G1(x) = x + [o:1(x)- x1]e1 

implies that G~ (0) is also the identity. Suppose we know that Bj, F~(O), and 
Gj(O) are all equal to the identity for j ~ m. Then the inductive definition of 
Fm+l as Fm+l(Y) = Fm o G;1(y) implies that F~+1 (0) is also the identity, 
from which it then follows that F~+l (0), Bm+l' and G~+l (0) are all equal to 
the identity. Thus the ·decomposition of F 1 involves no flips, as asserted. 

(b) If this map were· a composition of two primitive maps, its derivative at (0, 0) 
would be the product of two matrices of the form 

Since this matrix must be ( ~ ~), it follows that c = 1, d = 0. But then the 

second column of the product of the two matrices is zero, which is a contradic
tion. 
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Exercise 10.4 For (x,y) E R2 , define 

Prove that F = G2 o G 1 , where 

G1(x,y) - (ex cosy~ 1,y) 

G 2 ( x, y) - ( u, ( 1 + u) tan v) 

are primitive in some neighborhood of (0, 0). 
Compute the Jacobians of G 1 , G2, and F at (0, 0). Define 

and find 
Hi(u, v) = (h(u, v), v) 

so that F = H 1 o H2 in some neighborhood of (0, 0). 

Solution: The equation F = G2 o G 1 is a routine computation, and the fact 
that G 1 and G2 are primitive is immediate. 

The J aco bians of G 1 and G2 are 

G' ( ) = ( ex cosy -ex sin y) 
1 x, y 0 1 ' G~ ( u, v) = ( t 1 ( 0) 2 ) ' anv 1+u sec v 

so that each of them equals the identity at (0, 0). It therefore follows that 
F' (0, 0) = I also. 

If we take h( u, v) = ( .J e2u - v2 - 1, v), the primitive mapping H 1 ( u, v) = 
(h(u, v), v) will yield H 1 o H2 =F. 

Exercise 10.5 Formulate and prove an analogue of Theorem 10.8, in which 
K is a compact subset of an arbitrary metric space. (Replace the functions 'Pi 
that occur in the proof of Theorem 10.8 by functions of the type constructed in 
Exercise 22 of Chap. 4.) 

Solution: We are given a compact set K in a metric space X (say with metric 
d) and a cover of K by open sets Vi, i = 1, 2, ... , n. (We may as well assume a 
finite number of sets, since we can find a finite subcover of any infinite cover.) 

We need to construct continuous functions '1/Ji, i = 1, 2, ... , n such that 
0 :::; '1/Ji ( x) :::; 1 for all i and all x E X, the support of '1/Ji ( x) is contained in Vi, 

n 

and :L '1/Ji(x) = 1 for all x E K. 
i=l 

To do this, let 1J > 0 be a Lebesgue number for the covering of K by the 
sets Vi, that is such that the ry-neighborhood of every point x E K is contained 
in some Vi. Let e E (O,ry), and let Ui be the set of points whose distance from 
the complement of Vi is larger than e and Wi the set of points whose distance 
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from the complement of Vi is larger than ~· Since the distance from x to the 
complement of Vi is a continuous function of x, it follows that ui and wi are 
open sets. It is obvious that the closure of ui is contained in wi and the closure 

n 
of wi is contained in Vi. We note that K c u Ui. For if X E K there exists 

i=l 
Vi such that the ry-neighborhood of xis contained in Vi, and hence the distance 
from x to the complement of that Vi is at least 77· 

Now let Ai be the closure of Ui, and Bi the complement of Wi. Define 

Then 'Pi(x) is 1 on Ai (and hence certainly on Ui) and 0 on Bi, 'Pi(x) is contin
uous, and 0:::; cpi(x) < 1 for all x. Since the support of 'Pi(x) is the closure of 

n 
wi, it is contained in Vi. Since 'Pi(x) > 0 for X in wi, the sum cp(x) = L 'Pi(x) 

i=l 
n 

is positive on the open set W = U Wi, which contains K. Now let L be the 
i=l 

complement of W, and define a continuous function '1/J(x) by 

d(x,L) 
'1/J(x) = d(x, K) + d(x, L)' 

so that 0:::; 'ljJ(x) :::; 1 for all x, '1/J(x) = 1 if x E K, and '1/J(x) = 0 if x E L. If we 
now define '1/Ji ( x) = 0 for x rf. W and 

·'··( ) = 'Pi(x)'ljJ(x) 
'1-'t X cp( X) , 

then '1/Ji ( x) is continuous on the entire space. Its restriction to L is continuous. 
If we can show that its restriction to the closure of W is continuous, we shall be 
done. But it is obvious that it is continuous on W itself, and so we need only 
show that it is continuous at a point of aw. Hence let Xn ~ X E aw. Since 
'Pi(x)/cp(x) is bounded, and '1/J(xn) ~ 0, it follows that '1/Ji(xn) ~ 0 = '1/Ji(x), 
and hence '1/Ji is continuous at x. 

The construction is now complete. 

Exercise 10.6 Strengthen the conclusion of Theorem 10.8 by showing that the 
functions '1/Ji can be made differentiable, and even infinitely differentiable. (Use 
Exercise 1 of Chap. 8 in the construction of the auxiliary functions 'Pi·) 

Solution: The function 'Pi(x) is required to have only three properties: 1) 
'Pi(x) = 1 for jx- ail ::; ri; 2) 'Pi(x) = 0 for lx- ail~ si; 3) 0 =::; 'Pi(x) ::; 1 for 
all x. These properties can be achieved with an infinitely differentiable function 
cpi(x). To construct such a function, we go to the function f(t) in Exercise 1 of 
Chapter 8, namely 

1 
j(t) = e-t2 
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for t f. 0 and f(O) = 0 = j(n) (0) for all positive integers n, f(n) (t) being the 
nth derivative of f(t). It was established in that exercise that f(t) is infinitely 
differentiable, and it is obvious that f(t) is strictly increasing for nonnegative 
values oft. 

Let 
(t)- J(f(l)- f(t)) 

g - !(!(1)) ' . 

Then it is obvious that g(t) is an infinitely differentiable function that de
creases from 1 to 0 as x increases from 0 to 1. If we show that gC n) ( 0) = 0 = 
g(n) (1) for all positive integers n, it will follow that the function 

{ 
1, t:::; 0, 

h(t)= g(t), o:::;t:::;l, 
0, 1:::; t 

is also a coo function, and we can then take 

But it is easy to prove these properties by showing inductively that for all 
integers j and k with 0 :::; j S n - k and 1 :::; k :::; n there exist infinitely 
differentiable functions ej,k,n(t) such that 

g(n)(t) = 2:: ej,k,n(t)j(k)(f(1)- f(t))f(n-k-j+l)(t). 
O$.j$.n-k 

1$.k$.n 

In fact the chain rule shows that 

1 
Bo,l,l (t) = - !(!(1)). 

Then, assuming there exist such functions ej,k,n(t), we find 

g<n+l)(t) = 2:: { e;,k,n(t)J<k)(f(1)- J(t))J<n-k-j+l)(t) 
O$.j$.n-k 

1$.k$.n 

+Bj,k,n(t)(- J'(t))j(k+l)(J(1)- f(t))Jn-k-j+l(t) 

+Bj,k,n(t)j(k) (!(1)- j(t))J(n-k-j+2).} 

Each term in this expression contains a factor f(s)(j(l)- f(t))JCn+1-s-r+1)(t) 
with 0 :::; r S n + 1 - s, 1 :::; s :::; n + 1 and with a coefficient that is infinitely 
differentiable. Thus when suitably rearranged, this sum has the appropriate 
form 

O$.j:$.n+l-k 
l$.k:$.n+l 
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with infinitely differentiable functions ej,k,n+l· Since each term contains a factor 
f(k) (!(1)- f(t)) j(l)(t) with k 2: 1, it follows that each term vanishes when t = 0 
or t = 1, and hence that g(n) (1) = 0 = g(n) (0) for n = 1, 2, .... 

Exercise 10.7 (a) Show that the simplex Qk is the smallest convex subset of 
Rk that contains 0, e1, ... , ek. 

(b) Show that affine mappings take convex sets to convex sets. 

Solution: (a) By definition Qk = {x : x 1 + · .. Xk :S 1, Xj 2: 0, j = 1, ... , k }. 
It is obvious that Qk contains all the points 0, e1 , ... , ek. It is nearly obvious 
that Qk is convex. Indeed, if x and y are points of Qk and 0 < t < 1, then 
tx + (1- t)y = z, where Zj = txj + (1- t)Yj· Since Xj 2: 0 and yj > 0 and 
0 < t < 1, it is clear that Zj 2: 0. Simple algebra shows that z1 + · · · + Zk :::; 

t + (1- t) = 1, so that z E Qk also. Thus Qk is convex. 
Now let C be any convex set containing these points, and let x E Qk. 

We need to show that x E C. We shall show by induction that the point 
x1e1 + · · · + Xjej is in C whenever x1 2: 0, ... , Xj 2: 0 and x1 + · · · + Xj :::; 1. 
If j = 1, this is obvious, since x1e1 = x 1e 1 + (1- x1)0 and by assumption 
0 ::S X1 ::S 1. 

Suppose the theorem is true for j, and let c = x1 + · · · + Xj+l :S 1, x 1 2: 
0, ... , Xj+l 2: 0. If c = 0, the point x1e1 + · · · +xi+lej+l is 0, and hence belongs 
to C. Therefore we assume c > 0. Since ej+l E C, we need only consider the 
case Xj+l < 1. By the induction assumption, taking x~ = 1 x 1 for l = 1, ... , j, 

-Xj+l 

we find that the point y = x~ e1 + · · · + xjej belongs to C, and therefore the 
point (1- Xj+l)Y + Xj+lej+l = x1e1 + · · · + Xjej + Xj+lej+l does also .. 

(b) Let A(x) be an affine mapping, that is, A(x) = xo+T(x), where T(x) is 
a linear transformation, let C be any convex set, and let u E A(C), v E A(C). 
We need to show that tu + (1- t)v E A( C) for all t E (0, 1). But this is trivial, 
since if u ~ A(x) and v = A(y), then tu + (1 - t)v = A(tx + (1 - t)y) and 
tx + (1- t)y E C. 

Exercise 10.8 Let H be the parallelogTam in R2 whose vertices are (1, 1), 
(3, 2), ( 4, 5), (2, 4). Find the affine map T which sends (0, 0) to (1, 1), (1, 0) to 
(3, 2), (0, 1) to (2, 4). Show that JT = 5. Use T to convert the integral 

a= L ex-y dxdy 

to an integral over 12 and thus compute o:. 

Solution: Clearly the constant term in an affine mapping is the image of (0, 0), 
which in the present case is to be (1, 1). Thus we are looking for a linear 
transformation L such that (3, 2) = (1, 1) + L(l, 0) and (2, 4) = (1, 1) + L(O, 1), 
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which is to say £(1, 0) = (2, 1) and L(O, 1) = (1, 3). Obviously L(x, y) = 
(2x + y, x + 3y). Then Jr = 2 · 3- 1 · 1 = 5. The inverse ofT is given by 
y- 1 ( u, 'U) = L - 1 ( ( u, v) - (1, 1)). Simple algebra then reveals that 

_ 1 ( -2 + 3u - v -1 - u + 2v) 
T ( u, v) = 5 , 5 . 

The parallelogram His the image of the unit square Sunder T, and so 

a= l ex-y dx dy = f er-lcu,v) llr-11 du dv. 
lr(s) J s 

Thus 

1111 -1+4u.-3v 1 
e 5 - dudv 

0 0 5 
e 5 4u -3v -111 11 - - es du e---:5 dv 

5 0 0 

- e-L~·(et-1)·(-5 )·(e-:;3 -1). 
4 3 

Exercise 10.9 Define (x, y) = T(r, B) on the rectangle 

0 :::; r :::; a' 0 :::; B :::; 271" 

by the equations 
X = T COS B, y = r sin B. 

Show that T maps this rectangle onto the closed disc D with center at (0, 0) 
and radius a, that T is one-to-one on the interior of the rectangle, and that 
Jr(r, B) = r. ·Iff E C(D), prove the formula for integration in polar coordinates: 

l f(x,y)dxdy= [ [' f(T(r,O))rdrde. 

Hint: Let Do be the interior of D, minus the interval from (0, 0) to (0, a). 
As it stands, Theorem 10.9 applies to continuous functions whose support lies 
in D0 . To remove this restriction, proceed as in Example 10.4. 

Solution: The simple geometry of this transformation allows a fairly straightfor
ward proof. Let c E (O,min(rr,a/2)). Let He= {(r,B): c:::; r:::; a- c,c ::5 B:::; 
271"-c }. The transformation Tis one-to-one on He. Let 'Pe(x, y) be a continuous 
function on all of R2 such that 'Pe(x,y) = 1 for (x,y) E T(He), 'Pe(x,y) = 0 
for (x., y) rJ. T(He;2) and 0 ::5 'Pe(x, y) ::5 1. Define fe(x, y) = f(x, Y)'Pe(x, y) 
for (x, y) E D and fe(x, y) = 0 for (x, y) ~D. Then fe(x, y) = f(x, y) except 
for (x, y) ED\ T(He)· Hence fe(T(x, y)) = f(x, y) on [0, a] x [0, 2rr] \He. Let 
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M be the maximum of lf(x, y)l on D. Since the support of !c is contained in 
T(Ho;;2 ), which in turn is contained in Do, we certainly have 

r r 

J !c(x, y) dx dy = J !c(r cos e, rsin e)r dr de. 
R2 R2 

We need to see how much each of these integrals differs from the correspond
ing integral of f. We first look at !c(x, y). In evaluating its integral we can 
confine ourselves to the square -a :::; x :::; a, -a :::; y :::; a, since D is con
tained in that square. We first exclude the three intervals -a :::; y ~ -a+ e, 
min( -s, -a sine) ~ y :::; max(e, a sine), and a-s :::; y :::; a. When y is not 
in these intervals, we have e2 :::; y2 :::; (a - s) 2 , and f(x, y) and fc(x, y) can 
differ only on the two intervals where J(a- s) 2 - y2 :::; !xi :::; J a2 - y2 , each 
of which has length 

J a2 - y2 - J (a - s) 2 - y2 = --'-( ar=2=:=_==y2::;:)_-_('-'-:( a:::::-==s )~2=;;:_=y=2:::;:) 
Ja2 _ y2 + J(a _ s)2 _ y2 

2as 2as 2a ;-;:;--
< < < v'c < v 2ac. - J a2 - y2 - V2ac + e2 - )2a + c -

Since the maximum possible difference between f(x, y) and fc(x, y) is M, we 
see that if f(x,y)dx- j Jo;(x,y)dxl:::; 2M~ 
if y is not in one of the three excluded intervals. 

If y is in one of the three excluded intervals, since f and fc can differ by at 
most M, we have 

I j f(x, y) dx- j fc(x, y) dxl :::; 2M a. 

Since the total length of the excluded y-intervals is at most (2a + 3)e, and the 
total length of the interval over which y varies is at most 2a, we see that 

I j j f(x, y) dx dy- ./ J !c(x, y) dx dyl :::; 4M av"2ae +2M a(2a + 3)c. 

Thus this approximation can be made arbitrarily good by taking E sufficiently 
small. 

As for the integral with respect to r, e, we observe that we can confine 
ourselves to the rectangle 0:::; r:::; a, 0:::; e:::; 21r, and that Jo;(rcosB,rsine) = 
J(r cos e, r sin e) for s :::; r :::; a- c and c :::; e ::; 21r- s. Thus, excluding the 
intervals 0 S 8 :::; E, and 27r- E :::; e S 27r, we find that for e not in these intervals 
f(rcose,rsine) and fc(rcose,rsine) can differ (by at most M) only on the 
two intervals 0 :::; r :::; c and a - s :::; r ::; a. Hence as before, if e is not in one of 
these two intervals, then 

I J f(rcose, r sin B)r dr- .I fe(rcos e, T sin e)r dr/ ::; 2M as. 



196 CHAPTER 10. INTEGRATION OF DIFFERENTIAL FORMS 

On the other hand, if () is in one of these two intervals, we have 

I j f(rcose,rsin())rdr- ./ fe(rcose,rsin())rdrl :::;. Ma2 . 

Since the exceptional intervals have total length 2c: and the total length of the 
() interval is 27I", we see that 

I J J f(r cos e, r sin())r dr dB-J ;· fe(rcose, r sin ())r dr d()l :::; 47r M ac:+2M a2c:. 

Hence these two integrals also can be made arbitrarily close together by choosing 
E: sufficiently small. Since the two integrals of fe are equal for each c: > 0, it 
follows that the other two are also equal. 

Exercise 10.10 Let a -l- oo in Exercise 9, and prove that 

{ f(x, y) dx dy = {oo {
2

1r f(T(r, e) )rd() dr, 
JR2 Jo Jo 

for continuous functions f that decrease sufficiently . .rapidly as lxl + IYI -l- oo. 
(Find a more precise formulation.) Apply this to 

to derive formula (101) of Chap. 8. 

Solution: Without striving for ultimate generality, we shall assume that there 
are positive numbers K and 8 such that lf(x, y)i :::; K(x2 + y 2 )-1- 8 for all 
(x, y) ::/= (0, 0). (Such an estimate holds for (x, y) ranging over any bounded set 
merely because f(x, y) is continuous.) Let Da = {(x, y) : 0 :::; x 2 + y 2 :::; a2 } 

and Sa= {(x,y): !xi:::; a, IYI:::; a}. Since both Da and Sa are convex sets, the 
functions ga;(x, y) = xnJx, y)f(x, y) and ha(x, y) = xsa. (x, y)f(x, y) are both 
integrable over R 2• We shall show that 

lim r 9a(x, y) dx dy = r f(x, y) dx dy = lim r ha(x, y) dx dy. 
a-+oo } R2 } R2 a->oo} R2 

Our job is simpler if we first show that 

lim ( r 9a(x,y)dxdy- r ha(x,y)dxdy) =0. 
a-+oo } R2 } R2 

As before, we let M = sup{jf(x, y)l}. Since 9a(x, y) = ha(x, y) except for 
(x,y) E Sa\ Da, and on this set 9a(x,y) = 0 and lha(x,y)i :::; Ka-2- 28 , the 
maximum possible difference in these two integrals is 4K a-28 , which does indeed 
tend to zero as a -l- oo. 
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It now suffices to show only the second of the two equalities given above, 
i.e., that 

.L2 f(x, y) dx dy =a~ Lz ha(x, y) dx dy. 

To that end, we fix y. We then have, if JyJ ~a, so that ha(x, y) = 0, 

1= 1= 1 f(x, y)- ha(x, y) dx:::; K (x2 2 ) 1+5 dx 
-= -= +y 

1-iyl K liYI K 1= K 
:::; ( 2)1' 5 dx + ( 2)1-1-5 dx + ( 2)1 · 5 dx -= X . -r -IYI y ' IYI X -r-

2Kl J-1-25 
:::; 1:28 + 2KJyJ-I-25:::; 4KJyJ-1-25. 

If JyJ :::; a, we note that f(x, y) = ha(x, y) for -a:::; x:::; a, and so 

1= ;-a K r= K 
-= f(x, y)- ha(x, y) dx:::; -= (x2)1+5 dx + la (x2)1+5 dx 

2Ka-1-25 
< < 2Ka-I-25 

1 +28 -

Applying these two inequalities we find that 

The desired formula is now proved by merely remarking that 

1 1a12r. 
ha(x,y)dxdy = f(rcosB,rsinB)rdBdr. 

R2 0 0 

The fact that the limit on the right-hand side exists as a_..,. oo follows from the 
fact that the limit on the left-hand side does, but can also be proved directly, 
since Jf(rcosB,rsinB)rj:::; Kr- 1- 25 . 

Applying this formula with f(x, y) = e-x2 -y2
, we find that 

In other words, 1= -t2 
-= e dt = y"i. 
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Exercise 10.11 Define (u,v) = T(s,t) on the strip 

0 < s < oo, 0 < t < 1 

by setting u = s-st, v = st. Show that T is a 1-1 mapping of the strip onto 
the positive quadrant Q in R2 • Show that lr(s, t) = s. 

For x > 0, y > 0 integrate 

over Q, use Theorem 10.9 to convert the integral to one over the strip, and 
derive formula (96) of Chap. 8 in this way. 

(For this application, Theorem 10.9 has to be extended so as to cover certain 
improper integrals. Provide this extension.) 

Solution: It is easy to compute the inverse ofT, namely 

s = u + v, 
v 

t=--, 
u+v 

and this inverse is defined on the entire ( u, v )-plane with the line v = -u 
removed. It is obvious that v is positive if and only if s and t have the same 
sign, and that u is positive if and only if sand 1- t have the same sign. 

Thus if u and v are both positive, then t and 1 - t have the same sign, which 
happens if and only if 0 < t < 1. In this case s must also be positive. Conversely, 
the equations that gives and t show that if u and v are both positive, then s > 0 
and 0 < t < 1. The Jacobian matrix of T is 

( 1- t -s) 
t s ' 

so that lr(s, t) = s. 
The integral of ux-le-uvy-le-v over the quadrant is 

100 ux-le-u du 100 vY-le-v dv = f(x)f(y). 

According to Theorem 10.9 

roo rl f(s-st,st)sdtds=1 00 1 00 f(u,v)dudv 
.fo .fo o o 

for any function f ( u, v) having compact support contained in the open quadrant. 
Assuming this theorem remains valid for the particular function we have in mind, 
we get 

r(x)f{y) = 100 sx+y-1e-' ds 11 t•-1(1- w-1 dt = 

= f(x + y) 1l tx-l (1- t)Y-l dt, 
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which is indeed formula (96) of Chapter 8. 
Thus we need only justify the use of Theorem 10.9 with the function f in 

the unbounded regions. To do this, we first show that Theorem 10.9 applies to 
the function f(u, v)cp0(u, v), where <p0(u, v) is the characteristic function of the 
set 

Since this function is positive on .Es, it is easy to modify it and make it into 
a continuous nonnegative function fTJ that vanishes outside the set Ec-TJ, for 
'TJ < 8 and this can be done without increasing its maximal value. Theorem 10.9 
applies to fr" and it is ea.Sy to see that the integral of fTJ on both sides of the 
formula tends to the integral of f<p 0 as 'TJ -+ 8. (Indeed, there is a constant c such 
that r- 1(u,v) = (s,t) lies in the strip c ~ t ~ 1-c whenever (u,v) E Ec-TJ and 
'TJ ~ ~· In that case, for each fixed t, the distance between the rightmost points 
(s, t) in T- 1(E8_TJ) and in r- 1(Es) is at most 8;7J. A similar statement applies 
to the leftmost points in the two regions, showing that the usual argument 
applies: The integrals off and f'P8 over each horizontal line differ by at most 
2M(;-n), except for a small range oft whose length tends to zero with 8- 'TJ, on 
which the difference is bounded. It then follows that both of the integrals of fTJ 
tend toward the corresponding integrals of f <pc 

It then remains only to prove that the integral of f<p 0 tends to the integral 
of f on both sides of the formula. Since these integrals increase as 8 decreases, 
there is no question that the limit exists, and we need only show that in both 
cases the limit is the integral in the formula. This is nearly immediate in the 
case of the integral over the quadrant. As for the integral over the strip, the set 
r-1 (Es) contains the region 8112 ~ s ~ 8_~312 , 8112 ~ t ~ 1 - 8112 • For these 
inequalities imply that 8 ~ st ~ i, and since 1- t satisfies the same inequalities 
as t, we also have 8 ~ s(1 - t) ~ i· The integral of f(s- st, st)s over the two 
strips 0 ~ t ~ /8 and 1- /8 ~ t ~ 1 tends to zero with 8, and for each t with 
v'8 ~ t ~ 1 - /8 the integral 

1/(8-8312 ) 

f f(s- st, st)sds 
J...a 

differs from the integral from 0 to oo by less than 

The first of these integrals is explicitly calculable and tends to zero as 8 -+ 0. 
In the second we use the fact that e-s < :~ for all s > 0 and take n ;::: x + y + 1. 
It then follows that the integral of f(s- st, st)<pc(s- st, st)s over each of these 
horizontal line differs from the integral of f(s- st, st)s by an amount that tends 
to zero uniformly for V8 ~ t ~ 1 - /8. 

The proof is now complete. 



200 CHAPTER 10. INTEGRATION OF DIFFERENTIAL FORMS 

Exercise 10.12 Let Jk be the set of all u = ( u1, ... , Uk) E Rk with 0 < ui ::::; 1 
for all i; let Qk be the set of all x = (x1, ... , xk) E Rk with Xi > 0, Z xk ::::; 1. 
(Ik is the unit cube; Qk is the standard simplex in Rk.) Define x = T(u) by 

Xl = ul 
x2 = (1- u1)u2 

Show that 
k k 

I: xi= 1-rr(l- ui)· 
i=l i=l 

Show that T maps Jk onto Qk, that Tis 1-1 in the interior of Ik, and that 
its inverse S is defined in the interior of Qk by u1 = x 1 and 

fori= 2, ... , k. Show that 

and 
Js(X) = [(1- XI)(1- X1 - X2) · · · (1- XI - · · ·- Xk-l)] -l. 

Solution: The first identity is easily proved by induction on k. It is obvious for 
k = 1, and 

i=l i=l 

- (1- U1) · · · (1- Uk)Uk+l + 1- (1- U1) · · · (1- Uk) 

- 1- (1- u1) · · · (1- uk)(l- Uk+I). 

The defining formulas and the formula just proved show that x E Qk when
ever u E Jk. In the process of showing that T is onto, we shall prove the inverse 

k-l 
formula. Let x E Qk, and assume for the moment that .L xi < 1. Then all of 

i=l 
the equations given as inverse equations are defined. We need only show that 
the defining equations yield x when applied to the left-hand sides of these equa
tions. Certainly we do have XI= u1. Suppose that Xr = (1-u1) · · · (1-ur_ 1 )ur 

for r < j. For the moment assume Ur =/= 0. 

1- X1- · · ·- Xr 
= Xr. 

Xr+l 
------ = Xr+l· 
1- X1- · · ·- Xr 
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If u1 ::;6 0, but Uj = 0 for l < j ~ r, then Xj = 0 also for these values, and 
Ur+1 = 1 -x~=-~~·-x 1 • We then have 

(1- u1) · · · (1- uz)ur+1 

- xz(1-~)ur+1 
1- X1- · · ·- Xz 

- xz· 
xz 

- Xr+l· 

Xr+1 
1- X1- · · ·- Xz 

Finally, if u1 = u2 = · · · = Ur = 0, we have simply Ur+1 = Xr+1 in both sets of 
equations. Thus in all cases the· point u E Jk is a preimage of the point x E Qk. 

It remains only to consider the case when 2:::~= 1 Xi = 1 for some r < k. For 
these points Xr+1 = · · · = Xk = 0. 

r 

To find preimages of these points, let r be the first index for which 2::: Xi = 1. 
i=1 

If r = 1, we have x2 = · · · = x~r. = 0, and this point is its own preimage. In 
general the pre'image of the point x for which Xr+1 = · · · = Xk = 0 is u, where 
u1, ..• , Ur are given by the formulas for S. The formulas imply Ur = 1. The 
values of Ur+ 1, · · · , uk are then arbitrary, since the formulas that define T will 
automatically make the remaining Xi equal to zero. 

The Jacobian matrix is a triangular matrix whose diagonal consists of the 
entries 1, (1 - u1), (1 - Ut)(1- u2), ... , (1 - u1) · · · (1 - uk-1), and this fact 
yields the formula for JT(u) immediately. 

Likewise, the Jacobian of S is triangular and has diagonal entries 1, 1__lx 1 , 

1 1 _ _ 1 -x , from which again the formula for Js(x) is imme-
1-xl-x2 '" · ' x1 x2 ... ·k-l 

diate. 

Exercise 10.13 Let r1, ... , Tk be nonnegative integers, and prove that 

r1 rk d · · 1 r1 1 •• ·rkl 
x1 · · ·xk x = . 

Qk (k + r1 + .. · + rk)! 

Hint: Use Exercise 12, Theorems 10.9 and 8.20. 
Note that the special case r1 = · · · = rk = 0 shows that the volume of Qk is 

1/ k!. 

Solution: Following the hint, we rewrite the integral in terms of u, getting 

1 r1 rk(1 )r2+· .. +rk(1 )r3+ .. ·+rk u1 · · · uk - u1 · - u2 · · · 
Jk 

(1- uk-1rk (1- u1)k-1 (1- u2)k-2 · · · (1- uk-1) du1 · · · duk. 

This integral is the product 
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which by formula (96) of Chapter 8 (just proved in Exercise 11 above) equals 
the product 

ITk r(ri + I)r(k + 1- i + rHl · · · + rk). 
i= 1 r ( k + 2 - i + r i + r i+ 1 ... + r k) 

When this product is evaluated, the numerator f(k + 1- i + ri+l · · · + rk) in 
each factor cancels the denominator r ( k + 2 - ( i + 1) + r i+ 1 · · · + rk) in the next 
factor. Thus the product "telescopes" to the product of the factors f(ri + 1) 
in the numerators divided by the first denominator f(k + 1 + r1 + · · · + rk)· 
Considering that r(n + 1) = n! for integers n, we therefore get the required 
formula. 

Theoretically we ought to be worried about the fact that T is not 1-1 on the 
entire cube Jk. This problem, however, is handled by the same reasoning used 
in Exercises 9, 10, and 11, and need not be repeated. 

Exercise 10.14 Prove formula (46). 

Solution: Formula (46) asserts that TI sgn (jq- }p) is -1 if the permutation 
p<q 

j 1 , ... ,jk is odd and 1 if the permutation is even. We observe that this product 
is (-1)k, where k is the number of pairs (jp,}q) for which }p > }q· Since 
sgn (jq- }p) = 1 if }p < }q and sgn (jq - }p) = -1 if }p > }q, we need to show 
that the parity of k is the same as the parity of the number of interchanges that 
will be used in converting this permutation to the identity. (As a corollary, that 
parity will be the same, no matter what particular sequence of interchanges is 
used to get to the identity.) This equality is obvious if the permutation is the 
identity to begin with. Suppose then that Jm > Jn and m < n. The elements 
Ji, m < i < n are of three kinds: Set A, those for which ji < Jn; set B, those 
for which Jn < }i < im; and set C, those for which Jm < }i· Before Jm and 
jn are interchanged, there is one out-of-order pair Um, ji) for each }i E A, one 
out-of-order pair (ji, Jn) for each ji E C, and two out-of-order pairs (jm, ji) 
and (ji,jn) for each ji E B. After the switch there is one out-of-order pair 
(jn,}i) for each ji E A, and one pair (ji, Jm) for each }i E C. There are no 
pairs involving any ji E B. Hence, when an out-of-order pair (jm, Jn) is put in 
the right order by interchanging its elements, the number of out-of-order pairs 
decreases by 2IBI + 1, where B is the set of elements ji between Jm and Jn 
that are in the wrong order relative to both }m and in and !BI is the number of 
elements in B. 

Of course the number would increase by an odd number if we foolishly inter
changed a pair that were not out-of-order relative to each other. (The number 
would increase by 2IBI + 1, where lEI is the number of elements between them 
that were in the correct order relative to both elements of the interchanged pair.) 
In any case, each interchange of two elements changes the number of inversions 
(out-of-order pairs) by an odd number, so that an odd number of interchanges, 
starting from the identity, will result in an odd number of inversions, and an 
even number of interchanges will result in an even number of inversions. 



Exercise 10.15 If wand ). are k- and m-forms, respectively, prove that 

W 1\ ). = ( -1) km). 1\ W 
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Solution: Because of the associative and distributive laws, it suffices to prove 
this in the case when w = f dxi 1 1\ · · · 1\ dxi~< and ). = g dxi~<+l 1\ · · · 1\ dxi~<+=. In 
that case 

w 1\ ). = f g dxi 1 1\ · · · 1\ dxik 1\ dxik+l 1\ · · · 1\ dxi~<+m. 

For each j = 1, 2, ... , k exactly m interchanges of adjacent basic one-forms will 
move dxik+l-j to the position just right of dxi~<+m, if these moves are made in 
increasing order of j. Thus a total of km interchanges will exactly reverse >. and 
w. The result now follows from the alternating property of the wedge product 
on basis elements. 

Exercise 10.16 If k ;::: 2 and a = [po; Pb ... , Pk] is an oriented affine k
simplex, prove that 82a = 0, directly from the definition of the boundary 
operator 8. Deduce from this that 82 w = 0 for every chain w. 

Hint: For orientation, do it first fork= 2, k = 3. In general, if i < j, let aii 
be the (k- 2)-simplex obtained by deleting Pi and Pi from a. Show that each 
aii occurs twice in 82a with opposite sign. 

Solution. For k = 2 we have 

so that 
82a = (P2 - Pl) - (P2- Po) + (Pl -Po) = 0. 

For k = 3 we have 

so that 

82a - ([P2,Ps]-[PhPs]+[pl,P2]) 

-([P2,Ps]- [po,Ps] + [po,P2J) 

+([Pl,Ps]- [Po,Ps] + [po,Pl]) 

- ([p1, P2J - (po, P2) + [po, P1]) 

- 0. 

In general the order in which Pi and Pi are omitted from a determines the 
sign that aii will have. If Pi is omitted first, the resulting (k- 1)-simplex aj = 
[Po, ... , Pi~ 1, Pi+l, ... , Pk] will acquire the sign ( -1 )i. If Pi is then omitted, the 
resulting (k- 2)-simplex will acquire a factor of ( -l)i, resulting in ( -1)i+iO"ii· 

However, if Pi is omitted first, Pi will move forward one position in the 
resulting (k- 1)-simplex O"i, and when it is subsequently omitted, a factor of 
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( -1)j-l will be affixed, resulting in ( -1)i+j-lO"ij· Hence the two occurrences 
of a ij in the second boundary will cancel each other. 

The linearity of the boundary operator, operating on a base of simplexes, 
thP.n Shnw~ th~t fi2 iQ tht> '7t>rf"\ r.nar<>tr.-r ..-...~ .-.11 n'h.-.:~~ -·---·-- · --- .• :...... ..J..,...,......,..; '-' .u.... .,~,.,.~,...., .t..~'-'.L'-' vpv.L<NlJV.J. Vl.L O.ll \.....1.1£1.11.1~ .. 

Exercise 10.17 Put J2 = 71 + 72, where 

71 = [0, e1, e1 + e2], 72 = -[0, e2, e2 + e1]. 

Explain why it is reasonable to call J 2 the positively oriented unit square in R 2 . 

Show that 8J2 is the sum of 4 oriented affine simplexes. Find these. What is 
8(71 - 72)? 

Solution: Although f" is really a collection of two affine mappings, the ranges 
of these mappings cover the unit square, the diagonal from (0, 0) to (1, 1) being 
covered twice with opposite orientations in the two mappings. In both cases, 
the sense of orientation is such that the cross product of the last two vertices of 
the simplex is e3, which is a reasonable definition of the positive orientation on 
the unit square. 

By routine computation, 

([e1,e1 +e2] 

- [0, er + e2] + [0, e1]) - ([e2, e1 + e2] - [0, e1 + e2] + [0, e2]) 

[er, e1 + e2] + [ei + e2, e2] + [e2, OJ+ [0, e1]. 

Again, by routine computation, 

([e1, e1 + e2)- [0, e1 + e2] + [0, e1]) 

+([e2, e1 + e2) - [0, e1 + e2] + [0, e2J) 

[e1, e1 + e2]- [e1 + e2, e2]- [e2, OJ+ [0, e1]- 2[0, e1 + e2]. 

Exercise 10.18 Consider the oriented affine 3-simplex 

a1 = [0, e1, e1 + e2, e1 + e2 + e3] 

in R3 . Show that a 1 (regarded as a linear transformation) has determinant 1. 
Thus a1 is positively oriented. 

Let a2, ... , 0"6 be five .other oriented simplexes, obtained as follows: There 
are five permutations (i1,i2,i3) of (1,2,3) distinct from (1,2,3). Associate with 
each ( i1, i2, i3) the simplex 

where s is the sign that occurs in the definition of the determinant. (This is 
how 72 was obtained from 71 in Exercise 17.) 
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Show that 0"2 , ... , 0"6 are positively oriented. 
Put J 3 = 0"1 + · · · + 0"6 . Then J 3 may be called the positively oriented unit 

cube in R3 . 

Show that f)J3 is the sum of 12 oriented affine 2-simplexes. (These 12 
triangles cover the surface of the unit cube h.) 

Show that x = (xr, x2, xs) is in the range of o-1 ifand only if 0 ~ xs ~ x 2 ~ 
x 1 ~ 1. 

Show that the ranges of o-1 , ... , o-6 have disjoint interiors, and that their 
union covers Js. (Compare with Exercise 13; note that 3! = 6.) 

Solution. We first show that each of these simplexes is positively oriented. To 
that end, it is convenient to refer to the simplex [0, ei1 , ei1 + ei2 , ei1 + ei2 + ei3 ] 

corresponding to the permutation (i1 , i2, is) as o-Ci1 ,i2 ,i3 ). 

The simplex o-Ci1 ,i2 ,i3 ), regarded as a linear transformation, maps (x, y, z) to 
(x+y+z)ei1 +(y+z)ei2 +zei3 • Itsmatrixthereforehas(l 1 1)asrowir, (0 1 1) 
as row i2, and (0 0 1) as row is. By interchanging rows in correspondence with 
the interchanges needed to convert the permutation (i1 , i2, is) to the identity, 
we can convert this matrix to an upper-triangular matrix with 1's on the main 
diagonal. The determinant of the matrix is therefore s( i1 , i2, is), so that the 
simplex s(i1, i2, is)[O, ei1 , ei1 + ei2 , ei1 + ei2 + ei3 ] is positively oriented. 

The boundary of aCii.i2 ,i3 ) consists of four terms, two of which ([ei1 , ei1 + 
ei2 ,ei1 +ei2 +ei3 ] and -[O,eipei1 +ei2 ]) are not shared with any other a(i). 
The other two terms ( -[0, ei1 , ei1 + ei2 + ei3 ] and [0, ei 1 + ei2 , ei1 + ei2 + ei3 ] 

are shared with o-Ci1 .i3,i2 ) and o-(i2 ,i1 ,i3 ) respectively. As these two permutations 
each differ from ( i 1 , i2, is) by a single interchange, the sign of each of these terms 
will be opposite in its two occurrences, and hence they will cancel out. Thus 
the boundary of Js will consist of a total of 12 oriented affine 2-simplexes. 

A point x = ( x 1 , x2, xs) is in the range of o-1 if and only if there are numbers 
r, s, t E [0, 1] such that r + s + t ~ 1 and x = rer + s(e1 + e2) + t(e1 + e2 + es), 
that is, x 1 = r + s + t, x2 = s + t, and xs = t. If such numbers r, s, t exist, 
obviously 0 ~ Xs ~ x2 ~ XI ~ 1. Conversely, if these conditions hold, there will 
be such numbers r, s, t, namely t = xs, s = x 2 - xs, and r = x 1 - x 2• 

The interior of the range of o-(i1 ,i2 ,i3 ) is the set of all x = (xr, x2, x 3 ) such 
that 0 < Xi 3 < Xi2 < Xi1 < 1. For the range of this simplex is the set of x for 
which each of these inequalities or the corresponding equality holds. If equality 
holds in any of them, the point can be approached by points outside the range, 
as one can easily see. That the union covers 13 is also obvious. Indeed, the 
characterization of the range of o-1 applies to all aCi1 ,i2 ,i3 ) and shows that this 
range is contained in 13 . Thus we need only show the reverse inclusion. 

If x = ( x1, x2, xs) E JS, ·let i1 be the smallest subscript i for which xi = 
max{ x1, x2, xs}. Let i2 be the first subscript for which xi = max ( {XI, x 2, x3 } \ 

{ Xi1 }). Finally, let is be such that { Xi3 } = { x1, x2, xs} \ { Xi1 , Xi2 }. By construc
tion 0 ~ Xi3 ~ Xi2 ~ Xi 1 ~ 1, and so, by the argument given above, x belongs 
to the range of o-(i 1 ,i2 ,i3 ). Symmetry shows that all of these simplexes have the 
same volume, which must therefore be 1/6. (Remember that we showed back in 
Exercise 1 that the boundary of a convex set in Rk has k-dimensional volume 0, 
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so that the volume of each of these sets equals the volume of its interior. As the 
interiors are disjoint, the sum of their volumes is at most 1. Since the simplexes 
together cover 13 , the sum of their volumes is at least 1. Therefore it is exactly 
1.) 

Exercise 10.19 Let J2 and J 3 be as in Exercise 17 and 18. Define 

B01(u, v) 
Bo2(u, v) 
Bo3(u, v) 

(O,u,v), 
(u, 0, v), 
(u,v,O), 

These are affine and map R2 into R3 . 

Bn(u,v) 
B12(u, v) 
B 13(u,v) 

(1,u,v), 
(u, 1, v), 
(u, v, 1). 

Put /3ri = Bri(J2 ), for r = 0, 1, i = 1, 2, 3. Each f3ri is an affine-oriented 
2-chain. (See Sec. 10.30.) Verify that 

3 
3 ~ i oJ = L..,. ( -1) (f3oi - f3H), 

i=l 

in agreement with Exercise 18. 

Solution. Although we did not spell it out in our solution of Exercise 18, the 
boundary of J 3 is the 2-chain 

L s(ibi2,i3)([ei1 ,ei1 +ei2 ,ei1 +ei2 +ei3 ]- [O,ei11 ei1 +ei2 ]). 

i1 ,i2,i3 

This sum can be rearranged as a sum of three terms, each of which consists of 
four terms. For example, the terms in the sum for which i= 1 can be written as 

([e1, er + e2, e1 + e2 + e3) 

- [ell e1 + e3, e1 + e2 + e3l) - ([0, e1, e1 + e2] - [0, e1, e1 + e3]). 

For i 1 = 2 we get a similar set of four terms, namely, 

(- [e2, e2 + e1, e1 + e2 + e3] + [e2, e2 + e3, e1 + e2 + e3]) 

+ ([0, e2, e1 + e2]- [0, e2, e2 + e3]). 

Finally, for i 1 = 3 we have 

([e3, e3 + er, e1 + e2 + e3)- [e3, e3 + e2, e1 + e2 + e3]) 

- ([0, e3, e3 + e1] - [0, e3, e3 + e2l). 

Now consider the 2-chain /301· According to the notation of Eq. (88), it 
is Bo1(Tl) + Bo1(T2). Letting (u,v) = T1(x,y) = (x + y)e1 + ye2, and then 
(u, v) = T2(x,y) = (x+y)e2+ye1 (and keeping in mind the orientation assigned 
to T2), we see that /3ol (x, y) = B01 (x + y, y) - Bo1 (y, x + y) = (0, x + y, y) -
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(0, y, x + y) = [0, e2, e2 + es]- [0, es, es + e2]. Notice that these two terms occur 
in the expression for [}]3 , in the groupings for i1 = 2 and i1 = 3 respectively, 
but each occurs with the opposite sign. Hence these terms can be accounted for 
in 813 by being grouped together and written as -f3o1. Similarly when we look 
at f3n, we find that it is the 2-chain whose points are (1, x + y, y)- (1, y, x + y), 
which is [e1, e1 + e2, e1 + e2 + es]- [e1, e1 + es, e1 + e2 + es]. Again these terms 
occur in the expression for e1, this time with exactly the same signs, so that 
they can be accounted for by grouping them and writing them as the term f3u. 
Thus four of the twelve simplexes in 8J3 are accounted for by the expression 
( -1 )1 (f3o 1 - {311 ). The other 8 simplexes are accounted for similarly. 

Exercise 10.20 State conditions under which the formula 

r f dw = r f w - r ( df) (\ w 
}cp lacp }cp 

is valid, and show that it generalizes the formula for integration by parts. 
Hint: d(fw) = (df) 1\ w + f dw. 

Solution. Given the formula in the hint, we need only invoke Stokes' Theorem. 
For any chain <I? satisfying the hypotheses of that theorem we shall have 

r d(fw) = r fw, 
}cp Jaq, 

which is precisely the given theorem. The ordinary formula for integration by 
parts follows by considering a 0-form f g. 

Exercise 10.21 As in Example 10.36, consider the 1-form 

xdy- ydx 
'f]= 

x2 +y2 

in R 2 \ {0}. 
(a) Carry out the computation that leads to formula (113), and prove that 
dry= 0. 
(b) Let 'Y(t) = (rcost,rsint), for some r > 0, and let r be a C"-curve in 
R2 \ {0}, with parameter interval [0, 21r), with r(O) = r(21r), such that the 
intervals ['Y(t), r(t)J do not contain 0 for any t E (0, 21r]. Prove that 

i 'fJ = 27r. 

Hint: For 0:::; t:::; 21r, 0:::; u:::; 1, define 

4?(t, u) = (1- u)r(t) + u1(t). 
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then <P is a 2-surface in R2 \ {0} whose parameter domain is the indicated 
rectangle. Because of cancellations (as in Example 10.32), 

Use Stokes'' theorem to deduce that 

r 77=177 .lr 1 

because d77 = 0. 
(c) Take f(t) = (acost,bsin.t) where a> 0, b > 0 are fixed. Use part (b) to 
show that 1211" ab 

--------,:--- dt = 27r. 
o a2 cos2 t + b2 sin2 t 

(d) Show that 

77 = d( arctan~) 
in any convex open set in which x -1= 0, and that 

77 = d(- arctan~) 

in any convex open set in which y -1= 0. 
Explain why this justifies the notation 77 = dB, in spite of the fact that 7] is 

not exact in R2 \ {0}. 
(e) Show that (b) can be derived from (d). 
(f) If r is any closed C' -curve in R2 \ { 0}, prove that 

2~ l77 = Ind (r). 

(See Exercise 23 of Chap. 8 for the definition of the index of a curve.) 

Solution. (a) By the rules for computing line integrals, given that x = r cost 
andy= rsint, 

j. 1211" (r cos t)(r cost) dt- (r sin t)( -r sin t) dt 1211" 
77 = = dt = 27r. 

1 o r 2 cos2 t+r2 sin2 t 0 

(b) Let f(t) = (X(t), Y(t)) and 1(t) = (x(t), y(t)). Following the hint, observing 
that the hypothesis that the interval from f(t) to 1(t) does not pass through 
0, we find that <I>(t, u) is indeed a 2-surface in R 2 \ {0}, and making it into a 
singular 2-chain by regarding the domain as an affine 2-chain, as in Exercise 17, 
we find by Stokes' theorem that 
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where 8 is the curve 8( u) = ~(211", u) = (1- u)f(27r) + U')'(27r )"and c is the curve 
c:(u) = ~(O,u) = (1-u)r(O) +u')'(O). Since 8 and care the same curve, the last 
two terms in this expression cancel each other, yielding the required result. 

(c) We need only verify that <I>(t,u) =J 0 = (0,0). But this is clear: If ((1-
u)a + ur) cost= 0, then t = ~ or t = 3;, since (1- u)a + ur 2:: min( a, r) > 0. 
But this means that ((1- u)b+ ur) sin t =J 0, since tis not a multiple of 1!". The 
result now follows. 

(d) It is a routine computation that the differential of arctan~ is TJ in the entire 
right or left half-plane, and similarly for 1r- arctan if, which is after all arccot if, y y 

which in turn is arctan~ wherever both functions are defined. Thus locally we 
have '17 =dB, even though() is not defined globally in R2 \ {0}. 

(e) Break the integral over /' into five parts: 0 :::; t :::; ~, ~ :::; t :::; 3Z , 3; :::; 

t :=:; 5; , 5; :=:; t :=:; 7; , 7: :=:; t :=:; 211". In the first, third, and fifth parts we have 
'17 = d ( arctan ~) , and in the second and fourth we have '17 = d (-arctan ; ) . Now 

in the first, third, and fifth parts, JL = sin tt =tan t, so that either t = arctan JL or 
X COS X 

t = 1r +arctan ; on these arcs. In either case the integral over the these parts is 
just the difference in t at the endpoints. Hence these three integrals contribute 
~ + ~ + ~ = 1r to the integral. On the other parts ; = cot t = tan ( ~ - t). 
Hence, once again, arctan; is either ~ -tor 3271' - t. In either case, these two 
integrals contribute ~ + ~ = 1r to the integral, and provides the result of (b). 

(f) The definition of Ind (r) is defined by regarding f(t) as a curve X(t) + Y(t)i 
in the complex plane, in which case 

Ind (f)= _1 { 2
71' f'(t) dt = _1 f 2n (X(t)- Y(t)i)(X'(t) + Y'(t)i) dt 

21ri }0 f(t) 21ri }0 (X(t))2 + Y(t))2 . 

Since we know the imaginary part is zero, we consider only the real part, which 
lS 

2_ [ 271' X(t)Y'(t)- Y(t)X'(t) dt = _2_ { . 
21r } 0 (X ( t)) 2 + Y ( t) ) 2 21r } r '17 

(Incidentally, it follows from Stokes' theorem that the imaginary part of this 
complex integral is zero, since it is 

_2_ { 2-rr X(t)X'(t) + Y(t)Y'(t) dt = _2_ { d = _ _2_ { 
27r }0 (X(t)) 2 + (Y(t))2 47r Jr ( 47r Jar ( 

where ((x,y) =In (x 2 +y2 ). This last integral is zero, since r is a closed curve.) 

Exercise 10.22 As in Example 10.37, define ( in R 3 - 0 by 

( = x dy 1\ dz + y dz 1\ dx + z dx 1\ dy 
r3 ' 
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where r - (x2 + y2 + z2 ) 112 , let D be the rectangle given by 0 :::; u :::; 1r, 

0 :::; v :::; 271", and let L: be the 2-surface in R 3 , with parameter domain D, given 
by 

x = sin u cos v, y:::: sin u sin v, 

(a) Prove that d( = 0 in R 3 \ 0. 

(b) Let S denote the restriction of L: to a parameter domain E C D. Prove that 

is ( = fe sinududv = A(S), 

where A denotes area, as in Sec. 10.43. Note that this contains (115) as a 
special case. 

(c) Suppose g, h1 , h2 , h3, are C"-functions on [0, 1], g > 0. Let (x, y, z) = <I>(s, t) 
define a 2-surface <I>, with parameter domain J2 , by 

x = g(t)h1 (s), y = g(t)h2(s), z = g(t)h3(s). 

Prove that l (=0, 

directly from ( 35). 
Note the shape of the range of <I>: For fixed s, <I>(s, t) runs over an interval 

on a line through 0. The range of <I> thus lies in a "cone" with vertex at the 
origin. 

(d) Let E be a closed rectangle in D, with edges parallel to those of D. Suppose 
f E C"(D), f > 0. Let D be the 2-surface with parameter domain E, defined 
by 

D(u, v) = f(u, v)L:(u, v). 

Define S as in (b) and prove that 

(Since Sis the "radial projection" of D onto the unit sphere, this result makes 
it reasonable to call fn ( the "solid angle" subtended by the range of D at the 
origin.) 

Hint: Consider the 3-surface W given by 

w(t,u,v) = [1-t+tf(u,v)]E(u,v), 

where (u,v) E E, 0:::; t:::; 1. For fixed v, the mapping (t,u) -t w(t,u,v) is a 
2-surface <I> to which (c) can be applied to show that ].:p ( = 0. The same thing 
holds when u is fixed. By (a) and Stokes' theorem, 

r ( = r d( = o. 
law .fw 



(e) Put .A= -(z/r)rt, where 

xdy- ydx 
'Tl = x2 + y2 ' 
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as in Exercise 21. Then .A is a 1-form in the open set V C R3 in which x2+y2 > 0. 
Show that ( is exact in V by showing that 

( = d.A .. 

(f) Derive (d) from (e) 1 without using (c). 
Hint: To begin with, assume 0 < u < 1r on E. By (e), 

· f ( = f .A and 
ln Jan 

f ( = f .A. 
ls las 

Show that the two integrals of .A are equal, by using part (d) of Exercise 21, and 
by noting tha~ z / r is the same at :E( u, v) as at 0( u, v). 

(g) Is (exact in the complement of every line through the origin? 

Solution. (a) We note that, since ~; = xr- 1 , we have 

~!.... = r-3 - 3x2r-5 = r-5 (r2 - 3x2). 
8xr3 

By symmetry we have analogous relations for the partial derivatives of yr-3 and 
zr-3 with respect toy and z respectively. Since dx 1\ dy 1\ dz = dy 1\ dz 1\ dx = 
dz 1\ dx 1\ dy, we find that 

d( = r-5 (r 2 - 3x2 + r 2 - 3y2 + r2 - 3z2) dx 1\ dy 1\ dz = 0. 

(b) Since r ( :E ( u, v)) = 1, we have only to note that the differentials pull back to 

D as dyl\dz = ~~~:~~ dul\dv = sin2 ucosvdul\dv, dzl\dx = sin2 usinvdul\dv 

and dx 1\ dy = sin u cos u du 1\ dv. The integrand then pulls back as (sin 3 u + 
sin u cos2 u) du 1\ dv = sin u du 1\ dv. The reference to Sec. 10.43 must be a 
misprint for Sec. 10.46. 

(c) For the application to be made in part (d) below we actually need to al
low the function g(t) to depend on s also. Thus we consider g(s, t) instead 
of g(t). Using only the definition (35) for the integral, we need to get the 
pullbacks of the wedge products to the parameter domain [0, 1] x [0,1]. Since 
dx = ~h1 (s) dt+ (g(s, t)h~(s) +h1(s)~ ds, with similar expressions for dy and 
dz, we find that dyl\dz = g(s,t)~(hs(s)h~(s)- h~(s)h2(s)) dsl\dt, dzl\dx = 
g(s, t) ~ ( h~ (s)h1 (s)- hs( s)h~ (s)) ds 1\ dt, and dx 1\ dy = g(s, t) ~ (h~ (s )h2(s)
h1 (s)h~(s)} dsl\dt. Thus,assuming h1(t), h2(t), and hs(t) do not vanish simul
taneously, we have 
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(d) Using part (c), as amended, we note that EN! consists of six mappings 
w(l,u,v) = O(u,v), 'l!(O,u,) = S(u,v), 'l!(t,b,v), w(t,a,v), 'll(t,u,d), and 
w(t, u, c), whete E =[a, b] x [c, d]. By part (c) the integrals over each of the last 
4 surfaces are all zero. Since d( = 0, Stokes' theorem implies that 

(e) By straightforward computation, 

d).. -d(z/r) 1\ rJ- (z/r) d'fJ 

xzdx+yzdy+ (z2 -r2)dz 
3 1\'f/ r 

( x 2 z + y2 z) dx 1\ dy x dz 1\ dy - y dz 1\ dx 
r3(x2 + y2) r3 

- (. 

(f) Again by Stokes' theorem we must have 

r, = r d)..= r A. 
Jn Jn Jan 

But rJ is independent of z, and zjr is the same for both S( u, v) and D( u, v). 
Therefore 

ian ).. = hs )... 
(g) Yes, ( is exact on the complement of every line through the origin. Indeed, 
for every line through the origin there is a rotation T that maps that line to 
the z-axis. By Theorem 10.22, part (c) we have d()..T) = (d)..)T = (y. However, 
(r = (, as one can easily compute. Indeed, since r is invariant under T, we 
need only show that x dy 1\ dz + y dz 1\ dx + z dx 1\ dy is rotation-invariant. 
To that end, suppose (u,v,w) = T(x,y,z), say u = tux+t12y+t13z, so 
that du = tn dx + t12 dy + t13 dz, etc. We then have dv 1\ dw = (t22t33 -
ts2t23) dy 1\ dz + (t23t31 - t33t21) dz 1\ dx + (t21t32 - t31t22) dx 1\ dy, etc. and 
so udv 1\ dw + v dw 1\ du + w du 1\ dv works out (after tedious computation) to 
precisely x dy 1\ dz + y dz 1\ dx + z dx 1\ dy. 

Exercise 10.23 Fix n. Define rk = (xr + · · · + x%) 112 for 1 ::::; k::::; n, let Ek be 
the set of all x ERn at which Tk > 0, and let Wk be the (k- 1)-form defined in 
Ek by 

k 

. wk = (rk)-k I)-l)i-lxi dx1 1\ ···I\ dxi-1 1\ dxi+I 1\ ···I\ dxk. 
i=l 

Note that w2 = rJ, w3 = (in the notation of Exercises 21 and 22. Note also 
that 



(a) Prove that dwk = 0 in Ek. 

(b) Fork= 2, ... ,n, prove that Wk is exact in Ek-l, by showing that 

wk = d(fkwk-1) = (dfk) A Wk-1, 

where /k(x) = ( -1)kgk(xk/rk) and 

gk(t) = .lt1 (1- s)Ck-S)/2 ds ( -1 < t < 1). 

Hint: fk satisfies the differential equations 

x · ('V fk)(x) = 0 

and 

(c) Is Wn exact in En? 
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(d) Note that (b) is a generalization of part (e) of Exercise 22. Try to extend 
some of the other assertions of Exercises 21 and 22 toWn, for arbitrary n. 

k 

Solution. (a) Computation·shows that d( I) -l)i-lxi dx1A· · ·Adxi_1 Adxi+1 A 
i=l 

· · · A dxk) = kdx1 A · · · A dxk, and ~~~ = ~ for j :::; k, so that d(rk) = 
k 

-k(rk)-k-2 2: Xj dxj, we find that 
j=l 

k 

dwk = k(rk)-k dx1 A··· A dxk - k(rk)-k- 2 L x]dx1 A··· A dxk =; 

.J=l 
k 

= k(rk)-k-2 (r~- L xJ) dx1 A··· A dxk = 0. 
j=l 

This argument shows, incidentally, that dwk = 0 in En = Rn \ {0}. 
(b) We compute that 

k-1 

dfk = ( -1)k(1- xVr~)(k-3)/2 ( (rk' 1 - x~rk'3)dxk - L XkXirk' 3 dxi) 
i=1 

k-1 
- ( -1)k(rk-drk)k-3 ( (r; 3r~_ 1 )dxk- rk'3 L XiXk) dxi 

i=l 
k-1 

- ( -l)k(rk)-k (rZ=:idxk - rz=~ L XiXk dxi). 
i=1 
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Hence, since (dfk) A Wk- 1 - ( -l)k-2wk-l A (dfk), the first term in this last 
expression contributes 

k-1 

(rk)-k 2.::::(-l)i-lxi dxi A··· A dxi-1 A dxi+1 A··· A dxk-1 A dxk 
i=1 

to the wedge product. As this contribution is all of wk except the last term 
r;;k( -l)k-lxk dx1A· · ·Adxk-l, we must endeavor to show that the contribution 
of the remaining terms amounts to this expression. Since any term containing 
a repeated factor dxj is zero, we see that the rest of the expression is 

k-l 
( -l)k-lxk(rk)-k(rk_r)k-S ( L Xi dxi) A (rk-r)k- 1 x 

i=l 
k-1 

x 2:C -l)i-1xi dx1 A··· A dxi-1 A dxi+l A··· A dxk-r, 
i=l 

which is easily seen to be the same as 

k-1 
( -l)k-lr;;kxkr;;~ 1 L x;dxr A·· ·I\ dxk-l = ( -ll-1r;;kxk dx1 I\··· A dxk-l, 

i=l 

exactly as required. Thus we have computed this result by "brute force," arro
gantly ignoring the hint. 

For the benefit of those who wish to use the hint, here is an alternative 
approach. The wedge product (dfk) A Wk-l is the sum of Dkfk(x) dxk A wk-l 
and 

k-1 

r;;~} 1 ( L xiDd(x)) dx1 A··· A dxk = 
i=l 

and hence, by the first differential equation, equals 

Dkfk(x) dxk A wk-1 - r;;~} 1xkDkfk(x) dx1 A··· dxk-1, 

so that the second equation yields the result immediately. The two differential 
equations themselves are routine computations. 

(c) No, Wn is not exact in En for any n, since its integral over the (n-1)-sphere 

equals ~(~), as will be shown below in the answer to part (d). (If it were exact, 

say the differential of A, this integral would equal thte integral of A over the 
boundary of the (n- 1)-sphere, which is the 0 (n- 2)-chain.) 

(d) We can parameterize the ( n - 1 )-sphere :En-I by the mapping Tn defined 
by 

xr 
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X2 - cos t1 sin t2 · · ·sin tn-1, 

xs - cos t2 sin ts · · ·sin tn-1, 

Xn-1 - cos tn-2 sin tn-1 

Xn - costn-1, 

where 0 :::; t1 :::; 27!" and 0 :::; tj :::; 7r for 2 :::; j :::; n- 1 That is, the domain of Tn is 
the parallelepiped D = [0, 27r] x [0, 7r]n-2. This is known to be true for n = 2 and 
n = 3, and follows easily by induction on n. Suppose, for example, we know it is 
true for n- 1, and suppose xy + · · · + x;. = 1. If Xn = ±1, We Can take tn-1 = 0 
or 7!", and the values of the other angles can be anything. If -1 < Xn < 1, there 
is precisely one angle tn-1 E ( 0, 7r) such that Xn = cos tn-1· But then the point 
(xd sin tn-1, ... , Xn-1/ sin tn-1) belongs to :En-2 , and hence, by induction, can 
be written as 

xd sin tn-1 - sin t1 ···sin tn-2, 

x2/ sin tn-1 - cost1 ···sin tn-2, 

Xn-2/ sin tn-1 - cos tn-3 sin tn-2 

Xn-d sin tn-1 - costn-2· 

This completes the induction. Observe that the angle t1 requires the entire range 
[0, 27r]. That is, all points on the unit circle in R2 can be written as (cost, sin t) 
only if t is allowed to range from 0 to 27r. Otherwise put, the (n- 1)-sphere is 
parameterized by n - 2 latitude angles and one longitude angle. 

We can easily show by induction that the pullback of Wn is 

(wn)Tn = ( -l)n-1 sin t2 sin2 ts · · · sinn-2 tn-1 dt1 A··· A dtn-1· 

To make the induction work, we need to distinguish the Xi's in various 
numbers of dimensions; hence let the transformation Tn be defined by giving its 
components ~}n), i :::; n, by the equations 

xin) - sin t1 sin t2 .. ·sin tn-1, 
(n) 

x2 
(n) 

Xs 

(n) 
Xn-1 

x(n) 
n 

cos t1 sin t2 ···sin tn-1, 

cos t2 sin tg ···sin tn-1, 

cos tn-2 sin tn-1, 

costn_1, 

Thus we.have x~ = costn-1 and x]n) = x]n-1) sintn-1 for j < n. Suppose we 
have proved that 

"""( 1)i-1 (n-l)d (n-1) A Ad (n-1) Ad (n-1) A Ad (n-1) (
n-1 ) 
L.,.; - Xi X1 11 • • ·" xi-1 " xi+l " · · ·" Xn-1 
i=l . Tn-l 
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We observe that the Jacobian matrix of the transformation Tn is the n x 
(n- 1) matrix 

a (n-1) 
xl . t 
Btl sm n-1 

a (n-1) 
Xl • t at Sln n-1 

n-2 

(n-1) 
xl cos tn-1 

a( (n) (n)) 
x1 ' ... ,Xn -

a (n-1) 
x2 • t 
Btl sm n-1 

a (n-1) 
x2 • t at sm n-1 

n-2 

(n-1) 
x 2 costn-1 

8(t1, · · · ,tn-1) -

It follows immediately, when we expand the determinant of the first n- 1 rows 
along the last column, that 

(d (n) d (n) ) · n-2 t t x 1 1\ · · · 1\ Xn-1 Tn =Sin n-1 COS n-1 X 

n-1 B( (n-1) (n-1)) 
X 2:~) -l)n-l+ix~n-l) Xl ' ... 'Xn- 1 dt1 1\ · · · 1\ dtn-lT = 

. a(t1,···,tn-2) 
2=1 

n-1 

= ( -lr sinn-2 tn-1 costn-1 ( 2.:::( -l)i-lx~n- 1 ) dxin-l) 1\ ... 

i=l 

· · · 1\ dx~n-1 1 ) 1\ dx~~- 1 ) 1\ · · · 1\ dx(n-1l)) 1\ dt 1 
2- t-r1 n- n-

Tn-1 

· n-2 t t ( · t · 2 t · n-3 t ) d d = Slll n-lCOS n-1 Slll 2Slll 3 ···Sin n-2 t11\ ···I\ tn-1· 

Hence 

(-1)n-l (x(n) dx(n) 1\ · · · 1\ dx(n) ) = 
n 1 n-1 Tn 

= ( -lr-l cos2 tn-l sin t2 sin2 t3 · · · sinn-2 tn-l) dt1 1\ · · · /\ dtn-1· 

Next, omitting row i (i < n) and expanding the resulting determinant along 
the last row, we find that 

(dx(n) 1\ · · · 1\ dx~n) 1\ dx~n) 1\ · · · 1\ dx(n)) = 
1 2-l 2+1 n Tn 

. n-1 t (d (n-1) d (n-1) d (n-1) d (n-1)) d 
= -sm n-1 X1 /\···/\ Xi-1 1\ Xi+l f\ .. ·/\ Xn-l Tn-11\ tn-1, 

so that 

n-1 

( ~(-l)i-lx~n)dx(n) 1\ ···I\ dx"!' 1 1\ dx~n) 1\ ···I\ dx(n)) L 2 1 2- t+1 n T 
i=l n 

n-1 

=- sinn t ( ~(-l)i-1 x~n-l)dx(n- 1 ) 1\ ···I\ dx~n-l) 1\ dx~n- 1 ) 1\ ... n-1 L t 1 2-l t+1 
i=l 

d (n-1)) d ···I\ Xn-1 1\ tn-b 
Tn-l 
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and again by induction this is 

( -lt- 1 sin2 tn-1 (sin t2 sin2 t3 · · · sinn-2 tn-1) dt1 · · · dtn-1· 

Combining these results we find that 

n 

( "'"'(-l)i-l x~n) dx(n) I\ · · · I\ dx~n) I\ dx~n) I\ · · · I\ dxn)) -L...t ~ 1 ~-1 t+1 n T 
i=1 n 

= ( -lt-1 sin t2 sin2 t3 · · · sinn-2 tn-1dt1 I\··· I\ dtn-1· 

The induction is now complete. 
Except for the unimportant factor of -1, this formula gives results consistent 

with the known results for th.e area of the (n -1)-sphere, namely a total area of 

27r~ 
An-1 = r(~). 

This is easily verified for n = 2 and n = 3. In general 

An-1 = An-211r sinn-2 tn-1 dtn-1 = 

{~ . n-2 r(!)r(~) 
2An-2 Jo sm s ds = 2An-2 r( ~) . 

It easily follows, since r(!) = .y'i, that the formula for the surface area of 
:r;Cn-1) is valid for all n. 

Similarly we can show the analog of part (c) of Exercise 22, namely that 

l Wn=O 

for any (n- I)-dimensional surface given by a mapping of the form 

ci>(s1, ... , Sn-2, t) = (g(s1, ... , Bn-2, t)h1(s1, ... , Bn-2), ... 

. . . , g(sll ... , Bn-2, t)hn(s1, ... , Bn-2)). 

Indeed, the pullback of Wn is 

-2L h + ....£!J.J_ £9.. h 
asn-2 1 g asn-2 at 1 

-2Lh + ~ §.s_h 
asn-2 n g asn-2 at n 

But this determinant is zero, since the first and last columns are proportional. 
We can now prove that if f(tb ... , tn-1) > 0 and 

n(t1, ... 'tn-1) = f(tl, ... 'tn-l):r;(n-1)(tl, ... 'tn-1), 
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then r I ' 
_ r , . _ ...j__ A _ ( C'\ Jn ..J..-n -- } S ..z.tn - -'--'-'-n-1 \'-' )· 

To do so, we consider the n-surface in Rn given by 

for 0 :::; t :::; 1 and t1 , ... , tn ranging over a parallelepiped contained in the 
interior of D with boundary faces parallel to those of D. For each fixed t j, this 
']! is an ( n - 1 )-surface of the form just considered, and hence the integral of Wn 
over it is zero. This applies in particular to the faces of the closed parallelepiped 

E. Since r Wn = r dwn = 0, it then follows that, up to a factor of ±1, J 8\f! }'II 

1 Wn =is Wn = An-l(S). 

Finally, as in Exercise 22, Wn is exact in the complement of every (n- 2)
hyperplane through the origin, since there is a rotation that maps the comple
ment of that hyperplane to En_1 , while Wn is rotation-invariant. 

Exercise 10.24 Let w = crai(x) dxi be a 1-form of class C" in a convex open 
set E C Rn. Assume dw = 0 and prove that w is exact in E by completing the 
following outline: 

Fix p E E. Define 

j(x) = { w (x E E). 
j[p,x] 

Apply Stokes' theorem to affine-oriented 2-simplexes [p, x, y) in E. Deduce that 

f(y)- f(x) = t(Yi- xi) 11 ai((1- t)x + ty) dt 
i=l 0 

for x E E, y E E. Hence Dd(x) = ai(x). 

Solution. Because dw = 0, the integral of w over the boundary of the oriented 
2-simplex [p, x, yJ is zero. That is 

r w - r w + r w = o, 
lrx,y] J[p,y] J[p,x] 

which can be rewritten as 

n 1 

f(y)- f(x) = i w = ,I)Yi- xi) 1 ai((1- t)x + ty) dt. 
[x,y) i=l 0 
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Differentiating with respect to Yi, we find 

The fact that dw = 0 says that Diai = Djai, so that we have 

Dd(Y) = 
t {1 n 

.fo ai((1- t)x + ty)dt + .fo ~ t(yi- Xj)Djai((1- t)x + ty)dt 

- 11 ai((l- t)x + ty) dt + 11 
t !ai((l- t)x + ty) dt 

- 11 
ai((1- t)x + ty) dt + tai((1- t)x + ty)l~ 

-11 
ai((1- t)x + ty) dt 

- ai(y). 

Thus w = df. 

Exercise 10.25 Assume that w is a 1-form in an open set E C Rn such that 

for every closed curve 1 in E of class C'. Prove that w is exact in E, by imitating 
part of the argument sketched in Exercise 24. 

Solution. We first observe that Stokes' theorem and the argument of Theorem 
10.15 show that dw = 0 in E. (Theorem 10.15 actually shows that if some 
component of dw is nonzero at some point of E, then there is a 2-surface q> in E 
whose domain is a 2-cell in R2 for which Jq, dw :f= 0. Then by Stokes' theorem, 
faif> w :f= 0 also, contradicting the assumption of the problem. 

In each connected component Ea. of E, we choose a fixed point x0 . There is 
a ball of some positive radius ra. centered at Xa. and contained in E. Let this ball 
be Ba.. Exercise 24 shows that there is a function f(x) such that w(x) = df(x) 
inside Ba.. By subtracting a constant from f we can assume that f(xa.) = 0. 

Now consider the set S of all points x E Ea. having the property that there 
exist a connected open set Fx containing x and Xa. and a function f x defined on 
Fx such that dfx =won ·Fx and fx, = 0. It is clear that Sis an open connected 
subset of Ea., being the union of all the connected open sets Fx, which have the 
common point Xa. It is also clear that there is a function f defined on S such 
that df = _w on S. In fact we can define f(x) = fx(x), and this definition is 
unambiguous, since if fx and jy are both defined at z, then 

f x ( z) = i dfx = i w = 1 w = 1 df y = fy (z). 
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Here '"'( is a path in Ex from Xa to z, and 8 is a path in Ey from Xa to z. The 
path '"'! - 8 lies in E and is a closed loop, so that 

j. w=O. 
"(-8 

We need only show that S =Ea. But if not, then Ea contains a boundary 
point x E S. Some open ball B about x is contained in E, and this open 
ball contains a point y E S. But then there exists a function g such that 
dg = w in B, and subtracting a constant makes it possible to ensure that 
g(y) = ]y(y) = j(y). We claim that g(z) = j(z) on the entire set S n B. In 
fact this argument merely repeats the argument just given to show that f is 
unambiguously defined. It then follows that y is contained in the connected 
open set S n B and that the function h defined to be f on S and g on B has 
the property that dh = w on S n B. By definition, this means y E S, which 
contradicts the assumption that y is a boundary point of S. Therefore S =Ea. 

Thus we can find a primitive for won each connected component of E. These 
primitives can be pieced together to provide a single primitive for w on E. 

Exercise 10.26 Assume w is a 1-form in R 3 \ {0}, of class C' and dw = 0. 
Prove that w is exact in R 3 \ { 0}. 

Hint: Every closed continuously differentiable curve in R 3 \ { 0} is the bound
ary of a 2-surface in R3 \ {0}. Apply Stokes' theorem and Exercise 25. 

Solution. Given the assumption in the hint, the solution is easy. By Exercise 
25 we need only show that the integral of w over every closed curve is zero. By 
the assertion in the hint, this closed curve is the boundary of a two-surface. By 
Stokes' theorem, the integral of w over the curve equals the integraLof dw over 
the 2-surface. 

To prove the claim that every continuously differentiable curve in R 3 \ { 0} 
is the boundary of a two-surface, we may assume that the curve is of the form 
x(t), 0 :::; t :::; 1 and x(O) = x(1). Let x(t) = (x(t), y(t), z(t)). We shall show 
first of all that there is some line through the origin in R3 that does not intersect 
the curve. 

To that end, we observe that the intersection of a sphere of radius pin R3 

with a ball of radius r (r :::; 2p) about a point of the sphere is a spherical cap 
whose area is 1rr2 . (Note that this result is independent of p. It is a remarkable 
fact, whose proof is a routine computation.) Since the area of the whole sphere 
is 47r p2 , it follows that half of any given hemisphere cannot be covered by fewer 
than p2 jr2 such spherical caps. Now, since x(t) #- 0 and x'(t) is continuous, 
it follows that v(t) = x(t)/Jx(t)l is a Lipschitz function, that is, there exists a 
constant M such that Jv(s)- v(t)J:::; MJt- sl for all sand t. In particular the 
image of each interval [kjn, (k + 1)/n] is contained in a spherical cap of radius 
M / n. Thus the complete curve is contained in a set of n spherical caps of radius 
at most Mjn. But to cover the half of any given hemisphere of the unit sphere 
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requires at least ~ such caps. Hence, if n > M 2, the projection of the curve 
x( t) on the unit sphere is contained in a set of spherical caps covering less than 
half of the upper hemisphere and less than half of the lower hemisphere. Hence 
there are two antipodal points x0 and -xo on the unit sphere not in its image. 
That means there is at least one line through the origin that the curve does not 
intersect. 

This line through the origin gives us a sense of positive rotation from x(t) to 
x(t+~) for each t E [0, ~].We can then construct aC'-curvel't(s) in R3 \{0} that 
goes from x(t) to x(t + ~) by letting cylindrical coordinates vary linearly with 
respect to s. To be specific, we can assume without loss of generality that the line 
is the z-axis. In that case, the radial coordinate r(t) = Jx2 (t) + y2 (t) is never 
zero and is a continuously differentiable function of position. We choose fJ(t) as 
the cylindrical polar coordinate of x(t) in a continuously differentiable manner 
for 0 :::; t :::; 1. (This is possible by piecing together sections of this function over 

. sufficiently small intervals.) We then define l'(s, t) = (x(s, t), y(s, t), z( s, t)) for 
0 ~ s :5 1, 0 ~ t $ 1/2 by 

x(t, u) - (1 - u)r(t) cos ( (1 - u)fJ(t)) + ur(1 - t) cos ( ufJ(1 - t))), 

y(t,u) - (1-u)r(t)sin((1-u)fJ(t)) +ur(l-t)sin(ufJ(1-t))), 

z(t, u) - (1- u)z(t) + uz(l- t). 

We let the boundary ofthis cell be 81 +82+8s+84. Here 81 is ')'(t, 0), 0 ~ t ~ 1/2, 
which is just x(t) over the same interval; 82 is 1'(1/2, u), which is the "line 
segment" from x(1/2) to x(1/2), whose range is just a point, and hence counts 
as 0 when regarded as a 1-chain; 8s is I'( 1/2- t, 1) which is just x( t + ! ) , so that 
81 + 8s represents x(t) as t goes frotn 0 to 1. Finally 84 is 1'(0, u), which is the 
line segment from x(1) to x(O), and since xis a closed curve, these two points 
are the same. Hence once again 84 counts as 0 when regarded as a 1-chain. 
Thus the boundary of ')' is indeed the curve x. 

Exercise 10.27 Let E be an open 3-cell in R3 , with edges parallel to the 
coordinate axes. Suppose (a, b, c) E E, ft E C'(E) fori= 1, 2, 3, 

w = h dy 1\ dz + h dz 1\ dx + fs dx 1\ dy, 

and assume that dw = 0 in E. Define 

where 

A = 91 dx + 92 dy 

91 (x, y, z) - lz h(x, y, s) ds -1Y fs(x, t, c) dt 

92(x,y,z) - - (z fi(x,y,s)ds, 
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for (x, y, z) E E. Prove that d)..= win E. 
Evaluate these integrals when w = ( and thus find the form >.. that occurs 

in part (e) of Exercise 22. 

Solution. Since 

og2 og1 ( og2 og1 ) d).. = -- dy 1\ dz + - dz 1\ dx + - - - dx 1\ dy, 
f)z 8z ox 8y 

we need only show that 

- -h, 

oz 
- h, 

ag2 og1 
--- f3 - . 
ax 8y 

The first two equations are immediate. As for the third, direct computation 
shows that. 

D1g2(x, y, z)-D2g1 (x, y, z) = 1z -(Drh (x, y, s)+D2h(x, y, s)) ds+ fs(x, y, c). 

Now the assumption that dw = 0 says that 

D1Jr(x, y, s) + D2h(x, y, s) = -D3!3(x, y, s), 

Substituting this value into the last expression and evaluating the integral using 
the fundamental theorem of calculus yields the result d)..= w. 

Taking 

h(x,y,z) 
X 

-
(x2 + y2 + z2)3/2' 

h(x,y,z) 
y 

- (x2 + y2 + z2)3/2' 

fs(x, y, z) 
z 

- (x2 + y2 + z2)3/2' 

we get 

1z X 

g2(x, y, z) = - c (x2 + y2 + s2)3/2 ds = 

1 ( ex zx ) 
= x2 + y2 J x2 + y2 + c2 - J x2 + y2 + z2 ' 

1z Y {y C 

gl (x, y, z) = c (x2 + y2 + s2)3/2 ds- Jb (x2 + t2 + c2)3/2 dt 
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It is a routine computation to verify that these functions do indeed provide a 
primitive for w. 

Exercise 10.28 Fix b > a > 0, define 

<P(r, 0) = (r cos 0, r sin 0) 

for a::::; r::::; b, 0::::; 0::::; 271". (The range of <Pis an annulus in R2.) Put w = x 3 dy, 
and compute both 

rdw and f w 
liP la<P 

to verify that they are equal. 

Solution. Since dw = 3x2 dx 1\ dy, we have (dw)<P = -rdr 1\ dO, and 

l dw = -1b 12
-rr 3r3 cos2 0 dOdr = 3: (a4 - b4 ). 

For the integral over the boundary we have dy = r cos 0 dO+ sin 0 dr, and we get 

12-;r 371" 
(a4 - b4 ) cos4 0 dO= -(a4 - b4 ). 

0 4 

Exercise 10.29 Prove the existence of a function a with the properties needed 
in the proof of Theorem 10.38, and prove that the resulting function F is of 
class C'. (Both assertions become trivial if E is an open cell or an open ball, 
since a can then be taken to be a constant. Refer to Theorem 9.42.) 

Solution. We are given a convex open set V ~ RP whose projection on RP-1 

is the convex open set U. We need to show that there is a continuously differ
entiable function a : U -t R whose gTaph is contained in V. If V is a cell or 
an open ball, there exists a section Xp = c of it (many sections, if it is a cell), 
whose projection is U, and we can simply define a(y) = c for all y E U. 

00 

Now write V as a countable union of open balls V = U Bi. Also write 
i=l 

Vas the union of an increasing sequence of compact sets Kn such that Kn ~ 
int (Kn+1)· 

We claim that, as in Theorem 10.8, there exist continuous functions 1/Ji such 
that the support of 1/Ji is contained in the projection of Bi on RP-1, 0::::; 1/Ji(Y) ::::; 
1 for ally, and 2: 1/Ji(Y) = l·for ally E U. Moreover, this sum is locally finite, 

i=1 
that is, each point y has a neighborhood Uy such that the set of indices i for 
which '1/Ji(z) =/:. 0 for some z E Uy is finite. 

To construct such functions, for each x E V, let i(x) be the smallest index 
r such that x E Bi. Then, as in the proof of Theorem 10.8, for each x E K 1, 

choose open balls B(x) and W(x) centered at x such that 

B(x) C W(x) C W(x) C Bi(x). 



224 CHAPTER 10. INTEGRATION OF DIFFERENTIAL FORMS 

Since K 1 is compact, there are points x 11 , ... ,XrN1 such that 

K 1 ~ B(xn) U · · · U B(xiNJ· 

For later convenience we define L1 = K 1· 
N1 

Now let L 2 = K 2 \ .u B(x1j ). For each x E L2 there are open balls B(x) 
J=l 

and W(x) centered at x such that 

B(x) c W(x) c W(x) c Bi(x) \ K1. 

Since L2 is compact, we choose a finite set of points X21, ... , X2N2 such that 

2 Nk 
Notice that K2 C U U B(xkj ). 

k=lj=l 

Now suppose we have chosen a (possibly empty) collection of open balls 
B(Xkj) and W(Xkj), 1 :::;; j :::;; Nk, 1 :::; k :::; r, centered at Xkj E Lk = Kk \ 
k-1 Ni 
.u .U B(Xij), and such that 
~=1 J=l 

and 

and 
s Nk 

Ks C U U B(xkj), 
k=lj=l 

for 1 S s S r - ·1. It then follows from the last two relationships that the 
last one also holds with s = r. By then considering the compact set Lr+l = 

r Nk 
Kr+l \ U .u B(xkj) and repeating the argument, we can assume that the sets 

k=l J=l 

B(xkj) arid W(Xkj) with these properties have been chosen for all k and all j, 
1 :::; k < oo, 1 S j S Nk. It follows in particular that 

oo oo Nk 
V = U Kn C U U B(xkj ). 

n=l k=l j=l 

Now let Kk, B(Xkj), and W(Xkj) be respectively the projections on RP-l of 
Kb B(xkj), and W(xkj), and let 

We then choose functions 'Pik as smooth as we like such that 'Pki(Y) = 1 
- - ~ 

on B(Xkj) (and hence also on B(xkj )), 'Pki(Y) = 0 outside W(Xkj ), and 0 :::; 
'Pkj(Y) S 1 on RP-1 . Let 'Pi(Y) = 'Pli(Y) for 1 :::; j S N1 and 'Pi(Y) = 
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'Pk,j-(N1+··+Nk- 1)(Y) for N1 +···+Nk-1 < j :5 N1 +···+Nk, 2 ::;·k < oo. We 
define Xj analogously. Let Xj = (y j, Cj). 

We then proceed to define 'I/J1 (y) = 'P1 (y) and 

'I/Ji+1(Y) = (1- 'P1(Y)) · · · (1- 'Pi(Y))'Pi+1(Y) 

for j = 1, 2, ... , as in Theorem 10.8. It is obvious that the support of '1/Jj is 

contained in the closure of W(xj) and hence in Bi(x;) \ Kk-1 ~ U \ Kk- 1 when 
N1 + · · · + Nk-1 < j :5 N1 + · · · + Nk. 

Now by the choice of the sets Kn, if y E U, there is some n such that 
y E Kn C int (Kn+l), and hence '1/Ji(Y) = 0 on the open neighborhood int Kn+l 
of y if j > N1 + · · · + Nn+1· Therefore the sum and product 

00 00 

L '1/Jj(Y) = 1- IJ[1- 'Pi(Y)] 
j=l i=l 

are both locally finite at each point. (Local finiteness of the product means 
all but a finite number of factors equal 1 on a neighborhood of each point.) 
However, if y E U, then y E B(xj) for some j, and so 'Pi(Y) = 1, from which it 
then follows that 

00 

L'I/Ji(Y) = 1 
j=l 

for ally E U. 
Since we have defined Cj so that Xj = (y j, Cj), it follows that the projection 

of the crsection of B ( Xj) on RP-1 , which we denote Cj, is the same as the 

projection of B(xj) on this subspace. That is, it is B(xi)· We can now let 
00 

o:(y) = 2: cj'lj;1(y). For then at each y E U there is a finite integer n such that 
j=1 

(y, o:(y)) = 'I/J1 (y)(y, c1) + · · · + '1/Jn(Y)(y, Cn)· 

Since '1/Jk(Y) = 0· if y ~ Ck and (y, ck) E Bk C V if y E Ck, it follows that 
(y, o:(y)) is a weighted average of points in V, hence belongs to V for all y E U. 

Also, verify Eq. (137). 

Solution. The equation in the problem is a straightforward computation, and 
amounts merely to expanding the determinant along the last column. Likewise 
Eq. (137), which merely asserts that a cross product is perpendicular to each 
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of the factors, is routine. The two inner products in the equation can be ob
tained by replacing the last column of this determinant by either ( a1, a2, a3) or 
(/31 , /32 , j33 ). In each case, the result is a determinant with two equal columns, 
which is therefore zero. 

Exercise 10.31 Let E c R3 be open, suppose g E C"(E), h E C"(E), and 
consider the vector field 

F = g\lh. 

(a) Prove that 
\7 · F = g\72h + (\7g) · (\7h) 

where \72 h = \7 · (\7h) = '"'£ 82h/8xf is the so-called "Laplacian" of h. (b) If 

D is a closed subset of E with positively oriented boundary 8D (as in Theorem 
10.51), prove that 

r [g\12h + (\7g). (Vh)J dv = r g8
8h dA k kn n 

where (as is customary) we have written 8h/8n in place of (Vh) · n. (Thus 
8h/ 8n is the directional derivative of h in the direction of the outward normal 
to 8D, the so-called normal derivative of h.) Interchange g and h, subtract the 
resulting formula from the first one, to obtain 

These two formulas are usually called Green's identities. 

(c) Assume that his harmonic in E; this means that \72h = 0. Take g = 1 and 
conclude that 

r ah dA = o . 
.fan 8n 

Take g = h, and conclude that h = 0 in D if h = 0 on 8D. 

(d) Show that Green's identities are also valid in R 2 . 

Solution. Part (a) is simply the product rule for derivatives. 

The main equation in part (b) is simply the divergence theorem applied to F. 
Green's identities then follow by completely routine computation. 

(c) Taking g = 1 forces 8gj8n = 0 and V 2g = 0. Since \72h = 0 by the 
assumption that h is harmonic, the result follows. For the other assertion of 
this part we have to go back to the main equation before taking g = h. When 
we do, we actually get a slightly stronger assertion: \lh = 0 in D, and so h is 
constant on each component of D, if either h = 0 or 8h/8n = 0 on all of 8D. 
When h = 0 on 8D, obviously the constant value of h must be 0. 
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(d) The "two-dimensional" divergence theorem is simply Green's theorem. That 
is, the assertion that 

{V'·F= { kxF Jn Jan 
follows upon applying Green's theorem to the one-form w = -F2 dx + F1 dy 
corresponding to the vector field k x F - - F2 i + Fd. Because the dot and cross 
operations can be interchanged in the scalar triple product, integrating k x F 
along a curve, that is, taking the product k x F · r, where r is the tangent to 
the curve, and then integrating, is the same as integrating F · k x r, which is 
the normal component of F. All the same identities now follow. 

Exercise 10.32 Fix 8, 0 < 8 < 1. Let D be the set of all (8, t) E R 2 such that 
0 :::; 8:::; 1r, -8:::; t:::; 8. Let 4? be the 2-surface in R3 with parameter domain D 
given by 

x - (1- tsin8) cos28 

y - (1- tsin8)sin28 

z - tcos8 

where (x, y, z) = <1>(8, t). note that <P(1r, t) = <1>(0, -t) and that <l> is one-to-one 
on the rest of D. 

The range M = <P(D) is known as a Mobius band. It is the simplest example 
of a nonorientable surface. 

Prove the various assertions made in the following description: Put p 1 = 
(0, -8), P2 = (1r, -8), Ps = (1r, 8), P4 = (0, 8), Ps - P1· Put /i = [pi, Pi-1], 
i = 1,2 ... ,4, and put ri = <l> oli· Then 

Put z = (1, 0, -~), b = (1, 0, 8). Then 

<l>(p1) = 4?(ps) = a, <P(p2) = <P(p4) = b, 

and 8<1> can be described as follows. 
rl spirals up from a to b; its projection into the (x, y)-plane has winding 

number +1 around the origin. (See Exercise 23, Chap. 8). 
r2 = [b, a]. 
rs spirals up from a to b; its projection into the (x, y)-plane has winding 

number -1 around the origin. 
r4 = [b,a]. 
Thus 8<1> = f 1 + rs + 2r2. 
If we go from a to b along r 1 and continue along the "edge" of M until we 

return to a, the curve traced out is 
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which may also be represented on the parameter interval [0, 21r) by the equations 

x (1 + bsinB) cos2B, 

y (1+bsinB)sin2B, 

z -b cos B. 

It should be emphasized that r =I iJiP: Let TJ be the 1-form discussed in 
Exercises 21 and 22. Since d7] = 0, Stokes' theorem shows that 

r 1] = o, 
laq, 

But although r is the "geometric" boundary of M, we have 

In order to avoid this possible source of confusion, Stokes' formula (Theorem 
10.50) is frequently stated only for orientable surfaces <I>. 

Solution. The claim about the boundary aif! follows immediately from the 
definition of a boundary. The domain D is a cell whose boundary is 11 + 12 + 
1'3 + ')'4, so that by definition 8<!> = if!('Y1) + if!(12) + if!('rs) + <I>(/4). 

The claims that if!(p1) = if!(p3) = a and if!(p2) = if!(p4) = b are routine 
computations. 

The description of r 1 follows from the fact that 11 can be described as the 
set (B, -b), 0::; B::; 1r, so that the projection of f1 in the (x, y)-plane is the set 
of all points ( x( B), y( B)), where 

x(B) - (1 + bsinB)cos2B 

y(B) - (1 + b sin B) sin 28. 

Regarding the pair ( x( B), y( B)) as the complex number z( B) = x( B) + iy( B) = 
(1 + bsinB)(cos2B + isin2B), and using the definition of the winding number, 
we find this winding number to be 

1 17r z'(B) 
n = 27ri o z(B) dB. 

Now, z' (B) = 2 ( 1 + b sin e) (- sin 28 + i cos 28) + b cos B (cos 28 + i sin 28), so that 
we get 

= ~ (17r- sin2B + icos 28 dB b17r cose de) 
n 1ri 0 cos 28 + i sin 28 + 0 1 + b sin e . 

But -sin 28 + i cos 28 = i( cos 28 + i sin 28), so that the first integTal is just 1ri, 
and that term contributes + 1 to the winding number. The second integral is 
just ln(l + bsinB), and since this function has the value 0 at both B = 0 and 
e = 7f' it contributes nothing. 
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As for r 2 , since B = 71", it is given by (x(t), y(t), z(t)), -8 ~ t ~ 8, where 
x(t) = 1, y(t) = 0, z(t) = -t. It therefore describes the line segment from b to 
a as t goes from -8 to 8. 

The descriptions of r 3 and r 4 are justified exactly as was just done for r 1 

and r2. 
As both r 1 and r 3 spiral upward from a to b, it is manifest that r 1 - r 3 

represents a spiral that goes from a to b and back again. It is also easy to see 
that this spiral does not intersect itself, as the ranges of r1 and r3 meet only 
in a and b. For suppose () and cp are such that r 1 (B) = r 3 ( cp). This means 
in particular that -8 cos() = 8 cos cp, and so () = 7l" - cp. It then follows that 
(1 + 8 sin B) cos 20 = (1 - 8 sin. B) cos 20, so that either cos 2() = 0 or sin B = 0. 
Since we also have (1 + 8 sin B) sin 2() = - (1 - 8 sin B) sin 2(), the possibility that 
cos 2() · 0 is ruled out, and so sin()= 0, i.e., () = 0 or () = 71", meaning the point 
in common is either a or b, as asserted. 

As for the description of r 1 - r 3 , it is clear that the mapping T(B) given by 
the equations 

x - (1 + 8sinB) cos2B 

y- (1+8sinB)sin2B 

z - -8 cos() 

has the property that T( B + 7l") is given by the equations 

x - (1 - 8 sin B) cos 2() 

y - ( 1 - 8 sin B) sin 2() 

z - 8 cosO. 

Hence it equals describes r 1(-8,B) on the interval (0,71"] and -r3 (8,B) (since r 3 

is given by the latter formulas, but is traversed with() decreasing from 7!" to 0). 
Since x2 + y2 = (1- tsinB)2 ;;::: (1- 8)2 > 0 on all of M, it follows that 7J is 

defined on M. On r 1 and r 3 we have 7J = 2 dB, so that 

£7] = 471". 





Chapter 11 

The Lebesgue Theory 

Exercise 11.1 If f 2: 0 and JE f df-L = 0, prove that f(x) = 0 almost every
where on E. Hint: Let En be the subset of E on which f(x) > 1/n. Write 
A= UEn. Then J.L(A) = 0 if and only if J.L(En) = 0 for every n. 

Solution. The assertion in the hint is immediate. If f.L(A) = 0, then J.L(En) = 0 
n-1 

also, since En ~ A. Conversely, letting Fn = En\ U Ek, we have Fn C En, 
k=l 

Fm n Fn = 0 if m =/= n, and UFn = UEn = A. Hence if J.L(En) = 0, then 
J.L(Fn) = 0 also, and therefore J.L(A) = 0 by the countable additivity of f-L· 

Given the hint, the solution is immediate, since A is the subset of E on which 
f(x) > 0. If J.L(Fn) > 0 for any n, then JE f dj.L 2: JFn f dJ.L 2: J.L(Fn)/n > 0. 

Exercise 11.2 If JA f df-L = 0 for every measurable subset A of a measurable 
set E, then f(x) = 0 almost everywhere on E. 

Solution. The hypothesis applies in particular if A is the set on which f(x) > 0. 
Since XA! 2: 0, the preceding exercise shows that J.L(A) = 0. Likewise, taking 
B as the set on which - f(x) > 0, we find that J.L(B) = 0. Hence f(x) = 0 for 
almost every x. 

Exercise 11.3 If {fn} is a sequence of measurable functions, prove that the 
set of points x at which {fn(x)} converges is measurable. 

Solution. This set can be written as 

00 00 00 00 1 
n u n n {x: l!k(x)- !L(x)! < - }. 

n=l m=l k=m l=m n 

For this set is the set of x such that for every n there exists m such that 
!fk(x) - fL(x)! < 1/n for all k 2: m, l 2: m. That is precisely the Cauchy 
criterion for convergence. 

231 
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Exercise 11.4 Iff E £(J.L) onE and g is bounded and measurable onE, then 
fg E .C(J.L) on E. 

Solution. This foliows immediately from the dominated convergence theorem 
and the fact that )g(x)) :::; M for some constant M. (Take fn(x) = 9n(x)f(x) for 
all n, where gn(x) is a sequence of simple functions converging to g(x) almost 
everywhere. We can assume Jgn(x)l :s; M and let the dominating function be 
M)f(x)).) 

Exercise 11.5 Put 

Show that 

but 

[Compare with (77).] 

(x) = { 0 ( 0 :::; x :s; ~), 
g 1 (l <X< 1) 

2 - ' 

hk(x) = g(x) (0 :s; x :::; 1), 

hk+l(x) = g(1- x) (0 :s; x:::; 1). 

lim inf fn(x) = 0 (0:::; x :s; 1), n_,.oo 

t 1 Jo fn(x) dx = 2· 

Solution. Since for each x E [0, ~J we have hk(x) = 0 for all k, it follows that 
the inferior limit at such an x is zero. The same is true for x E [ ~, 1], since 
hk+ 1 ( x) = 0 for all these x. The value of the integral is immediate, since each 
f n ( x) is a step function. 

The point of this exercise is that strict inequality can easily occur in Fatou's 
Lemma. 

Exercise 11.6 Let 

Then fn(x) ___, 0 uniformly on R1, but 

(jxj :S n), 

(Jxl > n). 

1:fndx=2 (n=1,2,3, ... ). 

(We write f::'oo in place of J Rl.) Thus uniform convergence does not imply 
dominated convergence in the sense of Theorem 11.32. However, on sets of 
finite measure, uniformly convergent sequences of bounded functions do satisfy 
Theorem 11.32. 
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Solution. The uniform convergence to zero is obvious, since a·::; fn(x) :::; 1./n 
for all x and all n. 

Again, since fn(x) is a step function, the value of the integral is immedi~te. 
)·..r 

Exercise 11.7 Find a necessary and sufficient condition that f E R(o:) on 
[a, b]. Hint: Consider Example 11.6(b) and Theorem 11.33. 

A bounded function f belongs to R(o:) on [a, b] if and only if the following two 
conditions hold: 

( i) f is right-continuous wherever o: is not right-continuous and left-continuous 
wherever o: is not left-continuous (that is, one of f and o: is right-continuous at 
each point and one is left-continuous); 

( ii) the set of points where a is continuous and f is not continuous is a set of 
zero a-variation. That is, this set has J.La-measure zero, where J-La is the regular 
Borel measure generated by the function o:, as in Example 11.6(b). 

To prove this fact, all we have to do is copy the proof of Theorem 11.33, 
mutatis mutandis, specifically, replacing dx by do: and Llx by Llo: at every stage. 
It will follow as a corollary of the proof that if f E R( o:), then f E ..C(J-La) and 

{ f dJ.La = R {b f(x) do:(x). 
J[a,bJ .fa 

In modifying the proof we need to clear out just one case in order to make 
the changes run smoothly. To that end, we note that iff and o: both have a one
sided discontinuity from the same side and at the same point, it is impossible for 
f to belong to R( o:). Indeed, suppose p is a common right-sided discontinuity 
of both f and a. For any partition P we have xk :::; p < xk+l for some index k, 
and then 

U(P, j, o:) - L(P, j, o:). ;:::: o · ( o:(p+) - o:(p) > 0, 

where o is the limit of sup f(x) - inf f(x) as h 1 0. (The function 
p~x<p+h p~x<p+h 

f ( x) is right-continuous at p if and only if o = 0.) 
Note that iff and o: are discontinuous from opposite sides at a point, it is 

quite possible that f E R(o:). For example, let f(x) = X[o,1; 2J(x) and o:(x) = 
X[1; 2 ,oo)(x). Then for any partition P of [0, 1] containing 1/2, we have Xk = ~ 
for some k, and 

U(P, j, o:)- L(P, f, o:) = 1- 1 = 0. 

(It is for this reason that I define R( o:) differently in my courses. I require that 
for each c > 0 there must exist 8 > 0 such that U(P,J,o:)- L(P,J,o:) < c for 
all partitions P such that max (xk- Xk-l) < 8. When this is done, conditions 

l~k~n 

( i) and ( ii) are no longer sufficient for f to belong to R( o:), and the theory 
is somewhat simpler. Except for special considerations at discontinuities of o:, 
however, the results are the same in both theories.) 
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We now suppose that condition (i) holds and prove the necessity of condition 
( ii). To avoid having to single out the endpoints in what follows, we simply 
extend a outside the interval [a, b] by specifying a(x) = a(b) f<Yr x > b and 
a(x) = a(a) for x <a. 

Suppose that f is in R( a). Let { Pk} be a sequence of partitions such that 
Pk+l is a refinement of Pk, the distance between adjacent points of Pk is less 
than i, Pk contains all points x at which a(x+) - a(x-) > i, and 

U(Pk, J, a)--+ R j fda, L(Pkl J, a) --+ R 1 fda. 

We note that every discontinuity of a belongs to some partition Pk. Assume Pk 
consists of the points a= Xk,O < Xk,l < · · · < Xk,nk =b. 

As in the proof of Theorem 11.33, we define Uk(x) = Mi and Lk(x) = mi 
for Xk,i-l < x ::; Xk,i, 1 ::; i ::; nk. For definiteness we define Uk(a) = M1 and 
Lk(a) = m1. Then by definition of the upper and lower sume, the definition of 
J.La ( (a, b]), and the definition of the integral of a simple function, 

{ UkdJ.La - U(Pk,f,a) +M1(a(a+) -a(a)), 
J[a,b] 

{ LkdJ.La L(Pk,f,a) +m1(a(a+) -a(a)). 
J[a,b] 

By condition (i), either M1 -- m1 --+ 0 ask--+ oo or a( a+) = o:(a). It then 
follows that the monotonic sequences Lk and Uk have limits L and U that are 
measurable, and either 

{ LdJ.La = njt da, 
J[a,b] _ 

(when a( a+)= o:(a)) or 

r u dj.ta = njt da, 
J[a,b] 

{ LdJ.La - njt da + f(a)(a(a+)- a(a)), 
J[a,b] 

r u dJ.La - njt da + f(a)(a(a+)- a(a)), 
J[a,b] 

(when a(a+) > a(a)). 
· If these two integrals are the same, it follows that U(x) = L(x) almost 

everywhere with respect to the measure J.La. If x is not a point of any partition 
Pk and U(x) = L(x), then f is continuous at x. As for points of the partition, 
they are either points of discontinuity of a or points x such that J.La ( { x}) = 0. 
Since there are only countably many points in all the partitions, the partition 
points x for which J.La ( { x}) = 0 form a set of measure zero. Thus the set of 
discontinuities of f(x) can be written as the union AU B, where A consists of 
points where f is continuous from only one side and a is discontinuous from 
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that side (these points are all among the points of partition), and B consists of 
the points of discontinuity of f where o: is continuous. We have just shown that 
B is of zero a-variation, as claimed. 

Conversely, iff satisfies Lhese two conditions, we note that U(x).:... L(x) at all 
points where f(x) is continuous. Hence if the discontinuities of f(x) other than 
one-sided discontinuities at points where a: is continuous from the side on which 
f is discontinuous form a set of zero a-variation, then U(Pk, J, o:)-L(Pk, J, a:) -)o 

0. 

Exercise 11.8 Iff E non [a, b]' and if F(x) = I: f(t) dt, prove that F'(x) = 
f(x) almost everywhere on [a, b]. 

Solution. We know by Theorem 6.20 that F'(x) = f(x) at every point where 
f(x) is continuous. Theorem 11.33 shows that iff is Riemann-integTable on 
[a, b], then it is continuous almost everywhere. Hence the result follows. 

Exercise 11.9 Prove that the function F given by (96) is continuous on [a, b]. 

Solution. The function F is the one in the preceding exercise. Its continuity 
follows from the dominated convergence theorem, taking VI as the "dominating" 
function and letting fn = X[a,xn]f where {xn} is any sequence of numbers 
converging to x, so that fn converges pointwise to X[a,x]f except possibly at the 
point x, which is a set of measure 0. The dominated convergence theorem then 
guarantees that F(xn) -)o F(x). Since the sequence {xn} is arbitrary, it follows 
that F is continuous at x, as in Theorem 4.2. 

Exercise 11.10 If J.L(X) < +oo and f E .C2 (J.L) on X, prove that f E .C(J.L) on 
X. If 

this is false. For instance, if 

J.L(X) = +oo, 

1 
f(x) = 1 + lxl' 

then f E .C2 on R1 , but f ~.Con R1. 

Solution. This follows from Theorems 11.27 and 11.29, if we let A = {x 
lf(x)l :5 1} and B = {x: IJ(x)l > 1}. We can then write 

lfl :5 XA + XB ·1/12 • 

and XA is integrable by Theorem 11.23(a). 
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As for the counterexample, we have 

2 1 If I :s; X[-1,1] + X[l,oo) · ~2, 
.L 

which implies that f E [,2, and 

so that 

Hence f f. .C. 

1 
f(x) ~ X[O,nJ(x) 1 + x, 

Jfdx ~ 1n - 1-dx = ln(1 +n)-+ oo. 
0 1 +x 

Exercise 11.11 If j,g E .C(p) on X, define the distance between f and g by 

i If - gl dJ-l. 

Prove that .C(/-l) is a complete metric space. 

Solution. We have to regard functions equal almost everywhere as the same 
function. Given that, it does follow that if d(J, g) = 0, then f = g. The 
fact that d(f, g) = d(g, f) is immediate from the definition and the triangle 
inequality follows from simply integrating the triangle inequality for the values 
of the functions. Hence .C is a metric space. 

To prove that it is complete, we merely repeat the reasoning of Theorem 
11.42, replacing £ 2 by .C and taking the function g(x) to be identically equal to 
1. When this is done, every step in the proof of Theorem 11.42 follows for£. 

Exercise 11.12 Suppose 

(a) lf(x, y) :s; 1 if 0 :s; x :s; 1, 0 :s; y :s; 1, 

(b) for fixed x, f(x, y) is a continuous function of y, 
(c) for fixed y, f ( x, y) is a continuous function of x. 
Put 

g(x) = h1 
f(x,y) dy (0 :s; x :s; 1). 

Is g continuous? 

Solution. Yes, g(x) is continuous. Let Xn-+ x. Then by (c), f(xn, y)-+ f(x, y) 
for each y E [0, 1], in particular for almost every y. Since IJ(xn,Y)I :s; 1 for all 
Xn andy by assumption (a), and the set [0, 1] has finite measure, it follows from 
the dominated convergence theorem that g(xn)-+ g(x). 

Note that property (b) was used only to guarantee that g(x) is actually 
defined. Thus the word continuous could be replaced by integrable in this 
condition. 
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Exercise 11.13 Consider the functions 

fn(x) =sin nx (n = 1, 2, 3, ... , -1r ::; x ::; 1r) 

as points of £ 2. Prove that the set of these points is closed and bounded, but 
not compact. 

Solution. We compute by brute force that 

11/m- fnll 2 = { ~~' ~~: # ~: 
Further, it is easy to see that llfnll 2 = 1r. Hence the set {fn} is bounded and 
has no limit points. (The '\11"-neighborhood of any point contains at most one 
point of this set.) Having no limit points, it contains all of its limit points and is 
therefore closed. Being infinite, if it were compact, it would have a limit point. 
Therefore it is not compact. 

Exercise 11.14 Prove that a complex function f is measurable if and only if 
f- 1(V) is measurable for every open set V in the plane. 

Solution. By definition f = u + iv, where u and v are real-valued, is measurable 
if and only if u and v are. 

Suppose f is measurable (that is, u and v are measurable). Let V be any 
open set in the plane and (x, y) E V. Then there exists 6 > 0 such that the 
square S(x, y) = (x- 6, x + 8) x (y- 8, y + 8) is contained in V. The union of 
these open squares is all of V, and there is a countable set of points (xn, Yn) E V 

00 

such that n~l S(xn, Yn) = V. (This .f proved by appealing to Exercise 23 of 

Chapter 2.) But then 

/-1(V) = U f- 1(S(xn, Yn)) = U u-1(xn- 8, Xn + 8) n v-1(Yn- 8, Yn + 8). 
n=l n=l 

It follows that f- 1(V) is measurable. 
Conversely if f-1 (V) is measurable for every open set in the plane , then in 

particular this set is measurable if V =(a, b) x R 1 (where f- 1(V) = u-1((a, b))) 
or V = R 1 x (a, b) (where f-1(V) = v-1((a, b))), and hence both u and v are 
measurable. By definition, that means that f is measurable. 

Exercise 11.15 Let 'R be the ring of all elementary subsets of (0, 1]. If 0 < 
a ::; b $ 1, define 

·¢([a, b]) =¢([a, b))= ¢((a, b]) =¢((a, b))= b- a, 

but define 
¢((0, b))= ¢((0, b]) = 1 + b 
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if 0 < b::; 1. Show that this gives an additive set function¢ on n, which is not 
regular and which cannot be extended to a countably additive set function on 
a a--ring. 

Solution. In brief, since an elementary set A is a finite disjoint union of intervals, 
¢(A) is the sum of the lengths of those intervals if b is not the endpoint of any 
interval in A and 1 larger than the sum of the lengths of the intervals if 0 is one 
of the endpoints. In particular ¢(A) < 1 if A is a closed set, since 0 cannot be 
the endpoint of any closed set that is a finite union of intervals in (0, 1]. 

(This alternate definition is independent of the particular way in which the 
m 

set A is represented as a finite disjoint union of intervals, since if A = U Ii = 
i=l 

n 
.u Jj, where each of the collections {Ii} and { Jj} is a set of pairwise disjoint 
J=l 
intervals, one can easily verify that 

n m 

IIi!= L IIi n Jj!, llil = L lh n Jj!, 
j=l i=l 

m n 

so that 2: !Iii= L !Jjl = L IIi n Jjl· HEre III is the length of the interval I.) 
i=l j=l i,j 

If two elementary sets A and B are disjoint, at most one of them can have 
the point 0 as the endpoint of one of its intervals. Then ¢(AU B) is the sum of 
the lengths of the intervals in AUB if neither set contains an interval having 0 as 
the endpoint, and 1larger than this sum if one of them does contain an interval 
with 0 as endpoint. In either case ¢(AU B) = ¢(A)+ ¢(B) when An B = 0. 
Thus the function ¢ is additive. 

The function ¢ is not regular, however, since there is no closed subset of 
(0, c] that can approximate (0, c] if c < 1. For ¢((0, c]) = 1 + c, but ¢(A) :::; 1 if 
A is closed. 

The function ¢ also cannot be extended to a countably additive set function 
on a 0'-ring, since 

and 

1 00 1 1 
(0, 2] = n~/ 2n+l' 2n], 

1 3 
¢((O, 2]) = 2' 

00 1 1 1 L ¢(( 2n+l' 2n)) = 2· 
n=l 

Exercise 11.16 Suppose { nk} is an increasing sequence of positive integers 
and E is the set of all x E ( -1r, 1r) at which {sin nkx} converges. Prove that 
m(E) = 0. Hint: For every ACE, 

L sinnkxdx = 0, 
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and 

2 L (sinnkx) 2 dx = L (1- cos2nkx)dx---+ m(A) ask---+ oo. 

Solution. The two statements in the hint follow from the Riemann-Lebesgue 
lemma (or from Bessel's inequality applied to the· Fourier series of XA, if you 
wish). Let f(x) be the limit of sinnkx on the set E. Then, since termwise 
integTation is justified by the dominated convergence theorem, we have 

L [(f(x)f- ~] dx = 0, 

for all A. Hence, by Exercise 2 above, f(x) = ± ~ almost everywhere on 

E. If we let A be the set of points of E at which f(x) = ~' we find that 

JA f(x) dx = 0, and so by Exercise 1, f(x) = 0 almost everywhere on A. Since 
in fact f(x) =I= 0 on A, it follows that A has measure 0. Similarly the set where 
f(x) =-~ has measure 0. 

Exercise 11.17 Suppose E C ( -7T", 7r), m(E) > 0, 8 > 0. Use the Bessel 
inequality to prove that there are at most finitely many integers n such that 
sin nx 2: 8 for all x E E. 

Solution. For any integer with this property we have 

L sinnxdx ~ 811(E), 

and the Bessel inequality implies that this inequality can hold for only a finite 
number of n. (The integral is the imaginary part of the Fourier coefficient of 
the £ 2-function XE·) 

Exercise 11.18 Suppose f E .C2 (J.L), g E L2(J.L). Prove that 

if and only if there is a constant c such that g(x) = cf(x) almost everywhere. 
(Compare Theorem 11.35.) 

Solution. There is a slight mistake in the statement of the problem, since equal
ity certainly holds if f(x) is identically zero, whether g(x) equals zero or not. 
We must either assume that f(x) is not identically zero, or allow the possibility 
that f(x) = cg(x). 
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Equality can hold if g(x) = 0 almost everywhere, and in that case c = 0 in 
the relation g(x) = cf(x). Hence assume now that J JgJ 2 dJ-L > 0. The inequality 

which holds for real values of ).., is equivalent to the inequality 

In this inequality take ).. = -
J IJJ2 dJ-L . J JgJ 2 df-L. The result 1s 

which is equivalent to 

Hence the equality in the problem can hold only if equality holds in this last 
equality, which, since it implies that 

J (lfl + )..jgJ) 2 dj..L = 0, 

implies that Jfl = -)..JgJ almost everywhere. In particular f vanishes almost 
everywhere that g vanishes. In addition, the equality in the hypothesis of the 
problem requires that 

If both sides of this last equality are zero, then at almost every point either 
f(x) = 0 or g(x) = 0. Since If! = -)..JgJ, it then follows that in fact either 
both functions vanish identically, a case we have already discussed, or ).. = 0, 
in which case only f vanishes identically. In either case we do have the kind of 
linear dependence specified in the amended statement of the problem. 

Hence assume that neither side of this equality is zero. Let w be the complex 
number 

so that Jwl = 1. We note that 

j w fg dJ-L = w .I fg dJ-L = I/ fg CJ-L I :S /I fgJ dJ-L = f!w !91 df-L. 
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This means that the real parts of the two integrals on the ext-remes here are 
equal, and the imaginary parts of both are zero. Taking just the real parts, 
sinceRe (wfg) ::; jwjgj, this implies that the real part of wfg is equal to If gj = 
->..gg almost everywhere, and therefore that the imaginary part is zero almost 
everywhere. But then, almost everywhere where g does not vanish, we can 
cancel g from the equality, getting f = ->..wg wherever g does not vanish. Since 
this equality also holds almost everywhere where g does vanish, we are done. 
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